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EXTREMAL VALUES OF THE INTERVAL NUMBER
OF A GRAPH*

JERROLD R. GRIGGS" AND DOUGLAS B. WEST

Abstract. The interval number i(G) of a simple graph G is the smallest number such that to each vertex
in G there can be assigned a collection of at most finite closed intervals on the real line so that there is an edge
between vertices v and w in G if and only if some interval for v intersects some interval for w. The well known
interval graphs are precisely those graphs G with i(G)=<I. We prove here that for any graph G with
maximum degree d, i(G) <- [1/2(d + 1)]. This bound is attained by every regular graph of degree d with no
triangles, so is best possible. The degree bound is applied to show that i(G) <- [1/2n] for graphs on n vertices
and i(G)<- [/J for graphs with e edges.

1. Introduction to interval numbers. We begin by discussing earlier work on
interval graphs and boxicity in order to motivate the definition of interval numbers. A
simple bound on the interval number given the numbers of edges and of vertices of a
graph is presented along with results on the interval number of some basic graphs. In the
next section we prove our main result, which gives the best-possible upper bound on the
interval number of a graph given its maximum degree. This is applied to obtain an upper
bound on the interval number given only the number of vertices. We conclude by listing
several interesting open problems.

Interval graphs are simple undirected graphs G with the property that there exists a
collection of finite closed intervals on the real line such that an interval [ao, bo] is
assigned to each vertex v in G and such that the intervals assigned to two vertices v and
w in G intersect each other if and only if they are joined by an edge in G. Interval graphs
have been studied extensively and can be nicely characterized [1], [3], [4], [5]. They
have important applications to various problems of scheduling, allocation, and
sequencing.

It is natural to try to extend this idea of representing graphs by intersections of
intervals to all graphs. For even some simple graphs, such as the n-cycles Cn (n > 3), are
not interval graphs. One approach, taken by Roberts [7], [8], is to go to higher
dimensional intervals: define the boxicity of a graph G to be the smallest integer such
that G can be represented by the intersections of t-dimensional "boxes" which have
their edges parallel to the coordinate axes. That is, to each vertex v is assigned an
ordered collection of finite closed intervals

([ao,1, by, l], [a,2, bo,2], [a,,, b,t]),

and two vertices v and w are joined by an edge in G if and only if [ao, i, b,i] intersects
[aw,i, bw,i] for all i. In these terms, interval graphs are precisely the graphs with boxicity
at most 1.

Here we present a different approach to extending interval representations to all
graphs. We expect that this approach will be useful in dealing with certain scheduling
and allocation problems, such as traffic light assignments [9] and radio frequency
assignments [2]. Rather than going to higher-dimensional intervals, we allow each
vertex to be represented by a collection of several intervals. Define the interval number
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of a graph G, denoted i(G), to be the smallest integer t->0 such that there can be
assigned to each vertex in G a collection of at most t finite closed intervals so that there
is an edge in G between vertices v and w if and only if some interval for v intersects
some interval for w. This definition is due to R. McGuigan [6].

i(G) exists for any graph G: An interval representation of G is obtained by taking a
pair of overlapping intervals, one labelled v and the other w, for each edge {v, w} in G.
These pairs of intervals are to be separated from each other. Of course, this construction
will not achieve the value i(G) in general.

Interval graphs are precisely those graphs with i(G)-_< 1. Only for graphs with no
edges does i(G)= 0. Complete graphs are interval graphs, so i(Kn)= 1. To represent
Kn, just stack up n intervals, one per vertex, so that their mutual intersection is
nonempty. The cycles Cn, n > 3, are not interval graphs, (Cn) 2 as the representation
in Fig. 1 shows for C4.
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FIG.

Using the Lekkerkerker-Boland forbidden subgraph characterization of interval
graphs [5], it is straightforward to show that for trees T, (T) 1 if and only if T contains
no induced subgraphs of the form shown in Fig. 2. Otherwise, i(T)= 2. See [10] for
details.

FIG. 2

Next we consider arbitrary graphs which contain no triangles. We present a simple
proof of a useful lower bound on i(G) given the number of edges and the number of
vertices in G. Here [x denotes the least integer no smaller than x, and [x denotes the
integer part of x.

THEOREM 1. Let G be a simple graph on n vertices and e > 0 edges which contains no
K3. Then i(G)>-_ [(e + 1)/n].

Proof. As e > 0, we have (G) -> 1. Suppose we are given an interval representation
I for G which attains the bound i(G), i.e., uses no more than i(G) intervals per vertex.
As G contains no g3, no three intervals in I may share a point. For each edge {v, w} in
G, there must be a stretch of points on the real line where a v-interval overlaps a
w-interval. At the right end of such a stretch, one of the two intervals must end. It
follows that there must be at least e + 1 intervals in /. Thus some vertex must be
represented by at least [(e + 1)/n] intervals, so that i(G) >- [(e + 1)/n]. !-!
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We thus derive a lower bound on the interval numbers of complete bipartite
graphs:

COROLLARY.

+ 1]i(gm,n)! rn / n I"

We have constructed interval representations which show that this lower bound is
actually the correct value of i(Km,n) in various special cases. But Trotter and Harary
[10], working independently of us, have proposed the same definition of i(G) and have
come up with a construction for all rn and n of interval representations of K,,.n using at
most [(mn + 1)/(rn + n)] intervals per vertex to show that this lower bound is always the
actual value of (K,...).

We have some results on i(G) for complete p-partite graphs with p > 2 which we
are currently trying to improve and plan to discuss in another paper.

2. The degree bound. Now we come to the main result of this paper, the
best-possible upper bound on i(G) for graphs G which have degree at most d at each
vertex. Note that an upper bound is what is interesting; the lower bound is just 1 for all
d > 0, because (Kd+ 1) 1. The construction following the definition of (G) established
an upper bound of d on (G). Here we shall lower this bound to [1/2(d + 1)] and show that
it is actually attained by some graphs. The interval representation to attain this upper
bound is simple to construct for a given graph, and it has some other nice properties. We
apply this result in the next two sections to obtain upper bounds on i(G) when G has
a given number of vertices or edges. For convenience let d(v) denote the degree of
vertex v.

THEOREM 2. If G is a graph with d maxv d(v) > 0, then i(G)<= [1/2(d + 1)].
Proof. For any graph G with d as above we must give an interval representation for

G using at most d intervals per vertex in order to prove the theorem. We do this by
induction on the number n of vertices of G using this stronger induction hypothesis:

(,) For any graph G on n vertices and any vertex v in G there is an interval
representation of G in which the leftmost interval is a v-interval and in
which, for each vertex w in G, there are at most [1/2(d(w) + 1)] w-intervals.

An interval [a, b is leftmost (respectively, rightmost) if for any other interval [c, d] in
the representation, a < c(b > d).

Hypothesis (.) holds trivially for n 1. So assume that G has n > 1 vertices and
that (.) holds for all graphs on fewer than n vertices. Let v be any vertex in G. We now
construct an interval representation satisfying (.).

Suppose first that there is a circuit C1 passing through v in G. By circuit we mean a
path which begins and ends at v without repeating edges and without passing through
any vertex twice. Say C1 v, Wl, w2, , Wk, V lists the vertices in C1 in order, where
k -> 2. Figure 3 shows an interval representation of the edges in Ca. Now remove these
edges from G (but not the vertices). Suppose there remains another circuit C2 through
v. Then represent each edge in C2 using the same idea as for Cx, except the v-interval on
the right for C1 is used as the v-interval on the left for representing C2. Continue this

wl u

U W2 Wk

FIG. 3
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procedure of representing and deleting the edges in circuits through v until no more
circuits pass through v.

In the case that there is no such circuit C1 passing through v, just put down a single
v-interval. So, in general, if we remove rn circuits through v, the number of v-intervals
used is precisely rn + 1, and the left-most and rightmost intervals are v-intervals. In
removing these circuits, the degree of each vertex w v is reduced by twice the number
of w-intervals used in the representation.

If v now belongs to no edges, apply (.) by induction to the rest of G to obtain a
representation which satisfies the degree bound in (.) at each vertex. Otherwise,
suppose that there are p > 0 vertices adjacent to v in G, which we call u 1, u2, , up.
Since no circuits pass through v now, the vertices ui lie in distinct components if v is
deleted from G. Let Gi be the component containing ui. By induction there is an interval
representation Ii of G in which ui is leftmost and in which the number of intervals for
each vertex is bounded according to (.).

Put 11 to the right of the intervals used to represent the circuits of G so that the
leftmost u 1-interval in 11 overlaps the rightmost v-interval. This represents the edge
{v, Ul} and all edges in G1. For p > 1, add [p/2] additional v-intervals to the right of the
intervals used thus far. Reverse the order of representations 12, 14, I6, so that there
are intervals for u2, u4, u6, which are rightmost in their representations. Then insert
the I in the representation of G so that I2 is to the left of the leftmost new v-interval, I3
is to its right, I4 is to left of the second new v-interval, and so on. The extreme ui-interval
in li should overlap the v-interval. Figure 4 shows the construction. To complete the
construction, represent any remaining edges, by induction on (.), with intervals to the
right of all the other intervals.

C C2 Cm II 12 I3
ul u2 u3,--"--

v v v v v

FIG. 4

We have now represented all the edges of G, and no others. A v-interval is
leftmost. By counting the intervals used, it follows that not more than [1/2(d(w)+ 1)]
intervals are used for any vertex w in G. Thus (.) is satisfied, and the theorem is
proven. I3

That this bound is best possible follows from this result:
COROLLARY. For any regular graph G of degree d containing no K3,

i(G) [1/2(d + 1).

Proof. Suppose G is a regular graph of degree d containing no K3, and let n be the
number of vertices of G. G has exactly nd edges, so by Theorem 1,

i(G)>= [(1/2nd+l)/n] [1/2(d + 1)],
and this is just the upper bound on i(G) in Theorem 2. 71

Two important examples of such graphs are Kd,d and Qd, the d-dimensional cube.
A strong property of the representation in the proof of Theorem 2 that may be

useful in some applications is that it has depth two: no three intervals overlap on the real
line.

3. The vertex bound. Another extremal problem of interest is this: Among all
graphs G on n vertices, how large can i(G) be? Since d =< n 1, it follows from Theorem
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2 that i(G)<= [1/2n]. As an application of Theorem 2 we present here a nice interval
construction to improve this bound on i(G) to [1/2n].

THEOREM 3. If G has n vertices, then i(G)<= [1/2n ].
Proof. The proof is by induction on n. It is certainly true for n <= 3. Now suppose G

has n > 3 vertices. We prove i(G) =< [In in two cases, depending on whether or not G
has a triangle.

First suppose G contains some triangle, on vertices T- {u, v, w}. The intervals
shown in Fig. 5 represent the edges in T and have the additional property that for any
subset of T there is a stretch of the line in which intervals for precisely this subset

W

FIG. 5

overlap. Hence we can represent all edges between T and G- T (the vertices outside
T) using at most one interval per vertex in G- T: For example, if a vertex x in G- T
neighbors u and w, put a small x-interval inside the interval where the u- and
w-intervals overlap, but no v-interval does. At most two intervals are used for each
vertex in T in taking care of all edges involving T. Now, by induction, represent all edges
between vertices in G-T, using at most [1/2n]- 1 intervals per vertex. Place these
intervals away from those involving T to complete the construction.

It remains to consider graphs G with no triangle. By Theorem 2, i(G) <= [1/2n] holds
provided that [1/2(d + 1)] -<_ [1/2n], or, equivalently, d <-2 [1/2n] 1. Thus in the remaining
case it suffices to assume that G contains some vertex v of degree at least n. Let W be
the set of vertices adjacent to v. There are no edges in W because G has no triangles.
Let X be the set of vertices outside W t.J {v}. To represent all edges incident on W, take
a long interval for each of the vertices in X LI {v}, no two intersecting, and for each edge
{w, y}, with w W and y X LI {v}, put a small w-interval inside the y-interval. (See Fig.
6.) At most n intervals are used for each w W because [X{v}[<-1/2n. The only
remaining edges involve pairs of vertices in X and can be represented, by induction,
using at most [1/2[X[] intervals per vertex in X. This represents G with at most [31-n]
intervals per vertex.

Trotter and Harary [10] independently discovered the same [1/2n] bound on i(G).
The constructiori given here is simpler. How good is this bound? The balanced complete
bipartite graphs, Kt,,/21.,,/:z, show that i(G) can get at least as large as [1/4(n + 1)]. This
agrees with [1/2n for n < 7. At n 7 it is not difficult to prove that (G) can be at most 2,
so the [1/2n]-bound is not always best possible. It is natural to conjecture that these
graphs K t,,/z.;,,/z are extremal among all graphs G on n vertices, just as they were for
graphs of maximum degree d. That is, the best possible upper bound on i(G) should be
[1/4(n + 1)]. One of us (Griggs) has recently succeeded in showing this, but owing to the
length and complexity of the proof, it will appear elsewhere [13].

4. The edge bound. How large can the interval number of a graph with e edges
get? Theorem 2 can again be applied to give an upper bound.

THEOREM 4. If G has e edges, then i(G)<- [x/].
Proof. The theorem holds trivially if e =< 1, so assume that G has e > 1 edges and

that the theorem holds for all graphs with fewer than e edges. Let k [x/]. If d < 2k,
then i(G)<-k by Theorem 2. So assume that d>=2k and let v be a vertex of degree d.
Represent all edges containing v by a long v-interval overlapped by a small w-interval
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for each neighbor w of v (see the v-interval in Fig. 6). This requires at most one interval
per vertex in G. The remaining e d < (k 1)2 edges in G can be represented using at
most k- 1 intervals per vertex by induction. I-1

W-intervals W-intervals W-intervals

V Xl X2

FIG. 6

intervals for edges
inX

This argument can be refined to obtain the slightly stronger result that i(G) <= [x/J.
It can be shown that i(G)-< 2 for e 9, so this upper bound [x/] is not best possible.
The graphs K2,,.2,,, m 1, 2, 3,. ., show that i(G) can get at least as large as 1 + [1/2x/J.
We conjecture that this is also an upper bound, which would be best possible.

5. Areas requiring turther study. Applications will motivate the study of other
problems related to interval numbers. We propose the following:

1. Give a forbidden subgraph characterization of the graphs with interval number
at most k, where k _-> 2.

2. Interval numbers minimize the maximum number of intervals used for any
vertex in representing G. One could instead seek to minimize the total number
of intervals required in a representation.

3. Representations could be restricted to being of depth at most r by not allowing
any r + 1 intervals to share a point. What can be said about the "depth r interval
number"?

4. Rather than intervals, one can use circular arcs to represent vertices and ask for
a circular interval number ic (G). This means that we allow a single interval to go
to+ and come back from -, so that (-o, a Ib, ), with a < b, counts as a
single circular interval, ic(Cn) 1 < i(Cn) 2 for n > 3. Graphs with it(G) <= 1
are known as circular-arc graphs [11], [12]. What is the behavior of i(G)?
It should be similar to i(G) since for all graphs, i(G) >- ic(G) >- i(G)- 1.

Acknowledgments. We are indebted to Fred Roberts for introducing us to interval
graphs and for bringing the work of Trotter and Harary to our attention; to Robert
McGuigan for proposing the study of interval numbers; and to Daniel J. Kleitman for
making some valuable suggestions. This work originated at the NSF-CBMS Regional
Conference in Graph Theory at Colby College, June, 1977.
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ON THE STRUCTURE OF t-DESIGNS*

R. L. GRAHAM’)’, S.-Y. R. LI:I: AND W.-C. W. LI

Abstract. It is possible to view the combinatorial structures known as (integral) t-designs as Z-modules in
a natural way. In this note we introduce a polynomial associated to each such Z-module. Using this

association, we quickly derive explicit bases for the important class of submodules which correspond to the
so-called null-designs.

Introduction. Among the most fundamental (and least understood) types of
combinatorial configurations are the t-designs [2], [5], [6]. These can be defined as
follows. Let v, k, and A be positive integers satisfying -< k <- v. A t-design Sx (t, k, v) is
a collection #9 of k-subsets B (called blocks) of a v-set V with the property that every
t-subset of V occurs as a subset of exactly A blocks B . (It is not required that blocks
be distinct.) It follows from this definition that for any <-t, the number of blocks of a
t-design which contain a fixed/-subset I of V is exactly

(1) A(v-i)/(k-i)t
independent of/, which implies, in particular, that a necessary condition for existence of
an Sx (t, k, v) is that the expressions in (1) are integers for 1 -< _-< t. In fact, Wilson [6] has
shown that for any _-< k-<_ v, this is also a sufficient condition for the existence of an

Sx (t, k, v) provided only that A _--> Ao(t, k, v) is sufficiently large.
Let M be the free Z-module generated by all the subsets of V; the elements of M

are all sums g =Y.x_vcxX, where CxZ. In this terminology, a t-design is just an
element 6 ’.lYl=k cyY with all Cy 0 such that for all t-subsets X,

CY=A.
Y_X

A submodule of M of particular interest is the module Nk defined by

N, { 6 s M" cx O and when iXl # k, cx O}.
X_V

The elements of Nk are usually called null-designs since they result when the (module)
difference of two t-designs is formed. In principle, if the structure of null-designs can be
sufficiently well understood, then light will be shed on t-designs since any Sx (t, k, v)
differs from a given S (t, k, v) by a null-design.

In [2], Graver and Jurkat obtain a generating system for the module Nk from a
special construction which they call a "(t, k)-pod". In this note we recast the concept of
null-designs in terms of polynomials. From this formulation we reproduce the above
generators in a much simpler way. In fact we show that there are basically only five kinds
of linear dependence among these generators, and thereby produce in Theorem 4 an
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" Bell Laboratories, Murray Hill, New Jersey 07974.

* Department of Mathematics, University of Chicago, Chicago, Illinois 60637. The work of this author
was supported in part by the National Science Foundation under Grant MCS77-03533.

Department of Mathematics, University of Chicago, Chicago, Illinois 60837. The work of this author
was undertaken during a visit at the Institute for Advanced Study, Princeton, NJ.



ON THE STRUCTURE OF t-DESIGNS 9

explicit basis for Nk described in terms of simple polynomials. In proving this theorem

() (v)"inclusin"matrixHo,k,t=(hx, y),with[X[ =t,we use the fact that the by
k

[Y[ k and

1 ifX_ Y,
hx,Y

0 otherwise

has full rank. Although this is well known (see [3] for a short proof), we give a new proof
of it by exhibiting an explicit (generalized) inverse for the inclusion matrix.

The polynomial ring. Let 7/[X1,""" Xv] denote the polynomial ring with v vari-
ables over Z. For trSo, the group of permutations on {1,2,..., v}, and f in
7/[Xl,. , xo], define the polynomial f 7/[Xl, , xo] by

f(Xl,""", Xv) f(Xo-(1),

We shall say that f is x-free if every monomial appearing in it is squarefree. With each
multiset of subsets of V {1, 2,. , v} we can associate a polynomial ]’ by

(2) ’= 1] x.
Bd iB

If 3 forms a t-design Sx(t, k, v), then the polynomial fe is a positive integral linear
combination of squarefree monomials of degree k with the property (by (1)) that for all
O" E So,

(3) f(Xl,’’’,Xt, 1,..., 1)=h t-i
/=0 k-i

a i(xl,...,xt),

where a’(Xl,.’. ,xt) denotes the ith symmetric function of the xj’s. Thus, a null-
design, being the difference of two t-designs, is a homogeneous x2-free polynomial g
of degree k satisfying

(4) g’(Xl," xt, x, x) 0

for all tr So. These g form a Z-module N (in the obvious way) which is free since it is

(v) generated (over 7/)bycontained in the free Z-module of rank
_k

all the monomials

{Hie, Xi I V, II[- k}.

Generators for null-designs.
THZORZM 1. (Graver-Jurkat). The moduleNofnull-designs is generated over 7/by

the collection {b: r s So}, where

(Xl,""", Xv)"-" (Xl--X2)(X3--X4) (X2t+l--X2t+2)X2t+3 Xk+t+l.

This collection is void when v <= k + or k <= t.

Proof. Suppose f is a nonzero null-design. Without loss of generality, we may
assume that the monomial xl Xk occurs in f with a nonzero coefficient c. Thus

k
f(,..i.,1, 0,..., O)=c 0.
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It follows from (4) that k < v- t and v- k < v-t, i.e.,

v>=k+t+l and k>-_t+l.

In particular, this proves the theorem for the case that v -<_ k + or k -<_ t.
We now show that f is generated by the $, tr So. The proof is by induction on

and, for a fixed t, by induction on v. Because f is x2-free, we can write

f(xl, xo)= g(xl, xo-1)+h(Xl,’", xo-)Xo.

For any permutation r Sv-x and any values of xx, , xt-1, xo and x, we have

O=f’(x, ,xt_,x, ,x, xo)

g’(xx,’" ", xt-x, x," ", x)+h’(xx,’", xt-1, x," ", x)xo,

and therefore

h(Xl, ,xt_,x, x)=O.

This shows that h is a null-design with parameters (t- 1, k- 1, v- 1) when _-> 1. Let

O(Xl," ", Xv-1)--’(Xl--X2)" (X2t-l--X2t)X2t+l Xk+t-1.

When -> 1, we may assume by the induction hypothesis on that h is an integral linear
combination of 0, r s So-x. Of course this is also true when O. Thus we can write

h(Xl,’",xo-)= Y. cO
Sv--1

with c ’. Since v > k + t, there exists, for each T, a variable x(-) xo not appearing in
0. Therefore O(X--X(T)) is equal to ( for some g(T)So. Now the polynomial

f- E c()= g + hxo-E cO(xo-x(r))
Sv--1

g +E

is a null-design with parameters (t, k, v 1), which by induction on v, is an integral linear
combination of the , g So_. This proves the theorem.

Note that it follows from Theorem 1 that when v k + t, the only null design is

f 0, which in turn implies that the only t-designs are the trivial design (the set of all
k-subsets of V) and its multiples. This has previously been pointed out by Wilson [6].
We also remark that a topological proof of the special case of the theorem with k 3,

2 has appeared in [4].

A basis for null-designs. Our next task will be to remove the linear dependence
from the set of generators {’gSo}. Note that this set actually contains

v /(t + 1)(k t- 1)(v k t- 1) elements, substantially more than the
k

eventually shall be left with.
There are 5 kinds of linear dependence which will be removed. They are indicated

symbolically as follows" For a < b < c < d, replace
(i) b a by -(a b);
(ii) (b-c)a by (a-c)b-(a-b)c;
(iii) (b-c)a by (a-c)-(a-b);
(iv) (a-d)bc by (a-b)c-(a-b)d +(a-c)d-(a-c)b+(a-d)b;
(v) (a-d)(b-c) by (a-c)(b-d)-(a-b)(c-d).
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The meaning of this notation is as follows. If b is of the form (Xtr(1)--Xtr(2)) (Xb-
Xa) x(2,+3) with a < b, for example, then using (i) we replace it by -b*’ where

if tr(j)= b,
tr’(/)-- if tr(/’)= a,

tr(/) otherwise.

In other words, replace 4 by

In (iii) and (iv) the bar over the variable indicates that the replacement may be made
provided that variable does not already occur in b. Thus, with (iii), for example,

tr__ (Xo-(1)--Xtr(2))" (Xb--Xc)"

is replaced by the two terms

(Xo’(1)-- Xtr(2)) (Xa Xc)’’"

provided xa does not occur in b.
Let *So,k., consist of those tr So which satisfy:
(a) tr(1) < tr(3) <. < tr(2t + 1);
(b) tr(2) < tr(4) <. < tr(2t + 2);
(c) tr(2i 1) < tr(2i), 1 _-< -<_ + 1
(d) tr(2t+ 1)<tr(2t+3)<tr(2t+4)<... <tr(k +t+ 1);
(e) o’(2t + 1) < o-(k + + 2) < tr(k + + 3) <. < or(v);
(f) If 2t + 3 _-< _-< k + + 1 </" _-< v and tr(i) < o’(2t + 2) then tr(i) < o’(/’).
By repeatedly applying transformations (i)-(v), we can reduce the set of generators

stated in Theorem 1 to a much smaller collection.
LEMMA 2. The module N is generated by {4 z So,k,,}.
Proof. Because of Theorem 1 and the transformation (i), we need only to consider

the polynomials b with tr $’o, where

So" o- satisfies the condition (c)}.

To each tr S’ we attach three values"

2t+2 k+t+l

A= Y. tr(i), B= E tr(i)
i=1 i=1

and

C max {tr(2i)-tr(2i- 1): l<=i<-t+ 1}.

Given two elements tr, or’ of S’o, we say that tr’< cr if (A,, B,, C,) is smaller than
(A, B, C) according to lexicographic order.

Let tr $’o. If none of the four transformations (ii)-(v) can be performed on b,
then reordering the factors (x(1)-x(z)),’", (X(z,+)-x(z,+z)) of b, the factors
Xtr(2t+3),""", Xtr(k+t+l) of b, and the unused variables Xtr(k+t+2),’’’, Xtr(v), respec-
tively, by increasing subscript, we see that b b for some z So.k.,. If any of the
transformations (ii)-(v) can be performed on b, then it is easy to check that d is a
linear combination of b’ with tr’ S’o and tr’ < tr. Consequently, d is generated by d",
with r So,k,,.
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A more combinatorial way to view S’v,k,t is to consider it as the set of linear
extensions o- of the partial order < on the set { 1, , v } shown in Figure 1 which satisfy
(f) (where a linear extension of -< means a permutation o- Sv such that p < p’ implies
or(p) < cr(p’)).

k+t+l? )v ()

," ()v-1
2t+4 k+t+3 ()v-2

2t+399+/+2

2/+2t+l tr
r-

4
5

2

FIG.

()4

()3

()2

()1

Let sv,k,t denote [Sv,k, l. The value of Sv,,t is unexpectedly simple.
THEOREM 3. For v >--_ k + + 1, k >- + 1,

Proof. The proof will be by induction on v. First, assume v k + + 1, i.e.,
k v 1. In this case, the "tail" of P beginning with k + + 2 is empty and conditions
(e) and (f) are satisfied vacuously. We consider two cases. Since o- is a linear extension of
P, either tr(v)= v or tr(2t + 2)= v. If o’(v)= v, then by induction the number of tr is

(v-l) (v -1). if tr(2t + 2) v then again by induction the number of trSv-l,v-t-2,t
t+ 1

(v-I) (v-I)Sincethesumofthesetwoexpressionsis( v )is Sv-l,v-t-l,t-1
1 + l

()=so,-t-x,t, the induction step is complete in this case.

Now, assume v > k + + 1. For a fixed v, we shall argue by induction on k. As
before we distinguish cases according to the possible values of o--1 (v). In this case there
are three possibilities" v, k + + 1 or 2t + 2. If r(v)= v, then by induction on v the

(v-l) (v-1).iftr(v)=k+t+ 1 then byinductiononnumber of these o" is s -l,k,t k

(v-i) (v -1). if tr(v) 2t + 2, then conditionk the number of these tr is S_l,k_l,t
k 1

(f) and the induction hypothesis imply that the number of these tr is s-1,o-,-1,,-1

"(v-1)_(v-1)t1 Thus, the sum of these is Skt=()--(7),, which completes the

induction step. Since (5) obviously holds for v 2, the theorem is proved.



ON THE STRUCTURE OF t-DESIGNS 13

Note that for v k + + 1 or k + 1, the mapping r: P V can be interpreted as
a "voting sequence" for two candidates A and B [1] with the integers {2, 4, , 2t + 2}
denoting votes for A, o,(2i) indicating that the/’th vote cast was the ith vote cast for
A. The requirement that r is a linear extension implies that A never leads B during the

The number of suchris well known to be ( v _[vvoting. (see [1])
t+l]\t]

Finally, we show that the elements of *Sv,k.t are linearly independent over 7/. Let
Zi[Xl,’", xv] denote the 7/-submodule of 7][Xl,... ,xo] consisting of the homo-
geneous x2-free polynomials of degree i. Consider the linear mapping
: ’k[Xl, , X] 7/t[Xl, , X] given by defining

I_J iI
IJl=k IIl=t

on a basis of 7/k[Xl, ", Xo] and extending to 7/k[Xl, , Xv] by linearity. It is easy to
see that N Ker (). Consider the matrix H.k,t of with respect to the basis of

monomials of 7/k(X,’’’, Xo) and 7/,(Xl," xj), respectively. Ho k is a by
k

matrix with rows indexed by t-subsetsX of V, columns indexed by k-subsets Y of V and
having as its (X, Y) entry 1 if X

___
Y and 0 otherwise. For our choice of parameters,

v >_- k + + 1 and k >_- + 1. Thus, Ho,k. has at least as many columns as rows. Then as

()noted earlier, rank (Hv,,) vt "A direct way to verify this is as follows. Define the
k

(v matrix H*--(h,x)indexed by k-subsets Y and t-subsets X of Vby by taking
\]t

h.r,x=
(-1)-’(k-t) 1

(-1)IY-XlI y-xI (v-t)"IY-xl
Then the (X, X’) entry of H.k.tH* is

(_l)lr-x’l
(6) (-1)k-’(k t) Y

cb_x (v-t)IY-x’l IY-x’l
By partitioning the sum according to the values of Y-X’I, standard binomial
coefficient identities show that (6) is equal to 1 if X X’ and 0 otherwise. Thus,

where I denotes the x by x identity matrix. Therefore, the rank of is (v and N, being
\It

Ker (), has dimension ()-()._._- As an immediate consequence we have"

TheOReM 4. {&" r e S*o.k,} ]orms a basis ]or N.

Concluding remarks.

1. The form of the value of s,.,,.,t, namely,
k

suggests that there may be a

more direct interpretation which would allow one to write this value down at once. If so,
what is it?
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2. In a similar spirit, one suspects that the inverse of nv,k,t given in (6) may be part
of a much more general phenomenon, perhaps involving M6bius inversion. However,
we have not pursued this here.

3. Is it feasible to search for new t-designs by starting from known (perhaps trivial)
designs and augmenting them by null-designs? We have no computational evidence at
present.

4. Consider the set of all polynomials g 7/[Xl, , xo] satisfying (4). These form
an ideal which we denote by I(v, t). Our null-designs are just the x2-free homogeneous
polynomials of degree k in l(v, t). If we were to allow repetitions of elements in the
blocks of , the corresponding null-designs would consist of all homogeneous poly-
nomials of degree k in I(v, t). It is natural to ask for a set of ideal generators for I(v, t) in
general.

In view of Theorem 1, one would expect that {: tr So} generates I(v, t) when
v _>- 2t + 2, where

I/(X1,""", Xv)’- (X1--X2) (X2,+l--X2t+2).

For general v and we do the following. Let zr be a partition of the set {1, , v} into
disjoint subsets V1, , Vo-,-1 having as nearly equal cardinalities as possible. Define

v--t--1

g,= 1-I I-I (x,-x).
r=l i,i Vr

i<i

One of us (W. Li) has conjectured that these 0= generate the ideal I(v, t). This is known
to be true for 2.

Note added in prooL This conjecture has now been proved by W. Li and R. Li and
will appear in a forthcoming paper.
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ENSEMBLES AND LARGEST SOJOURNS OF RANDOM WALKS*

DANIEL J. KLEITMAN- AND KENNETH J. WINSTON

Abstract. We investigate the following problem: A particle starts at the origin and makes a random walk
of 2n steps along a line. The steps are either one unit forward or one unit back, with equal probability. The
particle returns to the origin for the kth time at step 2n. What is the distribution in size of the largest of the k
"sojourns" between returns to the origin?

Using a technique similar to the introduction of the canonical ensemble in statistical mechanics, we show
that if k <_-ko Ax/n log n, then the probability that there is a sojourn with more than n/(B log n) steps in a
walk returning to the origin for the kth time at step 2n is at least 1 n-(A’/g/-A2/4-2) n44-,,/ko. Thus for
large n almost all walks have a "big" sojourn (one with at least n/log n steps).

1. Introduction. In the course of investigating the asymptotic behavior of the
number of tournament score sequences, we encountered the following simple problem:

A particle starts at the origin and makes a random walk of 2n steps along a line. The
steps are either one unit forward or one unit back, with equal probability. The particle
returns to the origin for the kth time at step 2n. What is the distribution in size of the
largest of the k "sojourns" between returns to the origin?

In this paper, we show that if k <-Ax/n log n, then the probability that a walk
returning to the origin for the kth time at step 2n has a sojourn with n/(B log n) or more
steps approaches 1 as n increases (Theorem 3 below is the precise formulation of the
result). We also observe that the probability that a walk returning to the origin at step 2n
has more than Ax/n log n sojourns is at most n -A2/4.

Feller investigated a similar problem, and observed that the results "play havoc
with our intuition." We note below that the average size of a sojourn in a walk returning
to the origin at step 2n is 2ff-n/r steps when n is large. Thus we make the counter-
intuitive assertion that almost all walks have a sojourn which is anomalous in that its size
is far from average.

2. Outline of arguments. The number W(n, k) of walks that return to the origin
for the kth time at step 2n is known ([1, p. 76]). We review the formula in Proposition 1
below. We observe in passing that this indicates that the average sojourn in a walk
returning to the origin at step 2n has 2x/n/r steps when n is large.

We then consider the quantity S(n, k, z), which is defined as the number of walks
returning to the origin for the kth time at step 2n and in which there is no sojourn with
2z or more steps. We introduce an ensemble which is the union over all integers m of
the walks counted by S(m, k, z). We compute an upper bound on the size (after an
appropriate normalization) of this ensemble. This upper bound also serves as a bound
on S(n, k, z) (after normalization) for any fixed value of n.

We use this bound to show (in Theorem 1) that when k0 =Ax/n logn and
Zo n/(B log n), the size of the ratio S(n, ko, Zo)/W(n, ko) decreases exponentially as B
increases.

This establishes the desired result for k ko-Ax/n log n. We then prove
(Theorem 2) that the ratio S(n, k, z)/W(n, k) is a nondecreasing function of k up to an

* Received by the editors December 19, 1978.
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exponentially small error term. This propagates the result of Theorem 1 down to
smaller k, establishing our main result (Theorem 3).

We finally note that the formula for W(n, k) implies that the probability that a walk
returning to the origin at step 2n has more than Ax/n log n sojourns is less than n -A2/4.

3. Proots. The random walks we study here are called in the literature unrestricted
one-dimensional symmetric random walks with a return to the origin at step 2n. By a
sojourn of a random walk we mean a set of steps between successive returns to the
origin. Let W(n, k) be the number of walks returning to the origin at step 2n for the kth
time. We will call walks counted by W(n, k) k-sojourn walks.

PROPOSITION 1. When n and k are integers with 1 <= k <= n,

Proof. Let

k’2k(2n-k)W n’ k n -S c n

() P(x) E W(n, k)x
n=k

be the generating function enumerating k-sojourn walks.
We can group k-sojourn walks by the size of the initial sojourn. This leads to a

recursive sum:

n-k+l

(2) W(n, k) . W(i, 1) W(n -i, k 1)
i=1

which translates into a generating function identity

(3) Pk(X) Pl(X)Pk-l(x) (Pl(X)) k.

There are clearly (2nn)walks returning to the origin at step 2n. Thus we can use the

binomial theorem and (3) to write

( nn/(4) hE0= x (1-4x)-1/2= 1 +P(x)+P2(x)+
1-Pi(x)"

Solving (4) for Pl(X) yields

(5) PI(X) 1-x/1-4x.

An application of Lagrange’s inversion formula yields. k2k

(2n-k)nmk
X(6) Pk(x)=(1 x/1L4x)k

2n-k n

([2, pp. 153-4]). This completes the proof of Proposition 1.
We note parenthetically that the average size of a sojourn of a walk returning to the

origin at step 2n is 2x/n/rr when n is large" differentiating (4) gives the generating
function identity

(7) 2(1-4x)-3/2=P’(x)+P(x)+P’3(x)+.
Using the umbral relation (3) with (7) yields

(8)
1 -x/1-4x= P(x) + 2P2(x) + 3P3(x) +. .
1-4x
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We equate coefficients of x on the two sides of (8) to obtain

(9) 4- 2 kW(n, k).
k=l

Dividing (9)by (2nn) and using Stirling’s formula indicates that for large n the average

number of sojourns per 2n-step walk is x/n. Dividing into 2n shows that when n is
large the average size of a sojourn in a walk returning to the origin at step 2n is on the
order of 2x//rr.

We now continue with the proof of our main result. Let Sk be the set of all walks
returning to the origin after exactly k sojourns; Sk is thus the union over all m of the
walks counted by W(m, k). Let Sz be the subset of Sk consisting of walks all of whose
sojourns have less than 2z steps. We let S(n, k, z) be the number of 2n-step walks in Sk

We will consider the sets introduced in the previous paragraph as weighted
ensembles in which walks with 2n steps are weighted by a factor of 4-n. We will change
,the S’s to E’s when the sets are considered as weighted ensembles; thus Ek denotes Sk

considered in this way. For any weighted ensemble E we let IEI denote the sum of the
weighted sizes of all members of E.

Note that the ensembles we have just introduced are similar to those of statistical
mechanics. The ensemble Ez is similar to the canonical ensemble; the walks counted by
S(n, k, z) are similar (after normalization) to the microcanonical ensemble. Here the
size IE[ of an ensemble corresponds to the number of states satisfying the parameters of
the ensemble.

THEOREM 1. Let k =A/n log n and zo=n/(B log n), where ko, zo and n are
integers with 1 <= ko, Zo <-_ n. Then the probability that there is no sojourn with 2z0 or more
steps in a random walk returning to the origin ]:or the koth time at step 2n decreases
exponentially with decreasing Zo and increasing n. Specifically,

S(n, k0, Zo) _(A f-B-_A2/4_2)<n
W(n, ko)

Proof. If we set x in (5), we see that IE 1. From Proposition 1 and Stirling’s
formula, we have

2.4-"(2m -1) 1
(10) W(m, 1)4-"

m2 2m3/2"

Thus we have

1 leo --3/2(11) lEVI [Eli- E W(m, 1)4 < 1--J
m dm <1-

We can bound [EI by raising (11) to the kth power

< exp

But Proposition 1 and Stirling’s formula yield the inequality

k (-k2

)(13) W(n, k)4-" > 2Vn3/ exp\--n (1 + O(k/n))

Note that S(n, k, z)4-" counts a component of Ezk, so lEVI is larger than S(n, k, z)4-".
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Hence, dividing (12) by (13) gives the inequality

2n3/2S(n, k, z)
<exp(14)

W(n, k k -n
when the O(k/n) term is negligible in (13). Using the values of k0 and z0.given in the
hypothesis of the theorem with inequality (14), we obtain the bound

2 r --(A Bw--A:/4-1)S(n, ko, Zo)
< n(15)

W(n, ko) -- log n

This is a lower bound on A implied by k0 >_- 1; using this bound with (15) completes the
proof of Theorem 1.

As n increases (and the A and B of Theorem 1 stay fixed), the proportion
$(n, ko, Zo)/W(n, ko) of walks with small sojourns becomes smaller if B is sufficiently
large compared to A. Unfortunately, the bound given by (14) provides no information
for k and z which are not near k0 and z0.

We now show that the ratio S(n, k, z)/W(n, k) is a nondecreasing function of k up
to a small correction. This will propagate the result of Theorem 1 down to smaller k.

THEOREM 2. The probability that a random walk returning to the origin for the kth
time at step 2n has no sojourn of size 2z or more is (up to a correction that decays
exponentially with decreasing k) nondecreasing in k. Specifically,

$(n, k, z) S(n, k 1, z)
>

-k2z
> --n34-n/k.

W(n, k) W(n, k-1) W([n/k], 1)

Pro@ Set P(n, k, z)=$(n, k, z + 1)-$(n, k, z). This means that P(n, k, z) counts
walks returning to the origin for the kth time at step 2n and in which the biggest sojourn
has exactly 2z steps. We will show first that the difference D(n,k,z)=
P(n, k, z)/k-P(n, k- 1, z)/(k 1) is small in magnitude.

Number the W(z, 1) sojourns with 2z steps from 1 to W(z, 1) in some way. We
introduce a fourth argument to the functions P and S by using this numbering as
follows: $(n, k, z, i) is the number of walks counted by $(n, k, z + 1) in which the
sojourns with 2z steps (if any) are numbered less than i. P(n, k, z, i) is then $(n, k, z, +
1)- $(n, k, z, i) (note that $(n, k, z, 1) $(n, k, z)). The introduction of this fourth
argument has the effect of allowing us to graduate more finely the introduction of 2z
step sojourns into the pool of allowable sojourns.

P(n, k, z, i) satisfies the following identity"

P(n, k, z, i)= Y W(/’, 1)P(n-/’, k- 1, z, i- 1)

(16)
=1

+(i- 1)P(n -z, k- 1, z, i)+ S(n-z, k- 1, z, + 1).

The index/" is the size of the initial sojourn as in (2); the terms outside the sum
correspond to walks beginning with a 2z step sojourn.

Consider the last term of (16); S(n -z, k- 1, z, + 1) counts those walks counted
by P(n, k, z, i) in which the initial sojourn is the 2z step sojourn numbered i. Cyclic
rotation of the order of the k sojourns in such walks will produce all walks enumerated
by P(n, k, z, i) at least once. In fact, the only duplication occurs when there are two or
more instances of the 2z step sojourns numbered in the walk; we can thus write

(17) O<-S(n-z,k-l,z,i+l)
P(n,k,z,i)

<=P(n-z,k-l,z,i).
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Define D(n, k, z, i) P(n, k, z, i)/k-P(n, k- 1, z, i)/(k- 1). Then a calculation
with (16) and (17) yields

(18)

z-1

D(n, k, z, i) >= Y. W(], 1)D(n -], k 1, z, i)
1=1

+(i- 1)D(n z, k 1, z, i)
P(n-z,k-2, z,i)

We now prove by induction on n that D(n, k, z)>--kW(n, k)/W(z, 1). A verification
shows that the induction hypothesis is true for all values of k and z when n is small.
Summing (18) over (from 1 to W(z, 1)) yields

D(n, k, z) >- , W(], 1)D(n -], k 1, z)

(19)
W(z,1) P(n -z, k-2, z)

+ ., (i-1)D(n-z,k-l,z,i)
i= k -2

An application of the induction hypothesis and (2) produces the desired lower bound
for D(n, k, z)"

D(n, k, z) >-_ W(], 1)
-(k 1) W(n -], k 1)_ W(n, k_____)

(20) = W(z, 1) W(z, 1)

-kW(n,k)
W(z, 1)

Now note that $(n, k, z) is zero if z is less than (n + k)/k. This is because each of the
k sojourns in walks counted by S(n, k, z) can have at most 2(z-1) steps. From this
observation and the definition of D(n, k, z) it is clear that we can form a telescoping sum

S(n,k,z) S(n,k-l,z)
(21) D(n,k,z-1)+D(n,k,z-2)+. .+D(n,k,n/k)=

k k-1

We can apply (20) to each term on the left-hand side of (21). This gives a lower
bound for the right-hand side"

(22)
S(n,k,z) S(n, k- 1, z)

>_
kzW(n, k)

k-1 W(ln/k], l)"

A calculation shows that

(23)

S(n, k, z) kW(n, k 1) S(n, k 1 z)
W(n, k) (k 1) W(n, k) W(n, k 1)

S(n, k 1, z) k2z
W(n,k-1) W([n/k],l)

k2z
W([n/k],l)

This (along with (10))completes the proof of the theorem, where we overestimate z and
k by n for use with the error term.

We conjecture that S(n, k, z)/W(n, k) is actually nondecreasing in k. Intuitively,
the truth of this conjecture would mean that the probability that a walk is composed of
small sojourns increases monotonically as there are more sojourns. This seems intui-
tively clear, but finding a rigorous proof (without the error term we have used) seems to
be difficult.
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In any case, the correction that now appears on the right-hand side of Theorem 2 is
small when n is large and k k0 Av/n log n. Note that this correction is decreasing
(in magnitude) in k. If m is less than ko, we can form a telescoping sum of the differences
on the left-hand side of the statement of Theorem 2 to obtain the difference
S(n, ko, z)/ W(n, ko)- S(n, rn, z)/ W(n, m). Thus the following inequality holds"

(24)
S(n, ko, z)_S(n, m, z)> _n44_,/ko"
W(n, ko) W(n, m)

This allows us to state our main result"
THEOREM 3. Let ko=A/n log n and zo=n/(B log n), where ko, Zo and n are

integers with 1 <= ko, Zo <- n. Let k be an integer, 1 <-_ k <- ko. Then the probability that there
is a sofourn with 2z0 or more steps in a walk returning to the origin for the kth time at step
2n is at least

1 n -(Ax/B/r-A2/4-2)- n44-n/k.
/

We finally show that the proportion of the ) walks returning to the origin at step

2n that have more than Av/n log n sojourns is less than n -A2/4.
Note that if we define

(25) f, (m) . W(n, k),
k

fn(m) is a decreasing function of m with fn(1) f,(m) is (by (4)) the coefficient of
n

x in

(26)
1-Px(x)

Pn(X)+al-Dm+l (X)-" gm(x)--[--grn+l(X)--"

From ([2, p. 154]) and Stirling’s formula we obtain

(27) n x/2n-m exp(--).f(m) 2"(2 n-m)<(2nn) V2----n
Thus

(28) f,(A/n log n)/(2nn) <n-A2/4.
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A GROUP TESTING PROBLEM*

GERARD J. CHANGer AND F. K. HWANG

Abstract. Suppose we have two disjoint sets of items of cardinalities rn and n where each set contains
exactly one defective item. A group test is a simultaneous test on an arbitrary group of items with two possible
outcomes: The group is identified as good if it contains no defective items; otherwise it is identified as
defective. The problem is to find the two defective items with a worst-case minimum number of (group) tests.
The first question is whether there is anything to be gained by considering the two sets together. The answer is
a somewhat surprising "yes." The second question is this: Since there are mn possible pairs of defective items,
can we always solve the problem with [log2 mn] tests--the information-theoretic lower bound where Ix]
denotes the smallest integer not less than x. We conjecture that the answer is yes again and we provide partial
evidence in favor of this conjecture. We also discuss several other related problems.

1. Introduction. Suppose we have two disjoint sets of items M {M1,’’’, M,,}
and N- {N1,..., Nn} where exactly one of the items in each set is defective and the
others are good. A group test is a simultaneous test on an arbitrary group of items with
two possible outcomes. The group is identified as good if it contains no defective item;
otherwise the group is identified as defective but the test does not reveal how many or
which ones are defective. The problem is to identify the two defective items with a
worst-case minimum number of (group) tests. We will call such a problem with
parameters m and n an (m, n) problem.

By using the halving (binary search) method [2], we can identify the defective item
in M in [log2 rn] tests where Ix] is defined as the smallest integer not less than x.
Similarly we can identify the defective item in N in [log2 n ] tests. However, there are mn
possible pairs for the two defective items. Therefore, the information-theoretic lower
bound for the number of tests is [log2 mn] which never exceeds [log2 m + [log2 n and is
sometimes less. The question is: "Can the information-theoretic lower bound always be
achieved?"

In other similar types of problems such as sorting, merging, searching etc., the
general rule seems to be that the information-theoretic lower bound cannot be achieved
except in special cases. In the present problem, one might also suspect that sinceM and
N are disjoint and we have exact information on both sets, maybe nothing can be gained
by pooling the two problems together. The latter illusion can be easily dispelled by the
following example in which M {MI, ME, M3} and N {N1, N2, N3, N4, Ns}. We first
test {M1}U{N}. if that group is good, then we can find out one defective item in
M {M} in one test, and the other defective item in N {Nx} in two tests. If {M} t.J {N}
is defective, we test N1 next. IfN is good, we can decide MI is a defective item, and we
find out the other defective in N-{N1} in two tests. If N is defective, we find out the
other defective in M in at most two tests. In any case, four tests suffice although
[log2 3] + [log2 5] 5.

Although the above special procedure cannot be readily generalized to deal with
all values of m and n, we conjecture that the information-theoretic lower bound can be
achieved for all m and n. We call a positive integer mfavorable if for any n, the number
of tests required for the (m, n) problem is [log2 ran]. In the paper, we show that an
infinite number of m are favorable. In particular, this set includes all m -< 10.
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2. The main results. A group testing algorithm for the (m, n) problem can be
represented by a rooted binary tree (see [2] for notation) where a test is associated with
every internal node and the two links of that node represent the two outcomes "good"
and "defective". Therefore a test sequence is represented by a path of the tree, and the
two defective items identified by the test sequence are associated with the terminal node
at the end of the path. The number of tests for that particular sequence is clearly just the
length of the corresponding path. We will call the path on which all groups tested are
defective the all-defective path.

Let t(m, n) denote the worst-case minimum number of tests required for the (m, n)
problem. We first note an obvious monotonicity property of t(m, n).

LEMMA 1. t(m + 1, n)>--_ t(m, n).
Proof. The proof is straightforward.
Let m be an odd positive integer. Then we have
LEMMA 2. There exists positive integers p and q such that mp= 2q- 1.
Proof. Since m and 2 are relatively prime, there exists a positive integer q such that

2q ------ 1 (mod m),

from which Lemma 2 follows immediately.
Define s(m, n) to be 1 if mn + 1 is not a power of 2, or if mn+ 1 is a power of 2, but

the length of the all-defective path is exactly one unit shorter than every other path.
Otherwise define s(m, n) to be 0.

THEOREM 1. Let m be an odd positive integer and let p and q be two positive integers
satisfying mp= 2 1. Then s(m, n) 1 and t(m, n) [log2 ran]for n 1,. , p, imply
s(m, n)= 1 and t(m, n)= [log2 ran] for all n.

Proof. Suppose n > p and 2k-1 mn< 2k for some k. If n <- p2k-q, then we can use
the halving procedure on N k-q times and the remaining problem is (m, n’) where
n’-<p. By our assumptions, t(m, n’)<-t(m, p)=q. Therefore t(m, n)<-_k-q +q k.
Furthermore, s (m, n) 1 since

mn <-- rap2k-q 2k 2k-q < 2k 1.

Hence we assume that

n p2k-q + r where r_-> 1.

From

mn mp2k --q
4- mr 2k 2k-q .. mr < 2k,

we obtain

mr < 2k-q.

Partition N into p groups of 2k-o items G1, Go and one group of r items Go.
Let F be an algorithm for the (m, p) problem achieving the information-theoretic lower
bound. Let F’ be obtained from F by replacing/V by Gj for ] 1, , p, and adding Go
to every group tested on the all-defective path. Associated with every terminal node of
A, except the one in the all-defective path, is a set of pairs M Gj, where M is the
defective item in M already identified, and Gi is a subset of N known to contain a
defective item. Since the size of G is 2k-, k-q more tests suffice to identify the
defective item in N. Associated with the terminal node on the all-defective path is the
union of two disjoint sets of pairs. The first set consists of pairs in M G while the
second set consists of pairs inM Go. It takes one more test, for example, testing Go, to
separate these two sets. However, since the all-defective path is the short path by the
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assumption s(m, p)= 1, only q tests will have been used after the separation. We have
already shown that theM x Gj case can be solved in k q more tests. Now the M Go
case, actually an (m, r) problem, can also be solved in k -q more tests by the induction
assumptions since mr < 2k-q. Furthermore, if mr + 1 is a power ot 2, then again by the
induction assumptions there exists an algorithm for the (m, r) problem such that
s(m, r) 1 and t(m, r) flog2 mr]. However, mn+ 1 is a power of 2 only if mr + 1 is.
Therefore s(m, n) 1. The proof is complete.

THEOREM 2. ff m is odd and favorable and s(m, n)= 1 ]:or all n, then 2rm is
]avorable and s(2rm, n)= 1 for all n for r 1, 2,....

Proof. Apply the halving procedure on Mr times and then use Theorem 1.
THEOREM 3. m is favorable and s(m, n) 1 for all n ifm 2 i for k 1, 2, .
Proof. Consider the (m, 1) problem. By applying the halving procedure in the

special manner that whenever the size of the current group is 2- 1, we test a group of
size 2--1, it can be easily verified that s(m, 1)= 1 and t(m, 1)= k. Now apply
Theorem 1 with p 1 to obtain Theorem 3.

THEOREM 4. m is favorable and s(m, n) 1 for all n if
(i) m=(22k-1)/3,k=l,2,....
(ii) m =(24k-1)/5, k 1, 2,....
(iii) m =(23k-1)/7, k 1, 2,....
(iv) m (26k 1)/9, k 1, 2,.
Proof. (i) From Theorems 2 and 3, for 1 -< m -< 3, m is favorable and s(m, n) 1 for

all m. Now apply Theorem 1 with p 3.
(ii) From Theorems 2, 3 and 4(i), for 1 <- m <_- 5, m is favorable and s(m, n) 1 for

all n. Now apply Theorem 1 with p 5.
(iii) and (iv) are proved along similar lines.
COROLLARY. For 1 <-- m <-- 10, m is favorable and s (m, n) 1 for all n.

3. Some other related problems. One way to look at the (m, n) problem is to
consider an m n matrix where row represents the item M, column/" represents the
item N, and cell Cij represents the answer that Mi and N. are the two defective items. A
test on the group of items Mil, , Mix, N.I, , N.y corresponds to a selection of rows
il, , ix and columns jl, , ]y. A selection partitions the cells into two groups, those
in the selection and those not, just as a test partitions the possible answers into two
groups. Therefore, the existence of an algorithm achieving the information-theoretic
lower bound implies that every selection which corresponds to a test in the algorithm
must partition the cells in the current group into two groups whose sizes are not
separated by a power of 2. Since the current group is not necessarily in the shape of a
matrix after the first selection, one must consider a more general framework to permit
an induction proof.

Consider an r c matrix with exactly 2k _-< rc entries of "1" and the rest "0". If for
any distribution of the "1" entries in the matrix, we could always find a selection such
that the number of "1" entries in the selection is exactly 2k-l, then we would have
proved the group testing conjecture. This is because that we can imbed the original
m n matrix (filled with "1" entries) in the r c matrix and add enough "1" entries
elsewhere to make the total number of "1" entries 2k (assuming 2k-1< mn--<2k).
Whether such a selection always exists is unknown at present. Note that if we start with
2k entries of I and ask whether there always exists a selection partitioning it into k and
k, then a counterexample (provided by T. H. Foregger) is readily available. The
counterexample has parameters m 5, n 9 and 2k 44, namely, there is a single cell
with entry "0". Since the cells not in the first selection can always form a rectangle by
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rearranging rows and columns, and there exists no rectangle containing either 22 or 23
cells, the first selection for an even partition is impossible. The attempt to find a
counterexample for the 2k case along similar lines has not been successful. In fact,
Foregger and Odlyzko [1] have shown that no such counterexample can exist if the
number of "0" entries is less than 6. (J. Spencer suggests that this matrix problem can be
formulated in the terminology of graph theory. Namely, the problem is to decide
whether a bipartite graph with 2k edges can always be decomposed into two induced
subgraphs with 2k-1 edges each.)

Another question raised is this: Suppose we have k sets N1, , Nk with cardinal-
ities n 1,’’’, nk, and each set contains exactly one defective item. Does there always
exist an algorithm achieving the information-theoretic lower bound? (i.e.
t(nl,’.., nk)= [log2 l’-Iik_--i nil). The answer is easily seen to be in the negative by the
counterexample k 3, nl n2 3 and n3 7. It can be readily verified that there exists
no test which partitions 3 37 into 31 and 32. The fact that the group testing
conjecture can only possibly be true for the two-set case makes it even more
fascinating.
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ON THE ORDER OF RANDOM CHANNEL NETWORKS*
A. MEIR, J. W. MOON AND J. R. POUNDER

Abstract. The order of a stream with no tributaries is defined to be 1. In general, when two streams of
orders a and/3 flow together, the larger stream thus produced has order max {a,/} or c + 1, according as
a / or a =/. The order lq of a river network 2V" is the order of the highest ordered stream in . Our object is
to investigate the distribution of f for random networks with n sources. It follows from our results that the
distribution of 1 is very highly concentrated about + 1/2 log2 n.

1. Introduction. Consider an idealized river network that contains no lakes, no
islands, and no junctions of more than two streams at the same place. The structure of
such a river network lying upstream from a given nonjunction point may be represented
by a trivalent planted tree (see, e.g., [3, p. 161 or [5, p. 67]). It is customary to call such a
tree a channel network in this context (see [8] or [9]). The root of the tree, or the outlet of
the network, corresponds to the point furthest downstream in the portion of the river
being considered, and the other nodes of degree one, or sources, correspond to the
points furthest upstream.

More formally, a channel network may be defined recursively as follows. The
trivial network consists of a single edge joining a source node to an outlet node. Any
nontrivial network may be constructed by identifying the outlets of an ordered pair of
smaller networks, and , with one end of a new edge whose other end serves as the
outlet of the network thus formed; the subnetworks and are the main branches
of V. Two channel networks are considered the same if and only if they have the same
ordered pair of main branches.

Horton [6] (see also [7, p. 12]) introduced the order f f(N) of a channel network
2V" as a parameter that provides a measure of the complexity of N. If is the trivial
network then fZ()= 1, and if A/" is a nontrivial network with main branches . and ,
then

max {f(), f()}, if f() f(),
f(N)

f(,) + 1, if 1"() 1"().

For example, the networks in Fig. 1 have order two and three (the outlets are the nodes
at the bottom).

1)=3

FIG.

Several authors have compared various statistical properties of river networks
arising in nature with the corresponding properties of random channel networks and
concluded that certain properties of river networks could be deduced from the
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hypothesis that the networks developed randomly; see, e.g., [9] and [10] and the
references contained therein. In particular, Shreve [8] generated the numerical values
of the probabilities p(n, k) that a random channel network with n sources has order k
for selected values of n up to 100, among other things. He concluded, on the basis of this
numerical data, that the maximum value of p(n, k) for a given value of n occurs for that
value of k for which n 1/(k-1) is closest to 4.

Our object here is to investigate the distribution of 1 for channel networks Ac with
n sources. In 2 we derive an explicit formula for p(n, k) which we use in 3 to
determine the limiting behavior of p(n, k) for large k and n. The distribution of 1 is very
highly concentrated; in fact, the probability that f is one of three particular consecutive
values is at least .999 when n is large. If E{I} denotes the expected values of 1 for
networks with n sources, then it follows from our results in 4 that E{f}-
1/2 log2 n +O(1) as n

2. Formulae for l(n, k). Let yn denote the number of channel networks W with n
sources. The generating function

satisfies the relation

y=y(x)=Ey.x"

(2.1) y(x)=x+y2(x),

since y 1 and the number of sources in any nontrivial network X equals the sum of
the number of sources in its two main branches. It follows from this relation that

y(x)=1/2(l_(l_4x)l/2)= (2n -1) x" 2(2.2)
2n-1

=x+x +2X3+5X4+’’’’

a familiar result going back to Cayley [1]. We shall also need the fact that

(2n-m) x
(2.3) y (x) m Y. 2 mn

for m 1, 2,... this may readily be deduced from (2.1) with the aid of Lagrange’s
inversion formula.

If f(n, k) p(n, k)y, denotes the number of channel networks V" of order k with n
sources, let

fk=fk(X) E f(n,k)x"
n=l

for k 1, 2, . The following result is the generating-function version of a recurrence
relation Shreve [8, p. 29] gave for the numbers f(n, k).

LEMMA 1. f X and

(2.4) f f-x q- 2f (fl q-f2 +’’"-bfk_l) for k 2, 3,....

Proof. The trivial network is the only network of order 1 so fl x. When k _-> 2 it
follows from the definition of the order of a network that the networks of order k may
be partitioned into two disjoint classes, namely, those in which both main branches have
order k 1, and those in which one of the main branches has order k and the other has
order at most k-1. The two expressions in the right hand side of (2.4) are the
generating functions for these two classes, respectively.
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1/2 so thatWe now solve relation (2.4) for fk(X). It will be convenient to let/o(X) x
relation (2.4) will hold for k _-> 1.

THEOREM 1. If k >-O, then for x # 0

(2.5) fk(X) X
1/2 sin 0/sin 2ko,

where cos 0 1/2x -/2.
Proof. It follows from relation (2.4) that fk(X) 0 for x 0. Hence for x 0

1 f2k_/fk + 2(f +f2 +’’" +fk-1)

if k _--> 1. When we subtract this equation from the equation obtained from it by replacing
k with k + 1, we find that

+ 2f, 

or that

flfk+l + 2 (fk_llfk)2.
Thus the functions rk =fk/2fk+l satisfy the relations ro--1/2x -1/2 and

(2.6) rk 2r-i --1

for k _-> 1 and x - 0.
Recall that cos 25 2 COS2 t- 1 for any b, real or complex. If we define the

complex variable 0 O(x) for x # 0 by

0 =-i log (x-1/2y),
where, for definiteness, iO(x)< 0 for x > 0, then ei x-/2y and by (2.1)

COS 0 21_(X-1/2y +X1/2y-1) -1/2
X ro.

Hence it follows from (2.6) that

rk COS 2k0
for k _>-0. We further recall that sin 2b 2 sin b cos b. Hence, if Sk sin 2ko, then

Sk 2Sk-lrk-1-- Sk-lfk-1/fk

for k _-> 1, and

Skfk --Sk-lfk-1 Sofo--X 1/2 sin 0

for k _-> 0. Therefore,

fk X1/2 sin 0/sin 2ko,
as required.

We adopt the notational convention
z(z 1),. , (z -/" + 1) for/" 1, 2,. .

COROLLARY 1. If k >= 1, then

that (Z)o=l and that

(2.7) p(n, k)
2 E (2./2 n )(n )i/(n +
n

where j (2z + 1)2k-1 and the summation is over " 0, 1,
Proof. Since

io -1/2e x y,
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we have
1./ -io eiO) 1.sin 0 5tte -lX 1/2(x/y y) -"tXI" -1/2(1_2y),

where we have appealed again to (2.1). Hence,

fk X
1/2 sin 0/sin 2ko

(1 --2y) exp (i2ko){1 --exp (i2k+lo)}-I

=(1-2y) E (X-1/2y)(2r+l)2k"

We may use (2.3) to collect the coefficient of x" in this last expression; if we then divide
by y, we obtain formula (2.7) after some cancellations.

COROLLARY 2. If k >-2, then

2k--1--1

(2.8) f(n, k)=4" 2-k Y’.
/=1

(_1)i-1 COS
2n-2 (jrr/2k) sin2 (jrr/2k).

Proof. We recall that the Chebyshev polynomials U, (z) of the second kind may be
defined (see [11, p. 3]) by the relation

U,(z) sin (n + 1)0/sin 0,

where z -cos 0. It follows from (2.5), therefore, that

(2.9) fk {2zU2k-I(Z)}-1,

where z cos 0 1/2x -1/2.
The zeros of the function U(z)/z U2k_l(Z)/Z are located at the points zi and -z.

where

(2.10) zi cos (/’r/2k)

for 1 -<_/" <= 2k-l- 1. Thus when we expand in partial fractions we find that

2k--1--1 2cizz/U(z)= E
/=1 Z --Z

2t-1--1

Y. 2cj (zJz)2",
/’=I m=l

where

(2.11) ci {U’(zi)}-1 (-1)i-12-k sin2 (jr/2k).

Consequently, (2.9) may be rewritten as

2k----I

f= 2 -" 2 c"-
n=2 j=l

2k--X--1

(4x)" E cz"-2,
n=2 ]=1

since Z-2--4X. This proves formula (2.8), in view of relations (2.10) and (2.11).
We remark that it follows from formula (2.8) that

f(n, k)--42-k cos2"-2 (r/2k) sin2 (r/2k)
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if 4kin -> 0 as n --> o. Consequently,

p(n, k)=f(n, k)y 47r/E2-kn3/E cos2"-2 (r/2k) sinE (7r/2k)
-/an-a/E4n-if 4k/n "-’> O, since y---Tr For example,

f(n, 3)--- 1/47rl/:n3/2{1/2(1 + 2-1/2)}"-1

as n --> 03. Furthermore, if 4kn---> 0 and 4kn-/a-> cx3, then

p(n, k) 47rS/aS-gn 3/2 e-’/4

as nc.

3. The behavior of p(n, k) for large n and k. In what follows we shall write ’instead of Y, when the index of summation takes on only odd values.
THEOREM 2. IfR 4k-1/n as n, k c, where is any positive number, then

2tlim p(n,k)=2’(2u -1) e
n,k oo

Proof. It follows from Corollary 1 that

p(n, k)= 2 E’ a(n, k),

where

and ] u2k-. Now,

(3.1) e-/(n-) -< (1 n/-’)
when 1 -< ] =< n. Consequently

(n +

(n)i <(1 i ]) < e-i2/(n+i)
(n +])i n +

lim a,,(n, k) (2u2t 1) e -’=t

for each fixed u if R t.
It follows from the upper bound in (3.1) that

lab(n, k)l <- (2u2R + 1) e

for all u, n, and k. If, as we may suppose, n and k are sufficiently large, then R > 1/2t. The
function (2z + 1) e -(1/a)z is decreasing when z >, so

lab(n, k)l <= (uat + 1) e -(1/4)’2t

when ua> 3It. The series ’ (uat + 1) e-(1/4)at converges for any positive t; hence, we
may appeal to Tannery’s theorem [4, p. 136] and conclude that

lim p(n, k)= 2 E’ lim a(n, k)= 2 E’ (2uat- 1) e -t.
n,k n, k

Moreover, the convergence of p(n, k) to its limit is uniform for >_- 8, where 6 is any fixed
positive number.

Similarly, if P(n, k)= p(n, k)+ p(n, k + 1)+..., then

lim P(n, k) 2 (2uEt 1) e -’2t 1 --47r5/2l-3/2 b’2 e-=-=/t
n,k--,oo ,=1 v=l
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if R for any positive t. The second expression for the limit follows from the first by
Jacobi’s identity for the theta-function [2, p. 11]. Some values of the function g(t)=

E2 ’ (2v 1) exp (--vEt) are given in Table 1.

TABLE

g(t) g(t) g(4t)

.75 .00020 .50163 .49787
1.00 .00361 .73995 .25641
1.25 .01864 .86007 .12128
1.50 .05287 .89259 .05453
1.75 .10741 .86887 .02370
2.00 .17792 .81201 .01006
2.25 .25800 .73779 .00419
2.50 .34157 .65668 .00172
2.75 .42387 .57535 .00070
3.00 .50163 .49787 .00028

The maximum value of p(n, k) for a given value of n, and the value of k at which the
maximum occurs, depend not so much on the magnitude of n, as such, as on the relative
position of n with respect to the powers of 4. For each integer n there is a unique integer
K K(n) such that

3 4r-1
--<<3,
4- n

i.e., K 1 +[1/2 log2 (3n)]. We see from Table 1 that if n is large and 4:-l/n is close to {,
then p(n, k) is close to g({), or .89 approximately. If, however, n is large and 4r-/n is
close to , then p(n, K) and p(n, K + 1) are close to g(-) and g(3), respectively, and hence
both probabilities are close to 1/2. Similarly, if 4r-/n is close to 3, then p(n, K- 1) and
p(n, K) are both close to 1/2. For example, if n =43 then K =4 and 4r-/n 1.488; the
actual value of p(43, 4) is .900, by formula (2.7). If n 85, then K is still 4 but now
4-1/n =.7529; the values of p(85, 4) and p(85, 5) are .505 and .494, respectively.

In general, K will be the most likely value of f if 4-1/n is not too close to 43- or 3; in
these extreme cases K + 1 or K- 1 (but not both) could be at least as likely. (One could
attempt to remove this slight ambiguity by defining K to be the integer such that
a <=4r-1/n <4a, where a .748 is the solution of the equation g(a) g(4c); but
there seems to be little gained by this in view of the difference between p(n, k) and
g(4k-/n) for particular values of n and k.)

We see that for most values of n at least one-half the networks with n sources
will have the same value of 1, namely K, and that the actual proportion may be
considerably larger. As further indications of how concentrated the distribution of ll is,
we observe that it follows from Theorem 3 and some numerical calculations that

rain {p(n, K 1) + p(n, K), p(n, K) + p(n, K + 1)}> .945

and

p(n, K 1) + p(n, K) + p(n, K + 1) > .999

when n _-< 100 and for all sufficiently large values of n.
Shreve [8, p. 31 has suggested that the maximum value of p(n, k) for fixed n occurs

at that value ot k for which n /k-l is closest to 4. This is frequently the case, but not
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always; for example, 1001/3= 4.64 is closer to 4 than is 1001/4= 3.16, but

p(lO0, 4) .36056 < p(lO0, 5) .63819.

It is true, however, that if E{B} denotes the expected value of the geometric mean
bifurcation ratio B n 1/(n-1) of a network r with n sources and order f (see [8, p. 21]),
then E{B} 4 as n - o. We shall omit the proof of this.

4. The moments of II. We have seen that the distribution of the order f of a
random network r with n sources is highly concentrated about K 1 +[1/2 log2 (3n)]. It
is not unreasonable, therefore, to suspect that the expected value E{f} of 1) is close to
1 + 1/2 log2 n. We shall show that the absolute moments of f about 1 + 1/2 log2 n are in fact
bounded.

THEOREM 3. If S is any fixed positive integer, then

E{In-1/2 log2 n llS} O(1)

E{aX} y. (log a)
E{X}

for any nonnegative random variable X, it will suffice to show that

(4.1) E{4In-(1/2) lOg2 n--l[} O(1)

as n --> c. Before proving relation (4.1) we establish two lemmas.
LEMMA 2. If 4k-1 < n, then

p(n, k) O((n/4k-1)3/2 e -’/4k-1)
as n - c.

Proof. It is not difficult to see that the function cos2n-2 u sin2 u is decreasing in the
interval (n 1)-1/2 _-< u <_-r. The numbers ]zr/2k, where ] 1, 2, , 2k-l- 1, all lie in
this interval since 4k-1 < n. Consequently, formula (2.8) for [(n, k) is an alternating sum
of decreasing terms. When we bound f(n, k) by the first term in formula (2.8) and use
the inequalities sin u < -u2/2u and cos u _<- e for 0 _-< u _-< r, we find that

f(n, k)_-<4n2-k cos2’-2 (’rr/2k) sin2 (7r/2k)
7/-24n8-k e-r2(n-1)/4

O(48-k e-/4-1).
The required result now follows from the fact that

p(n, k)=f(n, k)y O(n3/24-"f(n, k)).

LEMMA 3. If 4k-1 >--n, then

p(n, k)= O((4k-1/n) e-4k-/2")
as n o.

Proof. Let R 4k-1/n. It follows from Corollary 1 and inequality (3.1) that

p(n, k)_-<4 Y’. p2 Re-(1/2)v2R =4 Re-(1/2)R p2 e-(1/2)R(v2-1)

<_--4 Re-(1/2)R /2 e-(1/2)(v2-1)= O(Re-(1/E)R)

as required.
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that
We can now prove relation (4.1). Let k0--[1/2 log2 n + 1. It follows from Lemma 2

1--- (n/4k-1)P(n, k)
k<ko

O(k<ko (n/4k-1)5/2 e-n/4k-1)
0 45/2’e -4v-1 0(1),

since for every k such that k < ko there exists a unique integer u such that 4-1<_-
n/4k-1 < 4. It follows from Lemma 3 that

F. Y’. (4k-1/n)p(n, k)
kko

( -4k-1/2n)=0 Y. (4k-l/n)2 e
k >--ko

O(= 42v e-(1/2)4"-) O(1),

since for every k such that k_-> k0 there exists a unique integer u such that 4-1_-<
4k-1/n < 4. This suffices to complete the proof of relation (4.1) since

E{41a-(1/2 g2 n--ll} Z1 +Z2"
We remark that the values of E{4n-1/n} and E{n/4n-l} oscillate and do not tend to

a limit as n --> oo. Numerical evidence suggests, however, that

1.6 < E{4n-1/n} < 1.9

and

.7 < E{n/4n-1} <.9
for n -> 5.

Acknowledgments. We are indebted to Mr. W. Aiello for performing numerical
calculations for us. The preparation of this paper was assisted by grants from the
National Research Council of Canada.

REFERENCES

[1] A. CAYLEY, On the analytical forms called trees, Philos. Mag., 28 (1858), pp. 374-378. (Collected
Mathematical Papers, Cambridge, 4 (1891), pp. 112-115.)

[2] R. BELLMAN, A Brief Introduction to Theta Functions, Holt, New York, 1961.
[3] C. BERGE, The Theory of Graphs and its Applications, Methuen, London, 1962.
[4] T. J. BROMWlCH, An Introduction to the Theory of Infinite Series, Macmillan, London, 1931.
[5] F. HARARY AND E. PALMER, Graphical Enumeration, Academic Press, New York, 1973.
[6] R. E. HORTON, Erosional development ofstreams and their drainage basins: Hydrophysical approach to

quantitative morphology, Geol. Soc. Amer. Bull., 56 (1945), pp. 275-370.
[7] A. E. SCHEIDEGGER, Theoretical Geomorphology, Springer-Verlag, Berlin, 1961.
[8] R. L. SHREVE, Statistical law ofstream numbers, J. Geology, 74 (1966), pp. 17-37.
[9] J. S. SMART, Channel networks, Advances in Hydrosciences, vol. 8, V. T. Chow, ed., Academic Press,

New York, 1972, pp. 305-346.



RANDOM CHANNEL NETWORKS 33

10] J. S. SMART AND C. WERNER, Applications of the random model ofdrainage basin composition, Earth
Surface Processes, (1976), pp. 219-233.

[11] G. SZEGt3, Orthogonal Polynomials, Colloquium Publications, vol. 23, American Mathematical
Society, Providence, RI, 1975.



SIAM J. ALG. DISC. METH.
Vol. 1, No. 1, March 1980

1980 Society for Industrial and Applied Mathematics

0196-5212/80/0101-0006 $01.00/0

A COMBINATORIAL PROBLEM ARISING IN THE STUDY OF
REACTION-DIFFUSION EQUATIONS*

JAMES GREENBERG,t CURTIS GREENE,$ AND STUART HASTINGS

Abstract. We study a discrete model based on the observed behavior of excitable media. This model has
the basic properties of an excitable medium, that is, a threshold phenomenon, at refractory period, and a
globally stable rest point. We are mainly interested in two dimensional periodic patterns. We characterize the
initial conditions which lead to such patterns, by introducing a basic invariant, the "winding number of a
continuous cycle."

The problem we shall consider bears a superficial resemblance to the well-known
"game" of Life, as devised by J. H. Conway 1], in which a set of simple rules determines
the step-by-step evolution of certain patterns in an infinite planar grid. Our problem is
also set on an infinite grid of square "cells" and proceeds in discrete time steps.
However it differs from its predecessor in having a natural physical interpretation, in
terms of reaction-diffusion processes. These are of current interest because of their
importance in a variety of biological phenomena, including nerve conduction and
morphogenesis. A related paper [2] continues the study of discrete models of such
processes which was begun in [3]. However, in our opinion, the combinatorial aspects of
the problem have sufficient interest to warrant separate treatment.

To describe our process we label cells c ci,j with integer coordinates (i, ]),
-oo < i, ] <, and consider an infinite sequence 0, 1, 2, 3, of discrete time steps.
To each triple (i, ], t) associate an integer u i,j, called the "state’ of cell c,i at time t. These
integers will come from a fixed finite set S {0, 1, 2, , N}, where N >_- 2. The initial

0states u ,i are chosen arbitrarily from $. Subsequent states u ,i, > 0, are then deter-
mined inductively, according to rules A and B below.

The inductive procedure to be described requires choosing, initially, a fixed integer
K with

(1) I <-K <-N/2.

The states u 1, 2,. ., K are called "excited," while states K + 1,. ., N are called
"refractory." Also, u 0 is sometimes referred to as the "rest" state. The rules for our
game are

t+l(A) If 1 < u ti,i <N- 1, then u . u i,j + 1, while if u ti, N then u t+i,i 0.
t+l(B) Suppose that u,-= 0. To determine u, examine the four "adjacent" cells c,.r,

where li- i’l / I]-]’1-1. If one or more of these cells is excited at time t, then
t+l t+lu ,j 1. Otherwise, ui, 0.

The motivation for these rules is, roughly, that excitation "diffuses" from an
excited region into an adjacent resting region, but not into a refractory region. Also,
once a cell is excited, its state evolves according to fixed dynamics with no diffusion
effects from neighboring cells, until it returns to rest. We remark that a number of
previous authors, starting with Wiener and Rosenblueth [4], have studied similar
processes, usually on a computer and again in a biological context. In [2] it is shown how
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$ Department of Mathematics, State University of New York at Buffalo, Buffalo, New York. Currently

at the Department of Mathematics, Haverford College, Haverford, PA 19041.
Department of Mathematics, State University of New York at Buffalo, Buffalo, New York 14214. The

work of this author was supported by the United States Army under Contract DAAG 29-75-C-0024.

34



A COMBINATORIAL PROBLEM IN REACTION-DIFFUSION EQUATIONS 35

these rules are related to a certain singular limit of some widely studied continuous
models of reaction-diffusion processes.

The problem, broadly, is to describe how a given initial pattern P0 {(i, , ui.j),
-c < i, ] < o} evolves as increases. In particular, what sorts of patterns can develop,
and will the process continue indefinitely without all cells returning eventually and
permanently to rest. In [3] it is observed that for N 2 and K 1 there is a complete
solution, provided only that the number of non-zero cells at 0 is finite. There are two
possibilities.

I. The pattern dies out. By this we mean that for any (i, ]) there is a T.i such that
u i.j 0 if _-> T.i. Equivalently,

lim inf (li[ + [jllu b 0) o.
t-oO

In other words, the pattern becomes identically zero in any finite region in finite
time.

II. The pattern persists. Thus there is at least one cell ci, such that

{tlu , O}

is unbounded. Equivalently this is the case for each ci.i. (This is not hard to
show.) Furthermore, the pattern is eventually periodic in any finite region, and
can be described as a set of rotating spirals and concentric waves radiating
periodically from fixed centers. (See, for example, Fig. 4 of [3].)

In addition, one can easily determine which of I or II will occur, and locate the
centers of all rotating spirals and concentric rings, by examining the initial configura-
tion. Since this paper is devoted to N > 2, and no particular insight is gained by studying
N 2, we refer the reader to [3] for a more thorough description of the three state
model.

In considering the many state version we concentrate on determining whether a
pattern will persist or die out. We shall only consider patterns with a finite number of
nonzero states at 0. Ideally one would like to find a necessary and sufficient condition
for persistence which can be checked at 0. We have not found such a condition,
though we do have nontrivial necessary conditions and sufficient conditions of this type.
In addition, we give a necessary and sufficient condition for persistence which can be
checked after a certain number T T(Po) of iterations have been carried out, where T
depends, roughly, on the size of the initial nonzero set. (See Theorem 5.)

In order to state our results we need a measure of the distance between states in $.

We use the metric d(-,. defined by

(2) d(m, n) min {Ira nl, N + 1 -Im nl}

for any rn, n in S. Equivalently, identify each k in S with the point

e(k/(N+l))" 2"n’i

on the unit circle C in the complex plane. Then

N+I
d(m,n)=

2,rr
{shorter distance from rh to r on C}.

Observe that for any cell ci.j and any t-> 0,

(3) d(u’ ,+1
i,j, lg i,j 1.
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Assume that N-> 3 and let

(4) L=min K+I,
4

THEOREM 1 I there is a to>O such that d(u t..,,, u i’,r) < L whenever c and c ,,,
are adfacent, then the pattern dies out. (Recall that ci, and ci,,r are adfacent i[ [i- i’l +
I -i’l =

In particular, if the process is persistent, then there must be adjacent cells c,i and
c,,i, such that d(u o

,i, u ’,i’)>--L. In fact, this can be strengthened a bit.
THEOREM 2. If the process persists, then them is a fixed pair ofadjacent cells ci,] and

c,,i, such that

d(u’i,i, Ur,r) >-L

for all >-O.
If L < (N + 1)/4, then eventually an even stronger discontinuity must develop.
THZOREM 3. If the process persists, then for any sufficiently large there is a pair of

adjacent cells ci,i and ci,,r such that d(u’i,j, ur,i,)>=(N+ 1)/4.
An estimate will be given for when (at what t) this inequality must hold.
In order to give sufficient conditions for persistence we introduce the concept of a

cycle.
DEFINITION. A cycle is an ordered (M+ 1)-tuple c =(c 1, C 2, C 3, CM, CM+I)

of cells such that c t M+I i+1
,’’’, C are distinct, c -c and c is adjacent to c for

l<_i<_M.

DEFINITION. A cycle c is said to be continuous at time if

d(ui, ui+a)<-_K for l <-i <-M,

where u is the state of cell c at time t.
For such a cycle we then define a "winding number" at time t. For this purpose

recall the previous identification of the states k-0, 1, 2,... ,N with the points
e (k/(N+l))’Eri on the unit circle. If m, n s S, let denote the shorter directed arc

from rfi to r. If both arcs from rh to r are of the same length, let -h be the arc
connecting rh to r in the counter-clockwise direction. Then, for an ordered pair (m, n)
of integers in S, let

d(m, n) if connects rfi to r in the counterclockwise direction,
n)

-d(m, n) otherwise.

The winding number of a continuous cycle c at time is then defined by

1
i Ui+I).W()

N+I i=

It is not hard to show that Wt() is an integer, and represents the net number of
times the unit circle is traversed in the counterclockwise direction by the points u as
runs from 1 to M + 1. We now give a necessary and sucient condition for persistence.

THEOREM 4. The pattern is persistent ifand only if there is a T 0 and a continuous
cycle at time T such that Wr() O.

Obviously this includes a sucient condition for persistence which can be checked
at t=0.

It is desirable to find an upper bound for the smallest T satisfying the conditions in
Theorem 4. It can be shown by example that T may be arbitrarily large if the size of the
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initial nonzero set is not restricted. Our result in this direction is probably not the best
possible.

THEOREM 5. Let R be a "diamond" shaped set ol the 1orm

R={c,al Ii[+[/l<m+l}

for some m, and suppose that
oui,i=O if

Then the pattern persists if and only if there is a continuous cycle with nonzero winding
number at time T n(R). K, where n(R) is the number of cells in R x.

Our final result is proved in almost the same way as Theorem 5.
THEOREM 6. There exists an integerp 1 such that the process is eventually periodic

with period p in any bounded region.
In other words, there is a p such that for each m there is a T,, with

t+p
Ui, Ui,i

whenever => T,, and }il + lYl--< m..
One can extend these results in several directions. For instance, arrays of cells in

more than two dimensions, or with nonrectangular geometry could be considered.
Other definitions of "adjacent," or "neighboring" cells might be used. For example in
the plane with square cells we could say that ci, and ci,.r are neighbors if 1-<
li- i’[ + lY-Y’I <--2. In any of these cases Theorem 4 goes over without change. How-
ever Theorem 1 may need modification. The alternative definition of adjacent cells
given above requires the number (N + 1)/3 instead of (N + 1)/4 in Theorem 1. On the
other hand, with rectangular geometry and the definition of two cells as adjacent if they
have common faces, Theorems 1-6 are essentially unchanged in higher dimensions.

Proofs. A basic observation is that discontinuities in a cycle do not appear
spontaneously. This is implied by the following result.

LEMMA 1. Suppose that c and d are adfacent cells with states u’ and v’ at time t. If

(5) d(u to, v to) -__< K

for some to >= 0, then

d(u’, v t) _<-max {d(u t, vt), 1}

for all >= to.
COROLLARY. If a cycle is continuous at to, then it is continuous for all t >= to.
Proofo[Lemma 1. If u’ # 0 and v to # 0, then rule B, together with (2), implies that

(6) d(u t+a, v t+x) d(u ’, v’).
We can therefore assume that at least one cell, say u, is in the resting state at t to, i.e.
that u t 0. If, in addition, v t 0 then rule B implies that d(u t+l, vt/) -< 1.

Next suppose that u t= 0, 1 =< vt<=K. Again use rule B, to conclude that u t+a= 1
and again (6) holds. Finally, if K + 1 <=v’<=N then (1), (2), and (5) imply that
v to >=N K + 1 > N/2. But from this it follows that

d(v t+x, u ’) d(v t, u’) 1.

From (3) and the triangle inequality we get d(u/1, vt/) <=d(u t, vt), completing the
proof of Lemma 1.

It turns out that Theorem 4 is the key result so we prove it first.
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Proofof Theorem 4. We begin by showing that if c is a continuous cycle at to, and
hence for =>to, then W,(Cg) W(Cg) for t->t0. It suffices to show that Wo/l(c)
w().

For each pair of integers ] and k with 1 _<- ] < k =< M, let

k-1

O,(], k) Y. (u’i, U i+1 ).
i=]

In particular, W,(cg) (1/(N + 1))Or(l, M + 1).
LEMMA 2. Suppose that and k are integers with 1 <= < k <=M + 1 and that

(7) u # 0, u 0 and ui=0 if[<i<k.

Then Q,(L k)= Q,+I(], k).
Proof. If k ] + 1, then

t+l +1Q,(L k) o’(uj, u) r(uj u 0,+1(i, k)

because both u and u , move one step counterclockwise around the unit circle as s goes
from t to + 1.

Now suppose that k => + 2. From (7) we see that
t+l

ui =0or 1 iff<i<k.
t+l t+l t+l t+lHenceo-(ui ,ui+l)=Ui+l-Ui iff<i<k-landso

k-2
t+l t+l t+ t+l t+l t+lO,+(, kl=r(u u+)+ 2 (u/l-u, )+r(u_, u 1,

=j+l

where the summation term on the right is not present if k ] + 2. If k > ] + 2 then the
summation term collapses. We conclude that for any k -> ] + 2,

(8) O,/,(,k) ’/ ’/ / ’/ ’+
=tu ,u+)+u -u+l+,(u’[-,u ).

From (7) it follows that u+1 and u,+1 lie in the set

[N-K + 2, N]LJ[O, K + I].

Since u ,+-1 and ,+1
uj+l are 0 or 1, it is easily seen that

O.(u+l ,+1 t+l t+lU+l)- u+ r(u 0),

0"(U+21, Uc+l)-k- U+21 "--t7"(0, U:+1

and from (8),

Ot+l(], k) ,+1 +1=ru; ,0)+r(0, u

=(u, 0)+(0, u)

=O,(i,k),

where we again use (7). This proves Lemma 2.
The first part of Theorem 4 then follows quickly by letting < i2 <"" < ip be

those such that u 0, and observing that

p

W,(cg) E O,(i,, i+1),
/=1

where we set i,/1 l. The desired result follows by applying Lemma 2 to ] i,,,,
k i,,+1 for 1 <=m =<p.
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Remark. An alternative proof that the winding number of a continuous cycle is
constant proceeds as in the following sketch" The states of the cells of at time can be
used to define a continuous map Ft: C C of the unit circle into itself. To_ do this,

" (j/(M+l)).2"n’iidentify the cells c 1,..., ct of ’ with the points c e on C. Map c nto u
Extend this map to a continuous one from C to C by interpolation, using shortest arcs
along C and taking the counterclockwise arc in case of ties. This defines Ft, and similarly
one can define F/I, using the states at time + 1. These two maps are easily seen to be
homotopic, and hence have the same winding number.

We next consider the second part of Theorem 4, namely, that if a pattern persists,
then eventually there must be a continuous cycle with nonzero winding number. To
prove this some additional concepts are helpful.

DEFINITION. A path is an M-tuple P c 1, ct of cells such that c is adjacent
to c i+1 for 1 -< -<M- 1.

DEFINITION. A path P is said to be continuous at time if d(u i, ui+I)<-K for
1 _<- _-< M- 1, where u is the state of c at time t.

By Lemma 1, if P is continuous at to, then it is continuous for all => to.
We shall say that a cell c is external to the pattern at time if there is a rectangle R

in the plane such that c is outside R but all cells which have nonzero states at time lie
inside R.

Under the assumption that there are no continuous cycles with nonzero winding
number for any -> 0, we can define the potential of a cell ci.i at time for any cell which
is connected to an external cell by some continuous path at time t. Let the path be

Mc ,. ", c where c ci.i and c is external. Then we set

M-1

h,(i, j)= E cr(u i U i+l).
k--1

This will be the same for any continuous path connecting cii to any external cell, for
otherwise we could find a continuous cycle with nonzero winding number. All cells
external to the initial pattern have a potential for all t. Also, if h(i, ) is defined, then so
is h,(i, ) for _-> to, and h,(i, ) >- h(i, ), >= to. Among those cells which are not external
to the initial pattern (a finite number), we can allow the possibility that some may never
have a potential defined. In any case there must be a to _-> 0 such that no cells have a
potential defined for the first time at some -> to.

Let c. be any cell with a potential defined for >_- to. Suppose that for some _>- to,
u , 0 and 1 -< u r.r =< K for an adjacent cell c,.j,. Then cr.r has a defined potential at
time which must be higher than that of ci.i, since we can connect Cr.r to the outside by a
path going through c.i.

Let A’ be the highest potential of any cell at time to. Let A be the next higher
multiple of N + 1. We claim that no cell can achieve a potential greater than A. If not, let
Ck, be the first cell to achieve a potential of A + 1, and suppose this occurs at tl. Then

tl--1 --1u. 0, and Ck, has a neighbor Ck’.r which is excited at time tl- 1, so that 1 <_- ul,,r <_-
K. But then Ck’.r must have a potential greater than A at t= tl-1, which is a
contradiction.

But this proves that among all those cells with potential A’ at time to, none can ever
become excited again, contradicting the persistence of the pattern.

Proofs of Theorems 1, 2, and 3. Theorems 1, 2, and 3 all follow from Theorem 4.
Notice that as a consequence of Lemma 1, Theorems 1 and 2 are corollaries of
Theorem 3. To prove Theorem 3, choose to large enough to insure that at to there is a
continuous cycle (cl, , cM) with reVto(’) 0. This is possible by Theorem 4. We
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shall show that

N+I
0d(ui,i, ui’,i’)>

4

for some pair of adjacent cells ci,i and ci,,,.
For this purpose we use a different kind of continuity for a cycle. We say that a cycle

E (e 1, e o) is mildly continuous at to if

N+I
d(ui, ui+l)<=

4

for 1 _-< _<- Q, where ui is the state of e at to. (We shall only be concerned with states at
to, and so we suppress the time in this notation.)
For any mildly continuous cycle E, the winding number Wto(E) is defined just as

before. We are assuming that Wto(E) # O.
toLet r sup {d(ui,j, bli’,f)lCi,j is adjacent to ci,,j,} and suppose that r < (N + 1)/4.

LEMMA 4. There is a mildly continuous cycle E at to which consists of exactly four
cells and has nonzero winding number.

Proof. Consider c as an ordered M-tuple of closed squares in the plane. Let 3’ be
the Jordan curve obtained by joining the centers of consecutive squares of c. Suppose
that the inside of 3’ contains squares which are not in c. Such cells we call interior to
Then there must be three consecutive cells c i, c i/1, c

/z in which form three quarters
of a square of four cells such that the fourth cell c* in this square lies inside y. Since
r < (N + 1)/4, the cycle obtained by replacing c +1 in c by c* is still mildly continuous.
Furthermore,

o’(u. u,+) o’(u,, u+) + o’(u,+, u,+)

=o’(u. u*) + o’(u*, u+)

where u* is the state of c* at to. Therefore the new cycle c. has the same (nonzero)
winding number as c. However, c* has one less interior cell than C.

Continuing this shrinking process, we see that there must be a mildly continuous
cycle c at to with nonzero winding number and no interior cells. Again there must be
consecutive cells c , c +1, c +2 of c1 which comprise three quarters of a square of cells,
and now these can be chosen so that the fourth cell in this square is also a cell of c 1. We
can renumber the cycle so that t? c for some > + 2.

If ] + 3, then there are two cases. The cycle c c , c +1, c +2, c i+3 may have
nonzero winding number, in which case we are done. If, on the other hand, cd has
winding number 0, then omit c+1 and c

/2 in c1 and there results a cycle c2 with

Wo(C2) Wo(C1). Thus c has been reduced to a still smaller cycle.
Next suppose that /’>i+3. Proceed according to whether the cycle

(C i+2, C i+3, C i) has nonzero winding number or not. If Wo() # 0, replace (1 with
c. If W()= 0, eliminate c +2, c from c1.

It is thus clear that we arrive eventually at a cycle with the desired properties at to,
proving Lemma 4.

But from this result we obtain a contradiction. Since

N+I
d(ui, ui+l) <- r<

4
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and assuming as we may that Ul --O, we have the inequalities

1 <- uz <- r, U3 <-_ 2r, U4 _-< 3r.

On the other hand, u4-_> N-r + 1. This gives

N+I
3r>=N-r+l, or r=>

4

which contradiction proves Theorems 1, 2, and 3.
Proof of Theorems 5 and 6. Let Ro be the diamond shaped region

Ro {ci,jllil + m},

where rn is chosen so large that Ro contains the entire nonzero set at 0. Also, let

R. {c,,i Ilil + I/l-<- m + n}

for n =1,2,3,.. .
LEMMA 5. Within any given Rn, n >= 1, the process proceeds independently of cells

t.Ooutside Rn. More precisely, if ci,j Rn and u,,j 1, then 2 < u i,,tr < K + 1 for some cell ci,,i,
adjacent to c,i and also contained in Rn.

This result implies that if t i, is a second process, obeying the rules A and B if
c,. R, but following the rule u i,j 0 if ci,j R,, then ti,i u i,i in R,.

Proof o]’Lemma 5. Suppose, then, that the Lemma is false, and let to be the first
time where a cell in some R,,, n >_-1, is excited by a cell outside R,, and not simul-
taneously excited by a cell in R,. Thus there is a cell c,i c o in R, with u ti,i ub 1,
while 2 -< u o =< K + 1 for some adjacent cell c’ in R,+I. Furthermore,

(8) u 2 [2, K + 1

for any cell c 2 in Rn which is adjacent to c.
oHowever Uo u 0, so Lemma 1 implies that u 2. Also, c must in turn have

been excited by a cell c 3 R,,. This follows from our hypotheses on to, since cells of Rn+a
which are not in R, cannot be adjacent to each other. Then uo 3. Also, c, c and c 3

form three cells out of a square of four cells. Let c 2 be the fourth cell in this square. Then
c o 3 ,o uo) < 1c R, and is adjacent to c and c Since u=3, ub=1, and d(uo,

d(u, u) <- 1, it is seen that u 2, a contradiction of (8). This proves the Lemma.
Theorem 5 follows from Lemma 5 by the following argument. Suppose the process

is persistent, and let T be defined as in the statement of Theorem 5. By Lemma 5, there
must exist a cell c in R such that 1 -< u -< K. (Otherwise the process dies out.) Cell c
must have been excited by an adjacent cell c 2, no more than K time units before; c 2 in
turn must have been excited by an adjacent cell c3, and so on. Continuing back to time

0, we obtain a path c 1, c 2, cJ of adjacent cells in R1, which is continuous at time
T. The cells c cannot be distinct, since each cell represents at most K time units, and
this would imply T < JK <= n (R1)K. Thus a cycle must exist, and it is easy to see that this
cycle has nonzero winding number.

To prove Theorem 6 observe that the process t (defined above) must bei,i

eventually periodic, since it is on a finite grid. Next observe that for sufficiently large t,
the states of the border cells in R,+a R are uniquely determined by the states of their
neighbors in R, at times and t-1, by an easy argument using Lemmas 1 and 5. It
follows that the process has the same period in R+I and R,, and hence for all n _-> 1. This
completes the proof.
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ON THE AVERAGE SHAPE OF BINARY TREES*

FRANK RUSKEYt

Abstract. The average level numbers of the leaves of a binary tree are studied, where each binary tree is
regarded as being equally likely. A formula is derived for the number of binary trees with flh leaf at a
prescribed level. The asymptotic behavior of the average level number of the flh leaf is determined. The
average level numbers are shown to first increase and then decrease.

1. Introduction. The analysis of many algorithms is directly related to the level
numbers of the nodes in a binary tree. In this paper we study the average level numbers
of the nodes of a binary tree, where each tree is regarded as being equally likely. The
average height of ordered trees was studied by de Bruin, Knuth, and Rice [1 ]. Although
there is a direct correspondence between ordered trees and binary trees (i.e. Knuth [4]),
the heights of the two types of trees do not appear to be directly related. In 1] complex
variable theory was used extensively; here the methods used are entirely elementary.

By binary tree we mean what Knuth [4] calls an extended binary tree; that is, each
node either has two sons or has no sons. The nodes with two sons are called internal
nodes and the nodes with no sons are called leaves. The level number of a node is the
length of the path from the root to that node. Let Bn be the set of binary trees with n
internal nodes (and thus n + 1 leaves) and let bn be the number of trees in B,,. It is
well-known that

n+l

Let T(n, k, ]) denote the set of trees in B with (] + 1)st leaf (counting from left to
right) at level k. If ]=0 then we shorten this to T(n, k). Figure 1 shows the 4 trees in
r(4, , )

FIG.

Let t(n, k, ) and t(n, k) denote the number of trees in T(n, k, ) and T(n, k),
respectively. We wish to become better acquainted with the numbers t(n, k, ). Table 1
shows t(6, k,/’) for 1 =<i k <- 6 and 0 <= -< 6.

* Received by the editors June 5, 1979.

" Department of Mathematics, University of Victoria, Victoria, British Columbia V8W 2Y2. This work
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42
42
28

4 14
5

6

TABLE

2 4

0 0 0 0 0 42
28 10 8 10 28 42
42 30 24 30 42 28
36 42 40 42 36 14
2O 35 4O 35 2O 5
6 15 20 15 6

The numbers t(n, k) have appeared in scattered places throughout the literature.
In particular, in Ruskey and Hu [6] and in Ruskey [5] it was shown that

(1)

t(n, k)= bul" b,k
pl+...+k =n--k

2n-k n k

We will let a (n, ) be the average level number of the (/’ + 1)st leaf, taken over all
trees in Bn, i.e.,

1
a (n, j) , k. t(n, k, j).

Also, aj will denote the limit as n --> of a (n, ]). In [6] it was shown that ao 3. Figure 2
shows a (n, ]) for n 0, 1,. , 6. Observe the shape of the curves.

In the next section we will derive an expression for t(n, k, ]) in terms of t(n, k),
derive an expression for c(n, ]), determine a. exactly, and show that for fixed n and

2 3 4 5 6

n
n=2

FIG. 2

n=6
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0 -< ] _-< n, a (n, j) first increases and then decreases. The proofs of these results rely on a
number of identities. These identities will be proven in the final section.

2. Results. We begin by trying to express t(n, k, ]) in terms of t(n, k). Consider a
tree in T(n, k, j). There are k internal nodes along the path from the root to the (j + 1)st
leaf. The sons of each of these internal nodes are either a path node or the root of some
subtree. The number of leaves in the subtrees whose nodes are to the left of the (/’+ 1)st
leaf is j, and the number to the right is n-j. Thus, to get all of T(n, k, j), we have to
decide how many subtrees are on the left, which internal nodes are the roots of those
subtrees and how many leaves are in each subtree. Let denote the number of subtrees
on the left of the (j + 1)st leaf and let vi represent the number of internal nodes in the ith
subtree. Figure 3 illustrates the situation.

subtrees k-l subtrees
j leaves n-j leaves

FIG. 3

Thus t(n, k, ]) is equal to

/=0 Vl+...+Vl=i--I
vi >=0

By (1) we have proven
LEMMA 1.

v++"-+ vk n-j-k+l
vi >=0

The next two theorems rely on a number of (ultimately) binomial coefficient
identities which we list here for reference and prove in the next section.

Identities"

(2) (k
_
1)(k 2r" ) (k -- ) ll (k -"p 1)+l

1+1 p--0 p

(3) Y’. (k+p-1)t(n,k)=t(n+p+l,p+2),
kl P

(4) t(n + p, p + 1) t(n + l, l),
p=l

t(n+l,k) k
(5) lim 2_+,



46 FRANK RUSKEY

(6) t(n, k)2k (22),
k=>l

(7) 2 k. t(n, k)2k=4"-(2),
(8) k2t(n, k)2k =(n + 1)(2n +2)-3.4"

kl n+l

We now try to simplify Y’. k t(n, k, ]) as much as possible.
THEOREM 1.

E k. t(n, k, ]) Y t(], l)[t(n -] + + 2, + 3)+ I. t(n -] + + 2, + 2)].
k 1=0

Proof. By Lemma 1

k. t(n,k,])= k
k=l k=l /=0

t(], l)t(n--j, k-l).

Interchanging the sums and then shifting the inner sum by yields

t(j, l) i (k + l)(k+ l)t(n-j, k),
/=0 k=l

which by (2) is equal to

=i (k + =i lil (k+p-1) t(n-f’k)t(j, l) lt(n -1, k)+ l" t(j, l)
/=0 \l + 1 / /--o p=0 p

We now interchange the innermost pair of sums in the second term and apply (3) to both
terms to get

[ 1+1 ]t(j,l) t(n-j+l+2,1+3)+l , t(n-f+p+l,p+2)
/=o p =o

A final application of (4) gives us the theorem. [3
Note that t(0, 0)= 1. Using Theorem 1, particular values of a(n,j) can be

obtained. For example, (n,O)=3n/(n+2), a(n, 1)=(5n-2)/(n+2), a(n, 2)=
(13n2-18n + 2)/[(n + 2)(2n 1)].

We now determine the exact value of ai.
TnEORE 2.

aj (j + 1)

Proof. By Theorem 1 and the definition of cj we have

1
ci ,-.oolim l_-->lY t(], l)[t(n -j + + 2, + 3) + 1. t(n -j + + 2, + 2)],

which by (5) is equal to

/+3 /(/+2)] 1 y t(L l)2t(212+51+3).Z t(/, l) 22i_ + 22i:l:ij = 1>111

Substituting (6), (7), (8) and simplifying yields the desired result. 71
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COROLLARY.

4@+ 1- 1 <a. <44@+ 1- 1.

Proof. This follows at once from the estimate

22n (2n) 2z"

24-<

which is given in [7, Chap. VII, 3] (also see [8] for an even better estimate).
We now prove that the average level numbers first increase and then decrease.

Clearly the average level numbers are symmetric, i.e., c(n, ])= a(n, n-i). Also, the
average height of a tree with n internal nodes is at least a(n, n/2). A recurrence or the
t(n, k, ]) is given below.

LEMMA 2. If k >= 2 then

]-1 n-1

t(n,k,])= &t(n-l-l,k-1,]-l-1)+ 2 b,__t(l,k-1,]).
/=0 =i

Pro@ Consider a tree in T(n, k, ]) with left subtree T and right subtree T.
Suppose that there are internal nodes in the left subtree. If ] <- then the (] + 1)st leaf is
in T; thus T T(l, k 1, ]) and TR B,,-l-a. This accounts for the second term. If/" >
then the (] + 1)st leaf is in T; thus T Bl and T T(n I- 1, k 1, ]- 1-1). This
accounts for the first term. 71

Putting the result of Lemma 2 in a slightly different form:

n--1

t(n, k, j)= b,__l[t(l, k- 1, n -])+ t(l, k- 1, ])].
/=0

Letting/3 (n, j)= b,a (n, ]) we have the following corollary to Lemma 2.
COROLLARY. For all 0 <- j <- n, (0, ]) 0 and if n >- 1 then

fl(n, j) b,, + b,,-l-lE(t, j) + (I, n -/’)].
/=0

Proof. The proof follows easily from Lemma 2 and the classic recurrence for binary
trees, viz., b, Y’. blb,,_-a. 71

We now prove that a(n, ]) (equivalently, /3(n, ])) is a concave function of
Together with the symmetry, this shows that the level numbers first increase and then
decrease.

LEMMA 3. For all n >= 2 and 0 < ] < n,

fl(n, ]) > 1/2[fl (n, i- 1) +/3(n, ] + 1)].

Proof. The proof is by induction on n. Figure 2 shows it to be true for small values
of n. We can use the corollary to Lemma 2 to get

n--1

B(n,])=b,+ Z b,_l-l[B(l,])+B(l,n-])]
/=0

In
>b,,+ i b,,-l-l[fl(l,j-1)+fl(l,j+l)]

/=0

ln-1
S, b.__[fl(l, n -]- l)+ fl(l, n -] + l)]"}- " /=0

[fl (n, ]- 1)+/3(n, ] + 1)].
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3. Proof of identities. In this section we prove the formulas (2) through (8). First
we recall a few basic facts about the numbers t(n, k). The proof of these may be found in
[53 or [63.

(9) t(n, n)= l and t(n, O)=O (n >= l ),

(10) t(n, k)= t(n 1, k- 1)+ t(n, k + 1) (n > k ->_ 0),

(11) E t(n,k)=t(n+l,l+l) (l => 1).

Proof of (2). This follows at once from equations 7 and 10 given on pages 53 and
54 of [4].

Proof of (3). This is a special case of the following equation (valid for ->_ 1, p ->_ 0)
which will be proven by induction on p.

k +p-l). t(n, k) t(n +p + 1, p + + 1).
=l p

The base step p 0 is (11), which is obtained by iterating the recurrence (10). Otherwise
let p > 0 and consider

t(n+p+2, p+l+2)= t(n+p+l,p+l+i).

This is true by (11). Proceeding inductively, the right-hand side of the above equation is
equal to

Y Y (k +p-l-i)t(n, k)= Y. t(n, k) Y. (k+p-l-i)
i>_O k >__l+i P k >--l i>___O P

>= p+l

The last equality follows from equation 11, page 54 of [4].
Proof of (4). This can be proven by using induction on and the recurrence (10).
Proof of (5). If 0 _-< _-< k then

t(n + l, k k (2n + 21- k)/ 1 (2n)bn -2n+21-k n+l-k n+l n

k(2n + 2l k 1)!n !(n + 1)!
(n + l- k)!(n- /)!(2n)!

k(2n + 2l- k 1)2l-k-l(n)k-t+2
(n +/)+1

as n --> co this becomes k221-t’-a

Proof of (6). This is the special case ] a 0, b 2 of equation 6.8 of Gould and
Kaucky [3], which is given below.

(12) a+bk-k(a+bn-k) :(a+bn-’
k=i a + bn k n k n -j /

bi"

Proof of (7). Clearly,

k.t(n,k)2t’= t(n,l)2I.
k=l k=l l=k
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By (12) this is equal to

(2n--k2k.
k=l\n--k]

This sum arises in "Banach’s matchbox problem" and is known to be (i.e., Eisen [2,
p. 150])

Proof of (8).

k2t(n, k)2k I. t(n, 1)2
k=l k=l l=k

[(k-1)/(n,/)21+ t(n, j)2i].
k=l l=k j=l

We now use (12) again to get

( ) ( )(k-l)
2n-k 2 + 2 (2k-l)

2n-k 2k"
= n k = n =a n k

To finish the proof we need only verify the identity given below

(13) (k+l)(2n-k)2=n k =z(n+l)1 (2n+2)n+l -(22)
Using (13) and the proof of (7) finishes the proof of (8).

Proof of (13). Setting n’ n + 1 yields

k=a n k k=2 n --1

:n’ (2n’--k]2k-ag=22n -k n’-k ]

2
n 2 t(n k )2

k=l

2 n+l n

Acknowledgment. The author would like to thank George Lueker for pointing out
an error in an earlier version of this paper.
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WORST-CASE ANALYSIS OF NETWORK DESIGN PROBLEM
HEURISTICS*

RICHARD T. WONGf

Abstract. The Optimal Network problem (as defined by A. J. Scott, The optimal network problem: Some
computational procedures, Trans. Res., Vol 3 (1969) pp. 201-210) consists of selecting a subset of arcs that
minimizes the sum of the shortest paths between all nodes subject to a budget constraint. This paper considers
the worst-case behavior of heuristics for this problem. Let n be the number of nodes in the network and e be
a constant between 0 and 1. For a general class of Optimal Network Problems, we show that the question of
finding a solution which is always less than n 1-e times the optimal solution is NP-complete. This indicates that
all polynomial-time heuristics for the problem most probably have poor worst-case performance. An upper
bound for worst-case heuristic performance of 2n times the optimal solution is also derived. For a restricted
version of the Optimal Network problem we describe a procedure whose maximum percentage of error is
bounded by a constant.

1. Introduction. This paper discusses the "optimal" network problem which can be
described in the following way: select a subset of arcs in a network so that the total
weighted sum of the shortest paths in the network is minimized subject to the constraint
that the total cost of the arcs selected does not exceed a given budget. More formally,
the optimal network problem can be formulated as the following mixed integer
programming problem"

minimize

subject to

klE E
(i,])A (k,l)(DxD)

rkl if k,

klklxii- xqi= --rkl ifi=l,

0 otherwise,
kl

X i] rklY ih ’. diiYii B,
(id)A

kl > 0 (i, ) A and (k, 1) (D D), yii 0 or 1 (i, j) A,xii---

where the decision variables are x iR!"l, the amount of commodity (k, 1) routed on arc (i, j),
and yi], a binary variable indicating whether or not arc (i, j) is to be constructed. Let D be
the set of nodes and A be the set of possible arcs (undirected). Define rkl to be the
amount of commodity (k, l) that must be routed, dij to be the construction cost of arc
(i,/’)and ci to be the per unit routing cost of arc (i, j). Let B be the construction budget.
All data di and ci are assumed to be nonnegative. For technical purposes (and without
any real loss of generality), we assume that all ci and di] are integer valued and that all
problems under consideration have an optimal solution greater than zero.

This type of network design problem has potential uses in designing air, rail or
highway transportation networks. Although such systems are usually much more
complex than the above problem, this model could be useful in screening network
configurations for more detailed study 4].

Previous work done on the optimal network problem has indicated that it is a very
difficult optimization problem. Johnson, Lenstra, and Rinooy Kan have shown that the

* Received by the editors November 13, 1978. This paper constitutes part of the author’s doctoral
research performed at the Massachusetts Institute of Technology. This work was supported in part by the
Department of Transportation Advanced Research Program (TARP) Contract No. DOT-TSC-1058.

" Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY 12181.
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optimal network problem is NP-complete [8], which means that there is very prob-
ably no efficient method for solving problems of this type. Computational studies by
several authors [1], [3], [4], [7] using branch and bound techniques have shown that for
optimal network problems with more than 50 or 75 arcs, solution times are prohibitive.
So suboptimal heuristic methods appear to be the only methods available for generating
solutions to large scale network design models. Scott [16] and Dionne and Florian [4]
have proposed heuristics for the optimal network problem. In the next section we
review some of these procedures (for a more complete survey of the optimal network
problem and related design models see Wong [17]).

An important question that arises in using heuristic techniques is the accuracy of
the answers generated. One technique for evaluating heuristics is to analyze their
worst-case performance. That is, we compute the maximum possible percentage
deviation from the optimal solution when using the heuristic. This type of analysis is
conservative in that only the worst possible error is computed, but can be useful in terms
of evaluating performance guarantees for heuristics. Many researchers have analyzed
heuristics for various combinatorial problems in terms of their worst-case error
performance. See Garey and Johnson [6] for a survey of these results.

In this paper we analyze the worst-case behavior of a wide class of optimal net-
work problem heuristics. The next section reviews some past work in designing such
heuristics. Also some examples are given which demonstrate worst-case behavior for
some of these procedures. The third section contains our main results which show that
even finding an approximate optimal network solution is NP-complete. These results
indicate that all polynomial-time heuristics for the optimal network problem probably
have poor worst-case error bounds. The fourth section describes a particular heuristic
algorithm whose worst-case error ratio for a restricted version of the optimal network
problem is bounded by a constant that does not depend on the size of the input problem.
The last section provides a summary and overview of the paper’s results.

We should note that most of the previous work in this area (see [1], [4], [7],
16]) dealt with a restricted version of the optimal network problem where all required
flows rkt were one and every arc routing cost cij was equal to its construction cost dij. In
this paper, unless otherwise noted, we assume that all required flows l’kl are one but that
an arc routing cost may be different from its construction cost.

2. Previous work in optimal network problem heuristics. Scott [16] and Dionne
and Florian 14] have presented some optimal network problem heuristics which we
consider here.

The first heuristic that we review is due to Dionne and Florian and was stated as
follows:

(HI) (1) Construct the minimal cost spanning tree (using the construction costs

dii as the arc costs) as the initial network configuration.
(2) As long as the budget constraint is not violated, add to the network

configuration the arc whose construction cost is the least of all arcs not
yet included in the network design.

Note that if the minimal cost spanning tree is infeasible because of the construction
budget constraint then the problem is infeasible.

Dionne and Florian also presented another heuristic that is a modified version of
one described by Scott. It has the following description"

(H2) (0) LetM be the set of arcs in the current network design. For k M, define
Qk (M) as the increase in the total routing cost if arc k is deleted from M.

(1) Initialize M so it contains all arcs in the network.
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(2) Find k* such that

Qk.(M) Qk(M)
Lk.(M) rain

dk* kM dk
where dk is the construction cost of arc k. If Lk.(M)= oo, then the
removal of any link will disconnect the network and computation
should be restarted using heuristic H1. Otherwise, delete arc (k*) from
M and continue with step 3.

(3) If keMdk >B, i.e., the current network exceeds the construction
budget, go to step 2; otherwise continue with step 4.

(4) If B-kdk O, then introduce as many arcs as possible so that the
routing cost decrease is maximized and the budget constraint is
satisfied.

The quantity Lk(M) can be viewed as the normalized "loss" due to deleting arc k.
At each iteration we delete the arc whose loss is the minimum of all arcs; the process
continues until a feasible solution is reached. This procedure is related to the "greedy"
heuristic that has been studied previously [2].

Dionne and Florian performed computational tests to compare both heuristics. H2
performed noticeably better than H1. In fact, for many test problems H2 was able to
find the optimal solution.

Now we consider the worst-case performance for these heuristics. Let us define the
following terms:

Vh (")= the value of the solution computed by heuristic h for problem (.).
V(. )= the optimal solution value for problem (.).
S(n) the set of optimal network problems containing n nodes.
Rh(n) maxss(.) Wh(s)/ V(s).
gh(n) is the worst possible error ratio when heuristic h is applied to optimal

network problems consisting of n nodes. The goal of our worst-case performance
anaylsis is to compute Rh (n).

We show that for both of the above heuristics, the worst-case error ratio essentially
behaves as a linear function of n, the number of nodes in the network. Therefore the
error ratio is unbounded as the size of the network increases.

Consider the following canonical example depicted in Fig. 1. Let tl and t2 represent
a subnetwork consisting of Z nodes. Figure 2 contains a diagram of this subnetwork.
Any arc connected to tl or t2 is considered to be connected to the center node in the
corresponding subnetwork.

The label associated with each arc in Figure 1 denotes the arc’s routing cost and the
construction cost respectively. The construction budget B is 13Z5 + 8.

FIG. 1. Optimal network problem example for heuristic H2.
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(0, 0)

FIG. 2. Star network representing a node.

Using heuristic H2, we start with all arcs in the network. Then we drop arc (tl, t2).
Next, we drop arc (tl, b) or (t2 b) (the analysis is the same regardless of which arc is
deleted). This leaves us with the following network depicted in Fig. 3. Recalling that all

tl

FIG. 3. Solution computed by heuristic H2 for the example.

required flows rij are equal to one, we compute the cost of the above solution as

VH2 8Z4 -1-16Z3 + 4Z2
-b 4Z q- 2.

Figure 4 depicts the optimal solution to the above problem. The optimal solution has

V 8Z3 + 8Z2 + 12Z + 6.

tl

FIG. 4. Optimal solution for optimal network example.
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The total number of nodes in the network is 2Z + 2.

RH2(2Z + 2) ->
8Z4 + 16Z3 +4Z2 +4Z + 2

8Z3 --]- 8Z2 .+- 12Z + 6

RH2(2Z +2)_->Z for Z_-> 1.

This implies

RHE(n)>----n-- 1 for n 6, 8, 10,....

So our example shows that the worst-case error ratio for H2 must be at least linear
since our canonical example exhibits such behavior for an infinite number of network
sizes.

tl

(2Z2, 8) (1,8)

(2Z2, 8)(1,10)

t2

FIG. 5. Optimal network problem example for heuristic H1.

Heuristic H1 behaves similarly. Consider the canonical example represented by
Fig. 5. Let the budget B be 25. An analysis that closely follows the one given above tells
us that

RHl(n)-->1/2n- 1 for n 6, 8, 10,....

So the worst-case error ratio for H1 must also be at least linear.
The above results lead us to question if there are optimal network heuristics whose

worst-case behavior is better than the ones given above. The next section gives a result
which indicates that all "reasonable" heuristics must probably perform nearly as badly
in terms of worst-case error margins. Also we show that the worst-error ratio for the
above heuristics is no worse than a linear function of network size. So the examples
given above show essentially the worst possible behaviour of heuristics H1 and H2.

3. Two theorems on the accuracy of optimal network problem heuristics. The first
result that we consider concerns the class of polynomial-time heuristics for optimal
network problems, that is, the set of all optimal network design heuristics whose
worst-case computation time is a polynomial function of the problem input size. As we
stated previously, Johnson, Lenstra and Rinooy Kan [8] showed that the optimal
network problem is NP-complete. Next we show that the problem of finding an optimal
network design heuristic whose worst-case error ratio is less than n l-e, where n is the
number of nodes in the network and e is between 0 and 1, is also NP-complete. So
finding a polynomial-time optimal network design heuristic that is always "close" to the
optimal solution is as hard as finding a polynomial-time procedure that is always
optimal. Sahni and Gonzales [15] demonstrated similar results for the traveling
salesman problem (without the triangle inequality restriction), the multi-commodity
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network flow problem and other combinatorial problems. Garey and Johnson [5]
derived a related result for the graph-coloring problem.

Our first result can be stated in the following terms:
DEFINITION. The approximate optimal network problem is the following: let e be

any fixed positive constant between 0 and 1, for any optimal network problem s find a
solution whose value is less than or equal to nl-V(s), where n is the number of nodes in
the problem s.

THEOREM 1. The approximate optimal network problem is NP-complete.
Proof. Since the optimal network problem belongs to NP (see [8], [9], [10]),

the approximate optimal network problem must also belong to NP. Now we show that if
the approximate problem could be solved in polynomial-time, that is, if there existed a
polynomial-time heuristic h* and a constant e, 0 < e < 1, such that Rh.(n) < n- for all
n, then all of the NP-complete problems could be solved in polynomial-time.

Let us define a useful auxiliary problem. The Steiner tree problem [9] has the
following description: given a network (D, A) with node set D and arc set A and the
data (i) {dij}(i.jA, the set of arc construction costs, (ii) B, the construction budget, and
(iii) $, a set of nodes which is a subset of D, determine if there is a subtree of the network
whose construction cost is less than the given budget B with the property that all nodes
in $ are connected by the subtree. Karp [9] has shown that the Steiner tree problem is
NP-complete.

We next demonstrate that if the heuristic h* defined above exists, then the Steiner
tree problem could be solved in polynomial-time. It would then follow [9], [10] that
every NP-complete problem could be solved in polynomial-time.

Given any Steiner tree problem, transform it into an approximate optimal network
problem in the following way: replace each node in the set $ by a subnetwork of the type
pictured in Fig. 2. Each of these subnetworks should have Mk nodes, where M is the
number of nodes in the original Steiner tree problem and k is an integer constant that
will be specified later. All routing and construction costs for arcs in the subnetwork
should be zero.

Attach a special node T to the Steiner problem network. Every "special" arc
between T and the set of nodes D has a construction cost of zero and routing cost of
one. Every arc between T and a node in $, which is represented by a star network
corresponding to Fig. 2, is connected to the center of the star network. All arcs
originally in the Steiner problem network have zero routing cost and retain their original
construction costs.

Figures 6 and 7 illustrate such a transformation. $’ is the set (D-S). The arc labels in
the original Steiner tree problem network are the arc construction costs. The arc labels

FIG. 6. Example of a Steiner network problem (before the transformation).
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(1,O)

FtG. 7. Example of a Steiner network problem (after the Transformation).

in the modified optimal network problem indicate the arc routing and construction
costs.

The construction budget for the optimal network problem is the same as the
Steiner problem budget. As we have assumed throughout this paper, all required flows
in the optimal network problem are equal to one.

It is important to note that this transformation to create an optimal network
problem from a Steiner tree problem is a polynomially-time bounded procedure for any
finite value of the parameter k. Also note that the size n of the optimal network problem
created by our transformation is at most (Mk+l + 1) nodes.

Now if one of the special arcs is utilized in the optimal network design to connect
two nodes that are in $,

routing cost => 4M2k.

If all nodes in S are connected with arcs from the original Steiner tree problem,

routing cost1 <_ 2Mk/2 k > 3 and M > 4

Now suppose there is a polynomial-time heuristic h* for the optimal network
problem such that for some 0 < e < 1

Rh.(n) < n 1- for all n _-> 1.

Since there exists a k _-> 3 such that (k 2)/(k + 2) ->_ 1 e we have

Rh.(n)<n 1- <n (k-2)/(k+2) for some k =>3.

Next we examine the implications of the above statement on the class of optimal
network problems consisting of our transformed Steiner problems. Note that n-<
Mk+l + 1, where M is the number of nodes in the original Steiner problem. Therefore,
for this class of optimal network problems

Rh,(n) < n (k-2)/(k +2) (Mk+ _.}.. 1 )(k-2)/(k +2).

Let RC(N1, N2) represent the cost of routing between every pair of nodes in the set (Na x Nz). Then we
can say total routing cost RC(S, S)+ 2RC(S, S’)+ RC(S’, S’)+ 2RC(S, {T})+ 2RC(S’, {T}), where the
factors of 2 are a result of the symmetry of the required flows in the network. Since all arcs from the original
Steiner tree problem have routing cost zero, RC(S, S) 0. We can always utilize the special arcs connecting T
to the rest of the network so we have RC(S,S’)<=Mk+2/2 RC(S’,S’)<=4M2, RC(S, {T}) <=Mk+l and
RC(S’, T}) _-< M. Therefore, total routing cost -<M +2 +4M + 2M + 2M <- 2M +2, k 3 and M 4.
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for M -> 4,

and,

(Mk+ 4-1) (k-2)/(k +2) < (Mk+2 (k-2)/(k +2) Mk-2

Rh.(n <Mk-2, M > 4, k > 3.

The above inequality implies that for M-> 4 the Steiner tree problem could be
solved in polynomial-time by first using our polynomial-time transformation to create
an optimal network problem and then applying the heuristic h* to it. The existence of a
subtree satisfying the conditions of the Steiner problem could be verified by examining
whether the heuristic gave a routing cost solution that was less than 4M2k.

Since the finite number of cases where M< 4 will not effect the polynomial-time
bound of this procedure, the above inequality implies that the Steiner tree problem
could be solved in polynomial-time.

Finding a heuristic h* as defined above is equivalent to solving an NP-complete
problem, so we can say that the approximate optimal network problem is also
NP-complete. Vl

We have seen that all polynomial-time bounded heuristics most probably have a
worst-case error ratio that grows almost linearly with the size of the network, or at a
faster rate. Next we see that for reasonable heuristics the error ratio grows no faster
than linearly with the size of the network.

Before presenting this result we introduce some additional notation. Let T be any
spanning tree of a network and arbitrarily choose a node R with degree one from T and
designate it as the root node. A node f is the father of node N if f lies on the (unique)
path in T between N and R and if there is an arc in T that connects f and N. Node s is
the son of node f if f is its father. Let wi be the number of nodes which are descendants
of node (i.e., nodes other than whose path to R in T must pass through i). Des(N) is
the set of nodes which are descendants of N.

Figure 8 contains an example illustrating these definitions. Node 1 is the root node.
In this example node 2 is the father of node 5. Also w2 5 and w6 0.

THEOREM 2. For optimal network problems whose routing costs satisfy the triangle
inequality, any heuristic h which always produces a feasible solution will have a
worst-case error ratio

Rh (n) <-- 2n for all n,

where n is the number of nodes in the input network.
Proof. We will show that

routing cost of any spanning tree network

routing cost of the complete network

(The complete network contains every arc in A, the set of all possible arcs. Note that A
may not have an arc for every pair of nodes in the network.) The theorem immediately
follows from this fact since the above ratio is greater than or equal to Rh(n) for any
heuristic h which always produces a feasible solution.

Let T be any spanning tree for an optimal network problem and C denote the
complete network. Let RC(T) represent the routing cost of network design T and n be
the total number of nodes in s. Consider an arc (i, ) belonging to T (since we are dealing
with undirected arcs, assume that for any arc (i, ) in T, is the father of ). Its
contribution to the total routing cost is S(i, ])= 2(wi+ 1)(n-(w+ 1))cii (that is, the
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()

FIG. 8. Example of a tree with root node 1.

number of origin-destination pairs whose travel path passes through arc (i, ]) multiplied
by the routing cost of arc (i, )).

Therefore,

RC(T)= Z S(i, j).
(i,j)T

For the routing cost of the complete network, let aq be the minimum routing cost
between nodes and j on the complete network. Since all required flows are one we
have

RC(C) E aii.
(i,j)(DD)

Let us define the following quantity

C(i, j) 2(aik + aki) >= 2(wi + 1)cii,
kDes(j)U{j}

(i, j) T

where the inequality follows from the triangle inequality for the routing costs and
symmetry of the routing costs (since the arcs are undirected).

Therefore,

2(wi + 1)(n -(w + 1))cijS(i, J) < <- n,
C(i, j)- 2(wi + 1)cii

(i,j) T.

Combining these inequalities for all (i, j)s T we have
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and since i,j) T S(i, j) RC(T)

RC(T)

Next we show that i.j)rC(i, j) <= 2RC(C) and thus complete the proof.
We argue that each arc cost term ast appears in at most two expressions of the form

C(i, j) (without loss of generality assume that node is a descendent of node s). ast
appears in the expression C(i, ) only if

(1) /" equals s. Recall that since must be the father of j, must be the father of s.
(2) equals s and belongs to Des(/’)(_J {j}.

The first situation can only happen once since node s must have a unique father.
The second situation can only occur once since if it happened twice, for example, with
C(i, jl) and C(i, j2), jl Y j2, then between s and there would be two distinct paths in the
tree T.

Since RC(C)= .,)DD ar and the term a, occurs in at most two terms of the
form C(i, j) we have

Therefore,

or

E C(i, ]) <-_ 2RC(C).
(i,i)T

RC(T) n
2RC(C)

RC(T)
<_ 2n. [3

RC(C)

Notice that the optimal network problem used in the proof of Theorem 1 had
routing costs which satisfy the triangle inequality. Therefore Theorem 1 also holds if we
impose the triangle inequality for the routing costs of the optimal network problem.

With these two theorems we have demonstrated probable lower and upper bounds
on the worst-case error ratio for all reasonable polynomial-time heuristics for the
optimal network problem with the triangle inequality for all routing costs.

The above results can also be extended to situations in which the required flows rkl
are not necessarily equal to one. Suppose that all the rkl are positive integers such that

rkl p
max <-- n for some P > 3.
i,i,k,l rq

Then Theorem 1 is modified by changing the worst-case error ratio from n 1-e to
P--2n Theorem 2 is modified by changing the upper bound of 2n to 2nP+ The proofs of

such generalizations are straightforward modifications of the ones given above and will
not be given here.

4. A heuristic for a special case of the optimal network problem. In this section we
consider a special case of the optimal network problem where all construction costs di
are one. The budget constraint for this type of problem essentially limits the number of
arcs allowed in the optimal network design. We will not have to assume that the triangle
inequality holds for the routing costs. Johnson, Lenstra, and Rinooy Kan [8] have also
shown that this restricted problem is NP-complete.
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With these new restrictions on the problem, the result of Theorem 1 is no longer
valid. We will describe a polynomial-time heuristic h whose worst-case error ratio

Rh(n) <- 2 for all n.

Let TREE(i) be the tree network of minimum routing cost paths between node
and every other node in the network. COST(i) is the sum of the minimum routing costs
from node to every other node in the network.

Our third heuristic can be defined as:
(H3) (1) Find such that

COST(i) minCOST(]).
jD

(2) TREE(i) is the proposed network configuration.
THEOREM 3. For optimal network problems having all construction costs equal to

one

RHa(n) _--< 2 for all n.

Proof. We demonstrate this result by proving the stronger fact that

VH3(S)
_< 2 for all s,

RC(C)

where VH3(S) is the value of the solution computed by heuristic H3 for optimal network
problem s and RC(C) is the routing cost (and solution cost) of the complete network
(i.e., the network with all arcs in A).

As before define a0 to be the minimum routing cost between nodes and/" on the
complete network. Therefore,

COST(i)= Y. aii.
iD

The routing cost for connecting node/" # to all other nodes in the problem using the
network TREE(i) is at most (n- 2)aii + COST(i).
So

and

Vt3(s) <_- n COST(i) + (n 2) a0-,
ji

VH3(S) --<-- (2n 2) COST(i).

For the complete network we have

RC(C)= Y COST(j).
jD

Since COST(i)=< COST(f) for all j,

Re(c) >= n COST(i).

This implies

VH3(S)
<
(2n 2) COST(i)

RC(C) n COST(i)

Note that heuristic H3 has a polynomially bounded computation time so that it is
possible to have a polynomial-time approximation procedure for a restricted class of
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optimal network problems whose worst-case error ratio is bounded by a constant.
Theorem 1 shows that is unlikely that such a heuristic exists for a broader class of
network design problems.

We believe that combining some local improvement heuristic (perhaps one which
added arcs in a "greedy" manner) with H3 could lead to a useful optimal network
problem heuristic. It would be necessary to perform additional worst-case analyses or
some computational tests in order to verify this conjecture.

5. Conclusions. The results of this paper indicate some unusual aspects concerning
the complexity of the optimal network problem. Theorem 1 shows that even getting
"close" to the optimal solution is an NP-complete problem. So, in a sense, this network
design problem is more difficult than many other NP-complete problems. Similar
results of this nature have been developed by Sahni and Gonzalez [15] and Garey and
Johnson [6].

Theorem 1 also applies to other discrete network design problems such as the one
treated by Leblanc [13] and Morlok and Leblanc [14]. This problem is similar to the
optimal network problem except that more complex routing costs and strategies are
allowed. So a variety of network design problems appear to be inherently very difficult.

For optimal network problems where the routing costs (cii’s) satisfy the triangle
inequality, we have an even stronger result. A strengthened version of Theorem I along
with Theorem 2, implies that the upper and lower bounds on the worst-case behavior of
all reasonable optimal network heuristics (i.e., polynomial-time heuristics that always
produce a feasible solution) must be very close unless P- NP.

In addition, we explored the relation between various problem parameters and
heuristic accuracy. By allowing the required flows (rii’s) to assume different values we
were again able to obtain probable (unless P NP) upper and lower bounds on the
worst-case behavior of reasonable heuristics. We also saw that by restricting all the
construction costs (dii’s) to be equal, it is then possible to find heuristics whose
worst-case error is bounded by a constant independent of problem size.

Although most optimal network heuristics probably have a bad worst-case error,
there may be some heuristics whose "average" case behavior is quite good. In 2 we
saw that heuristics used by Dionne and Florian [3] can be very inaccurate in terms of
worst-case error even though computational tests have indicated that their relative
margins of error are usually quite small. Many heuristics, especially ones for compli-
cated real world problems (such as telephone network optimization), also appear to
behave in a similar way. An interesting area of future work would be to explore
probabilistic analyses of optimal network heuristics. See Karp [11], [12] for some
examples of probabilistic analyses for various combinatorial problems.

Acknowledgments. I am indebted to Professor Thomas L. Magnanti of MIT for his
encouragement and suggestions concerning this paper. Paulo Villela of MIT also
provided useful comments. This paper was originally presented at the ORSA/TIMS
Conference, New York, May, 1978.

REFERENCES

[1] D. E. BOYCE, A. FARHI, AND R. WEISCHEDEL, Optimal network problem: A branch-and-bound
algorithm, Environment and Planning, 5 (1973), pp. 519-533.

[2] G. CORNUEJOLS, M. L. FISHER, AND G. L. NEMHAUSER, An analysis ofheuristics and relaxationsfor
the uncapacitated location problem, Management Sci., 23 (1977), pp. 789-810.



WORST-CASE ANALYSIS OF NETWORK DESIGN 63

[3] R. DIONNE, Une analyse thdorique et numrique du problbme du choix optimal d’un rdseau de transport
sans congestion, Publication No. 198, D6partment d’informatique, Universit6 de Montreal, October
1974.

[4] R. DIONNE AND M. FLORIAN. Exact and Approximate Algorithms ]:or Optimal Network Design,
Publication No. 41, Centre de Recherche Sur les Transports, Universit6 de Montreal, 1977.

[5] M. R. GAREY AND O. S. JOHNSON, The Complexity of Near-Optimal Graph Coloring, J. Assoc.
Comput. Mach., 23 (1976), pp. 43-49.

[6],Approximation algorithms for combinatorial problems: An annotated bibliography, Algorithms
and Complexity, J. F. Traub, ed., Academic Press, New York, 1976.

[7] H.H. HOANG, A Computational Approach to the Selection o]’an Optimal Network, Management Sci., 19
(1973) pp. 488-498.

[8] D. S. JOHNSON, J. K. LENSTRA, AND A. H. G. RINNOOY KAN, The Complexity ofthe Network Design
Problem, Networks, to appear.

[9] R. M. KARP, Reducibility among combinatorial problems, Complexity of Computer Computations,
R. E. Miller and J. W. Thatcher, eds., Plenum Press, New York, 1972, pp. 85-104.

[10], On the computational complexity of combinatorial problems, Networks, 5 (1975), pp. 45-68.
[11], The Probabilistic Analysis of Some Combinatorial Search Algorithms, Algorithms and

Complexity, J. F. Traub, ed., Academic Press, New York, 1976.
12] ., Probabilistic analyses of partitioning algorithms for the traveling salesman problem in the plane,

Math. of Operations Res., 2 (1977), pp. 209-224.
13 L.J. LEBLANC, An Algorithm for the Discrete Network Design Problem, Trans. Sci., 9, (1975), No. 3, pp.

283-287.
14] E. K. MORLOK AND L. J. LEBLANC, A marginal analysis technique for determining improvements to an

urban road network, Paper presented at ORSA/TIMS National Meeting, Las Vegas, NV, Fall 1975.
[15] S. SAHNI AND T. GONZALEZ, P-Complete approximation problems, J. Assoc. Comput. Mach., 23

(1976), pp. 555-565.
[16] A. J. SCOTT, The optimal network problem: Some computational procedures, Trans. Res., 3 (1969), pp.

201-210.
[17] R. WONG, A survey of network design problems, Working Paper OR 080-78, M.I.T. Operations

Research Center, Cambridge, MA, 1978.



SIAM J. ALG. DISC. METH.
Vol. 1, No. 1, March 1980

) 1980 Society for Industrial and Applied Mathematics
0196-5212/80/0101-0009 $01.00/0

A PROOF OF TUTTE’S TRINITY THEOREM AND
A NEW DETERMINANT FORMULA*

KENNETH A. BERMANf

Abstract. A new proof of Tutte’s trinity theorem (Proc. Cambridge Phil. Soc., 1948), (North-Holland,
1973) is presented. The proof is based on a new determinant formula for the number of spanning
arborescences of a digraph. This formula generalizes the determinant formula given by Maurer (SIAM J.
Appl. Math., 1976) for the number of spanning trees of an undirected graph.

1. Introduction. In his paper "The dissection of equilateral triangles into equi-
lateral triangles", Tutte generalizes the concept of dual planar maps to a trinity of
alternating planar dimaps [7]. This concept is further developed by Tutte in [8]. An
alternating dimapA is a planar Eulerian map which is oriented so that the edges around
each vertex are directed alternately into and out of that vertex. Such a map has the
property that the number of spanning in arborescences rooted at any vertex equals the
number of spanning out arborescences rooted at that vertex. Further, the number of
spanning out arborescences rooted at every vertex is the same [7]. The arborescence
number of A, denoted by a (A), is defined to be this common number. Tutte proves in
his papers [7], [8] that each dimap of a trinity of alternating dimaps has the same
arborescence number. These proofs are based on graph theoretical Considerations. In
this paper an alternate approach employing determinants is given.

The paper is in two parts. The first part, which includes 2 and 3, deals with trinity
and gives a proof of Tutte’s trinity theorem employing determinants. In the second part,

4 and 5, a new determinant formula for enumerating spanning arborescences is
developed.

In 2, trinity is defined and it is shown how trinity generalizes duality. Two
approaches are discussed. In 3, Tutte’s trinity theorem is deduced from a determinant
formula for the arborescence number of an alternating dimap. Following a discussion of
some results from the literature in 4 the enumeration of spanning arborescences of a
digraph is considered in 5 and a new determinant formula is obtained. A special case
of this formula was used in 3 to derive Tutte’s trinity theorem and another special case
is Maurer’s determinant formula [5] for the number of spanning trees of an un-
directed graph.

2. Trinity. Consider an alternating dimap A with edge set E, vertex set V and face
set F. Let P denote the set of faces of A directed counterclockwise and let N denote the
set of faces directed clockwise. We associate with dirnap A two alternating dimaps Ap
and Arc as follows. In the interior of each face of P place a vertex. These vertices which
we denote by Vp will be the vertex set of Ap. Consider any vertex v V. Let
f, f, , f, denote the faces from P which are incident with v taken clockwise around
v. Let u l, u2,’", Uk denote the vertices from Vp contained in the interior of faces
f, f,. , f respectively. Join vertices ui and ui+l with an edge directed toward U+l,

1, 2, , k where Uk+l U 1. Repeat this for every vertex v V. The resultant dimap
dp is an alternating dimap. By an analogous construction using the set N in place of P
we obtain the alternating dimap Arc. Dimaps Ap and Arc are the derived alternating
dimaps of A.

* Received by the editors December 5, 1978.
f Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario, Canada
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It can be verified that the derived alternating dimaps of Ap are An and A and the
derived alternating dimaps of An are A and Ap. We call A, Ap, Ar a trinity of
alternating dimaps and speak of the property of trinity for alternating dimaps in analogy
with the property of "duality" for undirected maps [7], [8].

Trinity is a true generalization of duality. To see this let M be a planar map with
dual map M’. Associated with the mapM is the alternating dimap defined as follows.
Double each edge of M such that the bivalent face created contains no edges in its
interior and orient all the edges such that each of these bivalent faces is directed
clockwise. The resultant map is M. Apply the same construction on the dual map M’ to
obtain dimap/I/’ excerpt direct the new bivalent faces counterclockwise. The derived

alternating dimap ofM associated with the faces directed counterclockwise is the dimap
M’ and the derived alternating dimap of//associated with the faces directed clockwise
is a 4-valent map/r known as the medial map of M and M’. Thus/Q,//’,/r form a
trinity of alternating dimaps. This shows that duality is a special case of trinity.

Tutte in [8] gives the following approach to trinity. Let T be a plane Eulerian
triangulation whose vertices have been colored with colors 1, 2, 3. Let V1, V2, V3 be the
sets of vertices colored 1, 2, 3, respectively. We now construct three alternating dimaps
A1, A2, A3 having vertex sets V1, V2, V3.

We construct A as follows. (See Fig. 1 taken from [8]). Bi-color the triangle faces
of T black and white such that the outside face is colored white. This can be done since T
is Eulerian. For x 6 VI and fb a black triangle incident with x draw a directed edge of A
along a median of fb to the midpoint of the opposite side. Continue the edge along a
median of the adjacent white face fw to the opposite vertex y. It is clear that y V1. (In
the case x and y are coincident the edge drawn is a loop taken with the specified sense of
description.) Thus we have the dimap A and by a similar construction using vertex sets
V2 and V3 in place of V1 we obtain dimaps A2 and A3.

We now define mappings O"12, 0"23, O"31. Let El, E2, E3 be the edge sets of A 1, A2,
A3. Consider the mapping tr12:E1 - E2 defined as follows. An edge e E1 intersects
two edges from E2, one at the center of a black triangle and one at the center of a

3

2

3

FIG. 1. (Tutte [8].)
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white triangle. Let o’12(e) be the edge from E2 which intersects e at the center of
a white triangle. Similarly define functions tr23, tr31.

The three dimaps A 1, A2, A3 form a trinity of alternating dimaps [8]. Conversely,
given any trinity of alternating dimaps there exists a 3-colored plane Eulerian tri-
angulation which yields them by the above construction.

3. Tutte’s trini theorem. In this section, a new proof of Tutte’s trinity theorem
[7], [8] is given. The proof employs a new determinant formula for the number of
spanning arborescences.

THEOREM 3.1 (Tutte). Each dimap o]a trinity A 1, A2, A3 ofalternating dimaps has
the same arborescence number, that is

a (A 1) a (A2) a (A3).

We deduce this theorem from the following determinant formula for the arbores-
cence number. This formula is a special case of a more general formula derived in 5,
Theorem 5.1.

THEOREM 3.2. LetA be an alternating dimap with edge set E, vertex set Vandface
set F of cardinalities, m, n, respectively. Let V be the n x m matrix such that

e directed into v,
(3.1) V(v, e)=

0, otherwise

v V, e E and let : be the x m matrix such that

1, e belongs to [,
(3.2) :(/c, e)=

0, otherwise

f F, e E. For v V and f F let Vo be the matrix obtained from V by deleting the row
corresponding to vertex v and let g:r be the matrix obtained from : by deleting the row
corresponding to face f. Then the arborescence number a(A) ofA is given by

(3.3) a(A) +det

We now prove Theorem 3.1. Let A 1, A2,A be a trinity of alternating dimaps with
vertex sets V1, V2, V, and face sets F, F2, F. Let P1, P2, P denote the sets of faces
directed counterclockwise and let N1, N, N denote the sets of faces directed
clockwise.

Consider the function o’12 defined at the end of 2. Function o12 maps, (i) the set
edges around a face from P1 onto the set of edges directed into a vertex of V., (ii) the set
of edges around a face from N1 onto the set of edges around a face from P2, (iii) the set of
edges directed into a vertex of V1 onto the set of edges around a face from N.. Let
V2 be the matrices corresponding to dimaps A and A2 defined by (3.1) and let :1, :2 be
the matrices corresponding to dimaps A1 and A2 defined by (3.2). It follows that the
rows of the matrix

are a permutation of the rows of the matrix
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By Theorem 3.2 this implies that dimaps A1 and A2 have the same arborescence
number. Similarly, dimaps A2 andA3 have the same arborescence number. This proves
Theorem 3.1.

4. Results from the literature. Let G be an undirected graph with edge set E and
vertex set V. Let D be a digraph obtained by directing the edges of G. A 1-chain over a
ring R is a mapping from E into the elements of R. In this paper we take R to be the field
of real numbers. Let C denote the set of 1-chains. For cl, cz C and A R we define the
operation + and scalar multiplication as follows"

(4.1) (Cl +cz)(e)=c(e)+c2(e)

(4.2) (A Cl)(e) A (cl(e))

for all e e E. The system (C, +,. is a vector space over R.
For v e V let /(v) and g-(v) denote the set of edges directed into v and out of v

respectively. A cycle over R is a 1-chain z such that

(4.3) , z(e +) E z(e-)
$+(v) e-,$-(v)

for each vertex v V. A coboundary over R is a 1-chain b such that

(4.4) b(e) d(h(e))- qb(t(e))

for all e E where d is a mapping from V into R and h (e), t(e) denote the head and tail
of e respectively. Let Z denote the set of cycles and let B denote the set of
coboundaries. It is immediate that Z and B are subspaces of C and it is easily verified
that they are orthogonal.

For v V define 1-chains 80+, By, 8v as follows.

1, v=h(e),(4.5) + (e)
0, otherwise,

1, v=t(e),(4.6) S (e)=
0, otherwise,

(4.7)

for e E. Set

(4.8)

(4.9)

6o(e) 6+o (e)- 6- (e)

uluV-v},
ao ={,ulU V-v}.

It is immediate that 6 is a coboundary and that Av is a basis for the coboundary
space B. Let By be the matrix whose rows correspond to the vectors in Ao.

A matrix is unimodular if all its full square submatrices have determinants 0, + 1,
-1. A unimodular cycle matrix Z is a unimodular matrix whose rows correspond to a
basis of the cycle space Z. There is a unimodular cycle matrix associated with every
spanning tree of G [1]. Note that the matrix : defined by (3.2) is a unimodular cycle
matrix.

The following two determinant formulas for the number t(G) of spanning trees of
G are well-known [1], [5], [6]. (The transpose of a matrix M will be denoted by M’.)

THEOREM 4.1 (Kirchhoff-Trent). t(G)=det (B’o).
THEOREM 4.2. t(G)= det (7/ 7/’).
A third formula is given in Maurer [5].
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THEOREM 4.3 (Maurer).

t(G) +det ....
Theorem 4.1 has been extended to spanning arborescences of a digraphD by Tutte

[7]. This can be formulated as follows. Let B be the matrix whose rows correspond to
the vectors in A. (Note that Vv B/v where V is defined in Theorem 3.2). Let av(D)
denote the number of spanning out arborescences rooted at vertex v of D.

THEOREM 4.4 (Tutte). av (D) det (+ B’,3.
Theorem 4.1 is the matrix-tree theorem and Theorem 4.4 is the matrix-arbores-

cence theorem.

5. Enumeration of spanning arborescences. In this section the following new
determinant formula for enumerating spanning arborescences is derived.

THEOREM 5.1. The number a(D) ofspanning out arborescences rooted at a vertex v
of a digraph D is given by

(5.1) a(D) +det

where + is the matrix whose rows correspond to the vectors in A+ and 7/is a unimodular
cycle matrix.

Theorem 5.1 is an immediate corollary of the following stronger result. Associate
the indeterminate weights Xl, x2, , x, with the edges el, e., , e, of D. The weight
of a spanning arborescence of D is defined to be the product of the weights on the
edges of the arborescence.

THEOREM 5.2. Let D be a digraph with the indeterminate weights x l, x2," ", x,
associated with the edges el, e., , e, respectively. The polynomialA,(x, x2, , xm)
which is the sum o.f the weights over all the spanning out arborescences rooted at vertex v
D is given by

(5.2) A(Xl, X.,...,x,)=+det ....
where B + 7/are defined as in Theorem 5.1 and N is the diagonal matrix (x l, x2, , x, ).

To prove Theorem 5.2 we employ an extension of Theorem 4.4 to weighted
digraphs. This result which is sometimes called the Bott-Mayberry theorem [2] may be
formulated as follows.

(5.3) A,(xl, x2," ", x,,)= det (+ B’).

Now let denote the number of spanning trees of D (of the underlying graph G).
Then by Theorem 4.3

det (...N..) +det det (B’o" 7/’).

Since the cycle space Z and the coboundary space B are orthogonal, 7/’ 0 and we
have

det .. +

+det (...o...N...o. +

k 0 ZZ’ /

+det (a+xa’o) det (7/7/’).
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Employing Theorem 4.2 and (5.3) gives (5.2) of Theorem 5.2.
Theorem 3.2 used in the proof of Tutte’s trinity theorem is obtained as a special

case of Theorem 5.1 with the observation that Vv B+ and : is a unimodular cycle
matrix.

Maurer’s formula, Theorem 4.3 is also a special case of Theorem 5.1. To see this
consider the digraph obtained by replacing each edge of G with two edges directed in
opposite directions. It is immediate that

t(G)=av()
for all vertices v of 0. It can be shown by simple manipulations that the determinant for
t on the right-hand side of (5.1) is equal to the determinant for G on the right-hand
side of the equation of Theorem 4.3. Thus Maurer’s formula follows from
Theorem 5.1.
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RECTILINEAR STEINER TREES IN RECTANGLE TREES*"

ARTHUR M. FARLEY’, STEPHEN T. HEDETNIEMI" AND SANDRA L. MITCHELL,"

Abstract. The rectilinear Steiner tree (RST) problem is known to be NP-complete for an arbitrary set of
points in the plane. In this paper we extend the known cases for which solutions can be determined in linear
time to include sets of points which generate types of minimum-distance rectangle trees. Rectangle trees are
rectilinear, plane C4-trees. A minimum-distance rectangle tree is a rectangle tree such that the length of a
shortest path between any two vertices in the graph is equal to the rectilinear distance (in the plane) between
the two vertices. A complete enumeration of minimum-distance rectangle trees is included. The results have
application in the design of terminal patterns and wiring layouts for electronic circuitry.

Introduction. A rectilinear Steiner tree (RST) for a set A of points in the plane is a
tree which contains all the points of A and which contains only horizontal and vertical
edges. An optimal RST for a set of points is an RST in which the edges have minimum
total length. Although the problem of determining an optimal RST for an arbitrary set
of points in the plane has been shown to be NP-complete [2], an efficient (polynomial
time) algorithm has been designed [5] which determines good approximate solutions by
constructing rectilinear spanning trees. Furthermore, efficient algorithms which pro-
vide optimal solutions in several special cases have been determined [1], [3]. In
particular, an O(n) algorithm exists which determines an optimal RST for a set of points
forming a subset of the grid points of a 2xn grid 1]. In this paper we extend this result to
include sets of points which generate certain classes of rectangle trees.

1. Definitions. A rectilinearplane graph is a plane graph [4] having only horizontal
and/or vertical edges. A rectangle tree (RT) is a rectilinear plane graph which can be
constructed from an initial rectangle by a finite number of applications of the following
operation:

Add a new rectangle, identifying one of its edges with an edge e on the exterior face
of the existing graph such that neither vertex of edge e had degree 4.

Rectangle trees form a planar subclass of the class of C4-trees, where a Cn-tree is
either a cycle Cn with n vertices or a graph obtained by identifying art edge of a new C,
with an edge of an existing C,-tree [6]. If each cycle were considered to be a vertex and
its neighbors to be those cycles with which it shared an edge, the resultant graph would
be a tree. Several examples of RTs are presented in Fig. 1. A ladder is a single edge or an
RT containing no vertices of degree 4. An L is an RT containing exactly one vertex of
degree 4. A cross is an RT containing exactly four vertices of degree 4 which form a
A T is an RT containing exactly two vertices of degree 4 which are also adjacent.

In the results that follow we will need to refer to the various components of a given
rectangle tree. They are defined as follows. An end-edge is an edge both vertices of
which have degree 2; a rectangle containing an end-edge is an end-rectangle. A
maximal induced ladder of an RT is a ladder subgraph of the RT such that the ladder is
not a subgraph of another ladder contained in the RT. An arm of an RT is a maximal
induced ladder of the RT. Figure 2 illustrates the arms of one RT. A branch of an RT is a
maximal induced ladder of the RT containing an end-edge (a’, b’) but no vertices of
degree 4. Every branch of an RT such that the RT itself is not a ladder is attached to the
rest of the RT at two adjacent vertices ra, rb, at least one of which has degree 4. We refer

* Received by the editors May 17, 1978, and in revised form March 16, 1979.
5" Computer Science Department, University of Oregon, Eugene, Oregon 97403.
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to the edge (ra, rb) as the remote edge of the branch; the edge of the ladder (a, b) which
forms a rectangle with (ra, rb) is called the initial edge of the ladder. Figure 3 illustrates
the branches of one RT.

Finally, a set A of points in the plane generates an RT, denoted RT(A), if there
exists an RT which can be constructed according to the definition above such that (1) at
least two nonadjacent vertices of the initial rectangle coincide with points in A, and (2)
at least one vertex of each new end-edge and at least one vertex of the existing edge

FIG. 2
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FIG. 3

which is identified with an edge of the new rectangle are in A. Figure 4 demonstrates
that not every set of points in the plane generates an RT.

The problem of determining whether a set of points generates an RT is likely to be
NP-complete in the general case. The problem can be solved in linear time for certain
special cases as is shown later. A necessary property of a set of points which generates an
RT follows from the definitions above and the following one. A point p of a set of points
A is rectilinearly isolated if there are no other points of A on the horizontal and vertical
lines through p. IfA contains more than two points andA generates an RT, then at most
one point of A is rectilinearly isolated. Unfortunately, this is not a sufficient condition
for a set of points to generate an RT.

2. Separable RTs. Let l(e) denote the length of edge e, and let the width of a
branch B with end-edge (a’, b’) be w(B) l(a’, b’). A separable RT is an RT such that
for every branch B, w(B) <-_ l(a, ra) (i.e. the length of the edge joining the remote vertex
ra and the initial vertex a is not less than the width of the branch), and if one removes
branch B from the RT then the remaining RT is separable. A setA of points generates a
separable RT if there exists an RT(A) which can be constructed such that the length of
the edge of the new rectangle which is identified with an existing edge is not greater than
the length of the edge between this edge and the new end-edge. This condition is
sufficient, but not necessary, for the resulting RT to be separable.

An RT-optimalRST for a set of points A which generates a rectangle tree RT(A) is
an optimal RST for A which is a subgraph of RT(A). In other words, an RT-optimal
RST is a solution to the rectilinear Steiner tree problem for the subset of vertices A
within the graph RT(A). Our interest in separable RTs stems from the fact that
whenever a set A of points generates a separable RT, we can solve the RST problem for
RT(A) in linear time.

FIG. 4
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3. A linear algorithm for obtaining an RT-optimal RST in a separable RT. The
following Algorithm RT repeatedly determines an RT-optimal RST for each branch of
a given separable RT(A). In the case of a branch which is a single edge, the solution is
trivial. For a nontrivial branch, Algorithm RT uses the dynamic programming
algorithm of Aho, Garey and Hwang [1] to determine an RT-optimal RST for branch B,
denoted S(B). After each branch solution is determined, it is joined to a remote vertex
and the branch is pruned from the RT. The algorithm halts when a branch has no remote
edge (i.e. the RT has been reduced to a ladder). After application of Algorithm RT, the
variable ORST has as its value the set of edges constituting an RT-optimal RST for the
set A in RT(A). Algorithm RT is formally defined as follows:
ALGORITHM RT
[Initialize] set G - RT(A)set ORST-[Each branch] while there exists a branch B in G

do [find RST of branch
if B consists o] the single edge (a’, b’)

then [both vertices in A?]
if a’ A and b’ A

then set ORST- ORST {(a’, b’)}

else use Aho-Garey-Hwang Algorithm to obtain S(B)
set ORST- ORST (_J S(B

[loin to solution for entire tree ]
if remote edge (ra, rb) OfB is null

then STOP
else [loin a or b to the remote edge
if only one initial vertex, say a, is an element ofA

then set ORST ORST {(a, ra)}
set A A {ra}

else if ra A then set ORST ORST {(a, r)}
else set ORST ORST [J {(b, rb)}

[delete branch from the graph]
set G G-(B {(a, r), (b, rb)})

od
THEOREM 1. Algorithm RTdetermines an RT-optimal RSTfor any setA ofpoints

which generates a separable RT, RT(A). Algorithm RT can be implemented so as to
require only O(n) computational steps, where n is the number ofpoints in A.

Proof. The correctness of Algorithm RT is readily established. The Aho-Garey-
Hwang algorithm has been shown to determine an RT-optimal RST for the set of points
in any nontrivial branch. The solution for each branch is joined in a manner which
minimizes the length added to the overall solution. The edge which is added is of
minimum length and it is added so that no unnecessary edge is added to the rest of the
solution. Since RT(A) is separable, joining the branch solution to the overall solution by
a single edge is a globally optimal decision. Any overall solution which includes two
edges connecting a branch to the overall solution can be replaced by one using only one
such edge and an edge traversing the width of the branch. Since the width of a branch is



74 ARTHUR M. FARLEY, STEPHEN T. HEDETNIEMI AND SANDRA L. MITCHELL

less than or equal the length of an edge connecting a branch to a remote vertex, this new
solution will have overall length less than or equal to that of the original. The RT G is
finally reduced to a ladder with a null remote edge, which leads to the completion of the
algorithm’s execution.

The Aho-Garey-Hwang algorithm determines a branch solution in time (compu-
tational steps) linearly related to the number of points of A in the branch. The joining
procedure requires a constant amount of time per branch. It only remains to show that
the total time spent finding branches is also O(n). The branches, which are identified by
end-edges, can be found by making an initial O(n) pass over the vertices and edges in
RT(A) and forming a list of all adjacent pairs of vertices of degree 2. This list can be
updated in constant time as each branch is deleted. Thus, Algorithm RT has O(n) time
complexity.

Algorithm RT produces approximate solutions for nonseparable RTs. In a non-
separable RT, the decision to join a branch solution by aingle edge may not be globally
optimal. A better solution may use two edges to join the branch solution while
eliminating an edge which crosses the branch. The solution produced by Algorithm RT
exceeds the optimal solution in length by less than the sum of the widths of the solved
branches. The performance of Algorithm RT on nonseparable RT can be improved by
the following modifications.

(1) as each branch solution is joined to the remote edge, mark the remote edge
"special" if there are elements of A on both sides of the branch whose distance
to the remote edge is less than the width of the branch;

(2) after each branch solution is determined, for each edge which is marked
"special" and is a member of that solution eliminate the nearest parallel edge in
the overall solution which lies in the branch adjacent to the special edge and
add edges to reconnect the disconnected side of that branch to its remote
vertex.

Figure 5 illustrates this adjustment procedure, where "X" marks the special edge. In the
case of a nonseparable L, T, or cross, all special edges will be elements of the same
rectangle of the RT. As such, Algorithm RT can be further modified to determine the
overall RT-optimal RST for such a graph while maintaining the linear time bound.

%
%

FIG. 5
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4. Minimum-distance RTs. A minimum-distanceRT is an RT such that the length
of a shortest path in the RT between any two vertices of the RT is equal to the rectilinear
distance (in the plane) between the two vertices.

THEOREM 2. Any ladder, L, T, or cross is a minimum-distance RT.
Proof. Let G be such a graph and u and v be two vertices of G. If a path can be

found between u and v which contains at most one right-angle turn, then that path has
length equal to the rectilinear distance between the two vertices. It is easy to see that any
two vertices in a ladder, L, T, or a cross are either joined by a straight path or a path with
exactly one right-angle turn. 71

Let A be a set of points in the plane. Consider the rectangular grid formed by
drawing a horizontal and a vertical line through each point. Let G(A) be the plane
graph denoting that portion of this grid enclosed by the largest rectangle formed by the
grid lines. Consider the intersection of a horizontal and vertical grid line to be a vertex
and a line segment connecting two such vertices to an edge.

Let A be a set of points generating an RT such that RT(A) is a minimum-distance
RT. We want to show that there exists an optimal RST (in the plane) for A which
consists solely of vertices and edges of RT(A). To accomplish this we present the
following results. The first is immediate from the definitions, the second is due to Hanan
[3].

LEMMA 3.1. RT(A) is a subgraph of G(A).
LEMMA 3.2. There is an optimal RSTfor A which is contained in G(A).
Let R denote an optimal RST for A contained in G(A). Let the interior of RT(A)

be the vertices and edges of RT(A). Let the exterior of RT(A) be the rest of G(A). Let
Rext be that part of R lying in the exterior of RT(A).

The following two lemmas relate points or paths in the exterior of RT(A) to the
interior of RT(A).

LEMMA 3.3. A straightpath in Rext has at most one end which is a vertex of RT(A).
Proof. Since RT(A) is a minimum distance RT, any straight path whose ends are

both vertices of RT(A) must be in RT(A).
LEMMA 3.4. Vertices in the interior of RT(A) lie in only two ot the four possible

rectilinear directions from any vertex in the exterior of RT(A). Furthermore, one direction
is horizontal (left or right) and the other is vertical (up or down).

Proof. Since a vertex v in the exterior is within G(A), points of A lie in at least one
vertical and one horizontal direction from v. If points on the interior were to lie in
opposite directions from v, there would exist a path through v which would interconnect
two vertices of RT(A) such that this path would have length less than that of the shortest
path connecting them in RT(A). This would contradict the assumption that RT(A) is a
minimum-distance RT.

Lemma 3.4 implies that each connected subgraph of the exterior of RT(A)
contains a corner vertex of the rectangle which bounds the exterior face of G(A).
Therefore, there can be at most four such graphs in the exterior of RT(A). Furthermore,
a subgraph contains edges on two sides of the rectangle bounding the exterior face of
G(A). The specification of an operation which will eliminate all edges and vertices of
Rext while maintaining an optimal RST for the set A will complete preparation for our
theorem.

A segment of Rext is a maximal straight path in Rext. The operation we shall employ
is the segment shift. The segment shift operation is applicable to a segment of Rext
nearest the exterior boundary of G(A). The operation moves the segment so that it lies
on the adjacent parallel grid line of G(A) which is nearer the interior of RT(A). The
shifted segment can only have other segments of Rext attached to it on the side toward
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the interior of RT(A), since it is nearest the outside boundary of G(A). These attached
segments are shortened to remain connected to the shifted segment on the same side.
The shifted segment is merged with any segment at its new position which it abuts or
overlays. If one end of the shifted segment is a vertex of RT(A), an edge is added to R,
interior to RT(A), connecting the new end vertex to the previous end vertex. If the
addition of that edge creates a cycle in R, the edge is not added. The segment shift
operation maintains R as a tree, since connectivity is maintained and no cycles are
introduced. Furthermore, the operation does not increase the overall length of the tree,
as only one edge may be added and this is offset by the removal of at least one edge of
the same length. Thus, R is maintained as an RST.

LZMMA 3.5. The shifted segment has one end which is a vertex of RT(A) and has
only one segment attached to it in the direction of the interior of RT(A). Furthermore, the
shifted segment does not overlay a segment of gext at its new grid position.

Proof. Any other situation would result in a reduction in the length of R. This would
contradict the assumption that R is an optimal RST. I-I

We are now in a position to state and prove our major result concerning the
inclusion of an optimal RT within RT(A).

THEOREM 3. Given a set A of points generating a rectangle tree RT(A) such that
RT(A) is a minimum-distance RT, there exists an optimal RST (in the plane) for A
consisting solely of vertices and edges of RT(A).

Proof. Let R denote an optimal RST for A contained in G(A). Assume that R is
not strictly contained in RT(A). Let Rext denote that part of R lying in the exterior of
RT(A), as defined above.

Since there is a finite number of grid lines in each subgraph of the exterior of RT(A)
and the segment shift operation reduces the maximum distance of segments of Rext from
the interior of RT(A) by one grid line, a finite number of applications of this operation
eliminates all segments of Ret in a given subgraph of the exterior of RT(A). Since there
are at most four such subgraphs, Ret can be eliminated, yielding an optimal RST
consisting only of edges and vertices of RT(A). [3

To look at this another way, Lemma 3.5 implies that in each subgraph of Rext there
is at most one simple path connecting two vertices of RT(A). Since RT(A) is a minimal
distance RT(A), the path in Rext can be replaced by one within RT(A) of equal length.

This now allows us to extend the usefulness of Algorithm RT.
THEOREM 4. Given a setA ofpoints in the plane generating RT(A) such that RT(A)

is a minimum-distance, separable RT, Algorithm RTdetermines an optimal RST (in the
plane) for set A.

Proof. Since there exists an optimal RST for A which consists solely of vertices and
edges of RT(A), Algorithm RT not only determines an RT-optimal RST but also
determines an optimal RST for set A. [3

5. Characterization of minimum-distance RT’s. Since Algorithm RT determines
an optimal RST for sets of points generating separable, minimum-distance RT’s, a
further characterization of minimum-distance RT’s would be useful.

Two vertices of an RT interact if there exists a straight path between them in the
RT.

TI-IEOREM 5. Let Tbe an RT. Tis a minimum-distance RTifand only ifevery pair of
vertices of degree 4 which interact in T are connected by an interior edge of T.

Proof. Let T be a minimum-distance RT. Let u and v be interacting vertices of
degree 4. Let p be the straight path between u and v in T. There are two edges incident
to both u and v which are perpendicular to path p. If T is a minimum-distance RT, all
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four of these edges must be elements of the same arm of T. This can only be the case
when path p is an interior edge of T.

Let T be an RT such that every pair of vertices of degree 4 which interact are
connected by an interior edge of T. Let u and v be any two vertices of T. If a directed
path p exists from u to v which has edges directed in only one or two of the four
rectilinear directions then p is a minimum-distance path. Let A1,’", An be the
sequence of arms within which the directed path p from u to v must lie, where u A
and v An (n -> 1). Certainly, if n 1 or 2, then p has minimum distance. If n > 2, then
the path is continued by connecting the path to the nearest vertex in A3 and similarly
continued for greater n. If p must contain a third rectilinear direction, it will be due to
opposite directions which must be chosen in Ai and Ai+2, 1 =< =< n 2. This implies that
the path chosen to connect Ai and A+2 must connect two vertices of degree 4.
Furthermore, the path through A/I is not an interior edge. This contradicts the
assumption about interacting vertices of degree 4 in T. lq

We next show that every minimum-distance RT falls into one of 11 classes of
graphs. In order to do this, we give the following, equivalent definition of a rectangle
tree. A graph G is a rectangle tree if and only if it can be constructed from a (non-trivial)
ladder by a finite number of applications of the following operation:

Form a new RT by adding a new ladder, joining it to the existing RT by identifying
one rectangle of the ladder with one rectangle of the RT, in such a way that the new
ladder becomes an arm of the new RT.

This definition is equivalent to our initial characterization. Each rectangle added
by that definition either extends an existing arm or begins a new arm which shares a
rectangle with an existing arm. Therefore, any given RT can be constructed by
repeatedly sharing a rectangle of an existing RT with a rectangle of a new ladder. There
are only four types of rectangle-sharing operations. These are as follows:

(1) a CROSS-share: the shared rectangle is not an end-rectangle in either the
existing RT or in the new ladder;

(2) an END-T share: the shared rectangle is an end-rectangle in the existing RT
but not in the new ladder;

(3) a SIDE-T share: the shared rectangle is an end-rectangle in the new ladder but
not in the existing RT;

(4) an L-share: the shared rectangle is an end-rectangle in both the existing RT
and the new ladder.

Figure 6 illustrates each of the above operations, the new ladder being shown as dotted
in each case.

A segrnent of an RT is a straight path of maximal length =>2. An open segment is a
segment containing no vertices of degree 4. When a new ladder is added to an existing
RT by one of the above four sharing operations, either one vertex of degree 4 or two
adjacent vertices of degree 4 are created on one or two segments of the existing RT.

THEOREM 6. Let T be an RT. T is a minimum-distance RT if and only if T can be
constructed in such a way that when new ladders are added, vertices of degree 4 are
created only on open segments of the existing RT.

Proof. The proof follows immediately from Theorem 5. [q

By definition, a rectangle has no segments. An extended ladder is a ladder
containing more than one rectangle. An extended ladder has two open segments. The
L-share operation leaves the number of open segments unchanged. The END-T share
and SIDE-T share operations reduce the number of open segments by one, while the
CROSS-share operation reduces the number of open segments by two. As such, there
are never more than two open segments in any RT.
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CROSS-share

:.._:...,_. END-T-shore

SIDE-T-share

FIG. 6

L-shore

The above result and Theorem 6 allow us to completely enumerate all classes of
minimum-distance RT’s. Figure 7 presents a generation graph of the classes of mini-
mum-distance RT’s. The extended ladder is the root. Each directed arc of the diagram is
labeled with the number of the share operation producing the new class of minimum-

extended

cross < T L

split-cross LT stair

2T T-stair

2T-stair
FIG. 7
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2T

split-cross

T-stoir R
2T-stoir

stair

FIG. 8

distance RTs--where operation 1 is the CROSS-share, 2 is the END-T-share, 3 is the
SIDE-T-share, and 4 is the L-share. A star indicates one or more applications ot the
operator. Each class of RTs with no exiting arc contains no open segment upon which to
build. Figure 8 presents an illustration of each class of minimum-distance RT intro-
duced in Figure 7.

COROLLARY 6. A graph G is a minimum-distance RTifand only ifG is a memberof
one o] the following classes ol graphs:

1. rectangle
2. extended ladder
3. L
4. T
5. LT
6.2T
7. cross
8. split-cross
9. stair

10. T-stair
11. 2 T-stair
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6. The recognition problem for minimum-distance RT’s. The usefulness of
Algorithm RT would be greatly enhanced if it could be coupled with a polynomial time
algorithm for deciding whether an arbitrary set of points in the plane generates a
minimum-distance RT.

Although we have not been able to produce a polynomial algorithm for recognizing
an arbitrary minimum-distance RT, it is easy to construct a linear algorithm for
recognizing rectangles, extended ladders, L’s, T’s, LT’s, crosses, and split-crosses.
These graphs all contain a determinate number of vertices of degree 4.

The recognition algorithm requires (expects) one or two columns of points (a
rectangle or extended ladder), followed by one or two rows of several points, none of
which lie between the prior two columns (an L or T), followed by one or two columns of
points which are aligned with earlier points (a T, LT, cross, or split-cross). The
algorithm is applied in each of the four rectilinear directions, accepting the set if
succeeding in any direction. The number of steps is linearly related to the number of
lines in G(A) which is linearly related to the number of points in A. This recognition
algorithm is formally described elsewhere and other more general algorithms are under
study [7].

Once a minimum-distance RT has been recognized it is a simple matter to
determine whether or not it is separable. A traversal of the edges on the exterior face of
the graph is sufficient.

7. Summary. In this paper we have introduced the class of rectangle trees and two
special subclasses: separable and minimum-distance RTs. We have shown

(i) that a linear algorithm exists for finding an RT-optimal RST in a separable
RT;

(ii) that a linear algorithrn exists which determines optimal RSTs for sets of points
in the plane generating minimum-distance, separable RTs;

(iii) that the class of minimum-distance RTs can be characterized completely by
eleven subclasses of minimum-distance RTs;

(iv) that a linear algorithm exists for determining whether an arbitrary set of points
in the plane generates a ladder, cross, T, L, LT, or split-cross.

A natural application for these results is in the design of wiring or printed circuit
layouts interconnecting a subset of terminals embedded in the plane. We extend the set
of allowable terminal patterns to include separable, minimum-distance RTs. These

FIG. 9
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results appear extendible to RTs in which neighboring, parallel arms are separated by
distances sufficient to guarantee that the space between them should be traversed at
most once. Interesting questions based upon generalizations of our work suggest
themselves. For example, a rather conservative generalization leads to the question"
Can the RT-optimal RST problem be solved in polynomial time for sets of points which
generate two-wide rectangle trees? The basic building block of two-wide rectangle trees
is the ladder containing two rectangles. Figure 9 presents an example of a two-wide
rectangle tree.
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ON THE SEQUENTIAL SEARCH FOR
SPATIALLY-DISTRIBUTED EVENTS*

ARNOLD BARNETTf AND JOHN MAZZARINOt

Abstract. Events arise at two points according to independent Poisson processes; their durations are
independent and identically distributed random variables. An observer can make visits to the two points, and,
on any particular visit to either point, can detect all events then going on there. There is a "dead time"
associated with travel from one point to the other. The problem is: What should the observer’s visiting
strategy be if his goal is to maximize the steady-state fraction of events he observes at least once? We prove a
series of theorems about an optimal search strategy that ultimately provide the basis of an algorithm shown to
converge to that strategy.

Introduction. In a recent paper [1], one of the current authors considered the
following problem"

Events arise at a series of discrete points according to independent Poisson
processes. The durations of different events are independent and identically distributed
random variables, and several events can occur simultaneously at any point. At instants
of time exactly one unit apart, an observer can visit any one of the points; when visiting a
point he detects all events then going on there. Under what strategy should he make his
visits so as to maximize the steady-state fraction of events he observes at least once?

The problem was solved completely when events could arise at only two points and,
more generally, it was shown that there is a cyclic optimal search policy. An "exclusion"
theorem identified some points the observer need never visit, while a "coexistence"
theorem showed that, in some circumstances, a search problem with N points could
properly be decoupled into a series of two-point problems.

The paper just described was motivated by a concern for search efforts for events
that arise randomly in time and space and, after a short period, disappear. Such search
problems differ substantially from those whose targets are stationary. Police patrols
intended to intercept crimes in progress, for example, are successful only if they pass the
scene of the crime while it is still going on. A radar scanner that focuses on an area after
a missile has passed through it will not detect the penetration. On a desolate road, a
state patrol vehicle might have to reach an accident within a certain time of its
occurrence; otherwise lives will be lost.

The model in [1] captured many salient features of such search problems, but was
strikingly unrealistic in one major respect. It was assumed that the observer could move
between any two points between successive instants of search, and thus that physical
distances imposed no constraints on possible search strategies. The idyllic character of
that assumption warrants the paper’s admission that it "is not itself greatly applicable to
practical problems," and leads one to wonder what the optimal search policies would be
if the restrictions on the observer’s mobility were explicitly considered. A simple
investigation into this matter is the subject of this paper.

We concentrate on search models in which events are generated at two different
points. Such models form the simplest discrete approximation to a continuous region
consistent with the concept of spacially-distributed events. There is transit-related
"dead time" (not necessarily the same in both directions) associated with the observer’s
moving from one point to the other. We prove a series of theorems that, taken together,
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provide the basis for an algorithm that is shown to converge rapidly to an optimal
sequential search policy. The hope is that the models considered, though highly
idealized, capture enough of the dynamics and constraints of certain search problems
that their solutions provide useful "rules of thumb" about the proper allocation of
effort.

We end the paper with some numerical examples, and a brief discussion of some
related work by Chelst [2] and of the difficulties that attend attempts to generalize the
results to problems in which events arise at three or more points.

1. A two point search model. Events arise at two points, 1 and 2, according to
independent Poisson processes with parameters A and A2 respectively. The durations of
various events are independent and identically distributed random variables, with
cumulative distribution function F(x). There is no limitation on the number of
simultaneous events at either point. An observer can make periodic visits to the two
points; on any particular visit to either point, he notices all events then going on there.
After a visit to point i, the observer has two options for his next visit" (1) return to point
one unit of time later or (2) go to the other point/’, and arrive there after a trip time Cij.
(/" 3- i; we assume Cij > 1.)

We make the tacit assumption that, on detecting an event, the observer loses no
search time dealing with it. This assumption is sometimes realistic; when an accident is
observed from a traffic helicopter, for example, it seems more likely that the pilot will
radio for emergency help than land himself.

The problem is: What should the observer’s visiting strategy be if, over an
extremely long period, his objective is to maximize the expected number of new
sightings per unit time? (This goal is equivalent to maximizing the steady-state fraction
of events observed at least once.) We will proceed below to prove some theorems about
characteristics of the optimal search policy; taken together, they lead directly to the
precise optimal policy for given A 1, A2 and F(. ). We begin with some useful general
observations.

Let aw be the expected number of events seen for the first time when the observer
returns to point 1 after an absence of exactly w time units. As is shown in 1 ], aw is given
by:

aw Al[1-F(t)]dt.

F(t), a probability distribution, is a nondecreasing function of that grows from 0 to 1;
from this fact is follows that (i) aw is a nondecreasing function of w and (ii) dw =-
aw/l aw is a nonincreasing function of w. The quantity bw, analogous to aw for point 2,
follows bw Baw, where B h2/hl. We will assume for convenience that hi> h2,
although the special case hi A2 presents no added problems. We also assume that
lim w-,o aw is finite; this is equivalent to assuming that the event durations have a finite
mean.

What we want to do is specify the pattern of visits to 1 and 2 that yields the highest
expected detection rate in terms of the relevant aw’S and bw’s.

2. On restricting search to the busier point. Not surprisingly, the search policy
under which the observer remains at (slower) point 2 is inherently nonoptimal. Under
this policy, the observer visits 2 at intervals of one time unit, and thus witnesses new
events at an average rate b per unit time. This quantity is strictly lower than the
observation rate a that can be achieved if the observer simply stays at point 1; hence an
optimal search policy must allocate some portion of the visits to the busier point.
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Theorem 1 proved below identifies the circumstances in which all the search effort
should be devoted to 1.

THEOREM 1. Let b limw-,bw, c c12 + c21, So b+ ac cal, hk
bl + dc/k a 1, and A min {k/hk <- 0} where k is a nonnegative integer. The policy of
making observations only at point 1 is optimal if and only if So + H(A)< O, where
H(A) ,,_1 hi for A > 0 and H(A) 0 ifA O.

If the observer is currently at 1, he should not make any round-trips to 2 unless,
over the duration of the excursion, he can make new sightings at a rate higher than a 1,

the rate he could achieve by "staying put." Let c C1 + C1 be the round-trip travel
time for a 1-2-1 journey. Consider a trip under which the observer goes from 1 to 2,
stays there for k time units (k is assumed a nonnegative integer), and then returns to 1.
He witnesses bo or fewer new events on arriving at 2, then bl more events in each of his
further visits there, then ac+ events on his return to 1. Hence his overall sighting rate is
bounded from above by (bo + kbl + a+g)/(c + k); this falls below al unless S, defined by
$ =b+kbl+a+-(c+k)al, exceeds zero. Thus if S <0 for all k, the observer
should never leave 1.

Note that So (which corresponds to a trip with "no layover" at 2 follows
$o b+a-acl while for k _->0, there is the recursive relationship: Sg+l Sg + h,,
where hk =bl+dc+k-al (again, dw-aw+l-aw). Let A=min(klhk<--O). Note that
because dw is nonincreasing in w, hk is nonincreasing in k.

k-1
Since for k > 0 Sk So /=o hi, it is clear that if So < 0 and A-l= hj < IS01, then

Sk < 0 for all k. This is the most general condition under which all Sk’S are negative and,
for this reason, searching at 2 is unwarranted. Is it possible that even if some Sk’S exceed
zero, point 2 should be ignored by the observer? The answer to this question is "no," as
we explain below.

Suppose that Sk > 0 for a particular k, and consider the search policy under which
the observer leaves 1 for 2 every n units, stays at 2 for k units and, on returning to 1,
remains there n-c- k units before his next departure. Straightforward calculations
make clear that this policy yields a detection rate higher than al (i.e. is better than just
staying at 1) if

Sk-(b-bn-c-k)>O.

Since limw_ bw b and Sk > 0, there must exist some n for which Sk > b- bn-c-k,
which implies the nonoptimality of devoting all effort to point 1. This completes the
proof of Theorem 1.

Because hk is nonincreasing in k the following corollary to Theorem 1 arises"
COROLLARY 1. If So <- 0 and ho<- O, the optimal search strategy is to make all

observations at point 1, and this to achieve a sighting rate of a new events per unit time.

3. Some remarks on the optimal strategy. The following remarks about the
optimal search strategy facilitate the task of finding it. Their proofs, which are fairly
straightforward, are omitted.

Remark 1. If the optimal search strategy involves visits to both points, the
observer should only leave one point for the other immediately after an instant of
search.

Remark 2. One can achieve the maximum possible sighting rate under a cyclic
search strategy, in which (i) the time between successive 1 2 trips is unchanging and (ii)
the time the observer spends at 2 is the same on all visits.

For the remainder of this paper, we will use "rate" to mean expected rate and, in all discussion, consider
only average detection rates.
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Remark 2 means there is an optimal strategy characterized by two parameters, n*,
its complete cycle length and k*, the length of each visit to point 2.

Remark 3. Let k be the set of integer visit lengths at 2 for which Sk > O. k is a finite
set, and k*, the length-of-stay under the optimal policy, is contained in it.

Remark 4. n*, the cycle length of the optimal search policy, is bounded from below
by c +2k*.

Remark 4 reflects the nonoptimality of spending more time at 2 than at 1.
Remark 5. n* is finite unless, because of Theorem 1, the observer should never

leave 1.
Remark 3 implies, among other things, that k* is bounded from above by ko, which

is defined as the largest k for which Sk > 0. Theorem 2 below gives a better upper bound
on k*, in the sense that the bound never exceeds ko and often falls considerably below it.
It is the first of three forthcoming theorems that reduce drastically the number of serious
candidates for k* and n*.

4. Reducing the candidates ior optimal policy.
THEOREM 2. k* is bounded from above by the quantity A, where A is the smallest

nonnegative integer for which (bl a 1) + dA/c <= O.
The "A" just mentioned is, of course, the same A as appeared in Theorem 1. To

prove the theorem we must first prove two lemmas"
LEMMA 2A. Let k (n) be the optimal choice ofk given that the cycle length is fixed at

n. Then lim,_. k (n) A.
The expected detection rate E(k, n) under the cyclic search policy with parameters

n and k follows"

kbl + bn-k + ac+k + (n c k)a Sk + (b,-k bo)
E(k,n)= =al+

n

Since E(k, n) can exceed al only if Sk >0, we know that k(n) cannot be greater than ko
defined above. As noted earlier, successive Sk’S are related by the equation" Sk+I-
Sk + hk. Because A is the smallest integer for which hk < 0, SA must be the largest of the
Sk’S.

As n gets very large, it is clear that bn-k bo- 0 for all k _-< ko. Thus beyond some
threshold n, the E(n, k)’s for k-<_ko are sufficiently close to al + Skin that they are
maximized when k -A; this completes Lemma 2A.

LEMMA 2B. I]: n > n’, then k(n) >= k(n’).
For notational ease, we write k (n) k and k (n’) k’ in this proof. If, for a given n,

there are two or more k-values that tie for optimal, we define k(n) as the smallest.
Suppose that n > n’ but k(n’)> k(n). From the definitions of k(n) and k(n’) we

have the two relationships.

(A) b.,-k,+k’b+ac+k,+(n’-c-k’)a>b,,,_k+kb+a/k+(n’-c-k)al

and

(B) b_k+kbl+a+k+(n-c-k)al>-b,_k+k’bl+a+k,+(n-c-k’)al.

Let LA(RA) be the left (right) hand side of (A), and let Ln and Rn be the corresponding
quantities of (B). Since LA-Rn > Ln- RA, it follows that:

(C) b_ b.,- > b_,- b.,-,.

Given the concavity of the function b, inequality (C) is inconsistent with the assumption
that k’> k. Thus we can conclude that k’ -<_ k as claimed.
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Taken together, Lemmas 2A and 2B immediately imply that k(n*) <-A, which was
to be proved.

THEOREM 3. Let E(k, n) be the detection rate under the cyclic search policy with
parameters k and n. If E(k,n)>E(k,n + 1), then E(k,n)>E(k,n +q) where q is any
positive integer.

As noted earlier, E(k, x) follows:

(D) E(k,x)=kb+a/k +(x-c-k)a+bx-k.
X

That E(k, n) exceeds E(k, n + 1) readily implies the relationship

(E) al +Bd,-k <E(k, n)

where B A2/A as before.
From Equation (D), we see that E(k, n) will exceed E(k, n + q) if and only if:

q--1

(F) qa +B . d+,-k <qE(k, n).
=0

Since d+n+k <--dn+k for >0, the left-hand side of (F) is bounded from above by
q(al+Bd,+k). Therefore, multiplying (E) by q implies that condition (F) must be
satisfied if E(k, n) > E(k, n + 1), which proves Theorem 3.

Theorem 3 is useful in that it suggests an orderly procedure for finding an optimal
policy. For a given "serious" value of k, one first calculates E(k, n) for n c + 2k. One
then proceeds iteratively both to increase n by I and calculate E(k, n), until one reaches
% the first cycle length whose detection rate is not the maximum achieved so far. (i.e.
E(k, "- 1) > E(k, ’)). Because of Remark 5, we can be confident that - is finite; from
Theorem 3, we know that E(k, -- 1) > E(k, z + q) for all positive integers q. Thus we
can treat the cyclic policy with parameters (k, -1) as the "candidate" for optimal
policy tied to the given value of k. We could obtain the "candidates" for best policy for
each k that satisfies both Remark 3 and Theorem 2; the one with the highest detection
rate must be an optimal policy.

The approach just described figures prominently in an algorithm for finding n* and
k* to be presented in the next section. One last theorem, proved below, allows further
simplification of the search for an optimal strategy. We have already shown that in
searching for k*, one can exclude all k-values outside a certain range. Theorem 4
implies that, even within that range, it is often unnecessary to consider all values of k.

THEOREM 4. Let v(k) be the highest attainable sighting rate under the constraints
that (i) all visits to 2 must be exactly k units long and (ii) each cycle length must be at least
c + 2k. fly(k) > v(k + 1) for a particular k, then v(k) > v(k + q) ]:or any positive integerq.

To prove Theorem 4 it is sufficient to show, for any k and any q > 1, that if
v(k +q)> v(k), then v(k + 1) > v(k). For notational and conceptual ease we will
establish this result for the special case k 0 and q 2; the reasoning for the general
case is wholly analogous.

Let Wo be the maximum cycle length for which E(0, w0)= v(0). (We say "maxi-
mum" to cover the case where v(0) is achieved under consecutive cycle lengths.) By
definition of v(0), the inequality E(0, w0)> E(0, w0 + 1) prevails; hence Equation (D)
implies that2

v(O) > a + [b(wo + 1)- b (Wo)]

2 In this proof, we write bx b(x) and dx d(x) for clarity.



SEQUENTIAL SEARCH FOR SPATIALLY-DISTRIBUTED EVENTS 87

or

(G) v(0) > al + Bd(wo).

If Wo> c, we have the further relationship E(0, Wo)_-> E(0, Wo- 1), which leads to:

(H) v(O)<=al+d(wo-1) if Wo>C.

It turns out that in proving Theorem 4, one must deal separately with the cases
Wo c (i.e. when the observer shuttles between 1 and 2 with no pauses at either point)
and Wo > c. We consider below the case Wo > c; the argument when Wo c is similar but
simpler. The general approach is to show that if v(2) > v(0), one can construct a policy
with k 1 whose detection rate exceeds v(0). Important to the construction is the
lemma below.

LEMMA 4A. Let Wo =max (nlE(O, n)= v(0)). If v(2)> v(0), then E(2, Wo+2)>
v(0).

We prove Lemma 4A for Wo> c; it is also true for Wo c. The proof uses indirect
reasoning.

Simple manipulations with Equation (D) yield the relationship:

(J)
x

E(2, x+l)= +iE(2, x)+
x

1
x + 1

(a + Bd(x 2)).

Equation (J) reminds us that E(2, x + 1) is actually a weighted average of E(2, x) and
a +Bd(x- 2), the latter quantity being the incremental detection rate when the cycle
length is raised from x to x + 1. Now suppose E(2, Wo + 2) <= v(0) although v(2) > v(0).
Taken together, (G) and (J) imply that if E(2, Wo + 2) < v(0), then E(2, Wo + 3) < v(0)
and, because of the concavity of d(), it follows inductively that E(2, y)< v(0) for all
y => Wo+2. Let w2= max (n[E(2, n)= v(2)). Since v(2)> v(0) by hypothesis, we have
just shown that if E(2, Wo + 2) < v(0), it must be true that w2 < Wo + 2.

If w2 < Wo + 2, one can use (D) to obtain:

(K) E(2, Wo + 2) w2
v (2) +---------

Wo+2 Wo+2 i=o
(a+Bd(j-2

Since v(2)> v(0) and al +Bd(x)>= v(O) for all x < Wo (Equation (H) and concavity), it
follows from (K) that E(2, Wo+2)>v(0), which contradicts the assertion that this
inequality does not hold. The lemma is proved.

With Lemma 4A, the proof can be brought to a rapid conclusion. From (D) and the
definition of Wo, one can easily show that:

(L) E(2, Wo + 2) Wo 1

Wo+----v(0)+ Wo+ [2b +d(c)+d(c+l)].

If v(2)> v(0), then E(2, Wo+ 2)> v(0) from Lemma 4A; thus (L) implies that [2b +
d(c)+d(c + 1)]/2 > v(0) or, by concavity, that

(M) b+d(c)>v(O).
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Equation (D) also allows one to write

(N) E(1, Wo + 1) w 1

Wo+ 1
v(0) +

Wo + 1
(bx + d(c)).

Combining (M) and (N) shows that E(1, w0 + 1) > v(0); since Wo> c, that is enough to

show that if v(2)> v(0), then v(1)_->E(1, Wo+ 1)> v(0), which completes the proof.3

Theorem 4 means that once v(k) starts to decline as k is increased it can never
return to its former level; thus k* has already been passed. With this and earlier results,
we are ready to discuss a recursive procedure for obtaining k* and n*.

5. An algorithm tor the optimal strategy. Directly or indirectly, the algorithm
below uses all four theorems and all five remarks already discussed. We assume that, at
the outset, the user of the algorithm has calculated the needed aw’S from aw
Al’[1-F(t)]dt, the bw’s from bw =Baw, the quantity A from A=
min (klbl a + dk/c < 0), and Sk boo + kbl + ac/k (C + k)a for all k from 0 to A. The
goal is to obtain the values of k* and n*, as well as R* =E(k*, n*), the optimal
detection rate.

THE ALGORITHM.
(1) If Sa < 0, then set k* 0, n* , and R* a 1. (i.e. the observer should never

visit 2.)
(2) If SA > 0, then find a, the smallest nonnegative integer for which Sk > 0.
(3) Go to (4), setting "a" as the current value of k.
(4) Calculate E(k, n) from (D) for n =c +2k. Do the same for n =c +2k + 1.

Continue to do so as n is increased in steps of 1 until reaching - the smallest
n>-c+2k+l for which E(k,z)<E(k,z-1). Set Wk=7"--I and v(k)=
E(k, Wk). Record Wk and v(k).

(5) If k a in (4), set k a + 1 .and return to (4).
(6) If k > a in (4), then compare v(k) and v(k 1).
(7) If v(k) > v(k 1) then"

(i) if k A, set k* A, n* WA, and R* v(A).
(ii) if k < A, increase the k-value by 1 and return to (4).

(8) If v(k)<-_v(k-1) then set k*=k-l,n*-wk-x, andR*=v(k-1).
Reasoning in the proofs of Theorem 1 and Remark 5 makes clear that Wk is finite

for all k that satisfy a _-< k _-< A. Thus there is no danger that the algorithm will fail to
converge to k* and n* in a finite number of calculations.

Now we can turn to some numerical examples. But before doing so, we should
make explicit two general properties of the optimal search policy.

(i) The policy uses C12 and C21 only through their sum c C12 + C21.
Thus the round-trip time from 1 to 1 via 2 is the only needed travel-time

parameter.
(ii) The policy depends on h and h2 only through their ratio.

To see this, note that if both h and h 2 were changed by the factor Q, all aw’S and
bw’s would change by the same factor. Consequently, the E(k, n)’s would all change by
factor Q so k* and n* would remain the same.

6. Numerical examples. Since the optimal search strategy depends only on the
,2// ratio we can, without loss of generality, set h 1. We therefore need only the
values of B and c and the distribution of x, the duration of any given event.

If Wo c, then (1, w0 + 1) is not among the candidates for best policy since it is biased towards point 2.
As noted before, a slightly different proof applies for Wo c.
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Example 1. B 28, c 4

1 w.p..1
2 w.p..1
4 w.p..6

X--"
6 w.p..1
7 w.p..05
8 w.p..05

Direct calculations with the x-distribution reveal that"

al 1 a5 3.7

a2 1.9 a6 3.9
aw 4.05 for all w > 8.

a3=2.7 a7=4.0

a4=3.5 a8 =4.05

(w.p. with probability)

The bw’s follow bw .28aw; A 0, and S0 b+ a4--4al .63. Use of the algorithm
leads rapidly to the conclusion that k*=0, n* =4, and R*= 1.12. Under the best
search strategy,- of the events at both points are sighted at least once.

Since c 4, the optimal strategy has the observer shuttling continuously between
the two points. One might have suspected that, since 78% of the events arise at 1, the
strategy would have concentrated search effort there. This does not happen because
80% of the events last at least 4 units; hence the losses at 1 associated with quick visits to
2 are minimal.

Example 2. B .985, c 3,

1 w.p..5
x=

11 w.p..5.

In this problem, aw=.5(l+w) for w<-ll, and aw=6 for all w>ll. bw=.985aw;
A 8. The algorithm implies that k* 8 and n* 19. (i.e. the observer should spend 8
units at 1, go to 2, spend 8 units there, return to 1, then repeat the cycle.) R* 1.46, so
about 73% of the events at each point are sighted.

With events arising at almost the same rate at 1 and 2, it is unsurprising that the
optimal strategy is symmetric. Note that, under the strategy, the observer returns to
each point exactly 11 units since his last departure; he therefore sees on his return all
events with durations greater than 1 that occurred during his absence. The long pauses
(8 units) at each point arise because, with half the events only one unit long, the losses
while the observer is "in transit" work against frequent excursions.

Example 3. B .6, c 4, x 1.5 w.p. 1.
In this case

w for w<1.5,
aw=

1.5 for w_->1.5.

A 0 and S0 -1.6 < 0. Hence all search effort should be devoted to point 1; under this
policy, all events at 1 but none at 2 will be observed, which means that - of all events will
be sighted.

Example 2 reminds us that sometimes k*> 0, which means that the observer’s
initial observations at 2 should be followed by further ones at spacings of one time unit.
Since the sighting rate on the additional observations is only bl, their presence in the
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optimal strategy might seem perplexing; this is particularly so since, were the observer
to return from 2 to 1 immediately, he could be detecting new events at the higher
rate a 1.

This apparent paradox is resolved if we realize that, even if the observer spends k*
units at 2, he will not miss all the events that arise at 1 during that period; some of them
will continue until his return to 1 and thus eventually be noticed. By contrast, if visits to
2 are infrequent, it is possible that the bulk of events at 2 over the k-unit period will
escape detection unless the observer stays there. Thus remaining at 2 is sometimes
justified because foregoing some of the events at 1 over a period is preferable to losing a
larger fraction of the concurrent events at 2.

7. The Chelst ialer. The problem discussed here bears certain similarities to one
recently considered by Chelst [2]. He assumed that "targets" arrive in Poisson fashion
at two different points4 at equal rates, and that they depart after an exponentially
distributed "visiting time". An observer who can search continuously wishes to observe
these targets at the highest possible rate. The observer can not usually find targets
immediately; even if he restricts his effort to one point, the time between a target’s
arrival there and its detectionmassuming that it does not leave before being sightedm
follows an exponential distribution. There is a time T required for travel from either
point to the other.

In this symmetric problem (i.e. A A2), the critical parameter is x, the time
between the observer’s arrival at either point and his next departure for the other.
Chelst obtains a transcendental equation from which x can be obtained, through
successive approximation methods.

Because of differences in underlying models, it would be inappropriate directly to
compare the current results with those of Chelst. But we might observe that, unlike
Chelst, we imposed no restrictions at all on the A2/A ratio or on the form of the
event-duration distribution. Perhaps that is because our exploitation of the "diminish-
ing returns" concavity property of the objective function made unnecessary any
assumptions of symmetry or memorylessness.

8. Concluding remarks. As noted earlier, the two-point problem discussed here
could serve as a first approximation to an actual search problem in a continuous region.
The region could be broken up into two distinct parts, the C0"s perhaps tied to the times
of travel between their centers of gravity, etc. Use of the algorithm might well give some
insight into the fraction of time the observer should spend in each region, as well as the
frequency with which he should switch regions.

Extending the analysis to the case where events arise at N discrete points, N > 2,
would allow a more detailed approximation of continuous search problems.
Unfortunately, such an extension is anything but straightforward. The results obtained
here cannot be generalized directly, and all the results in [1] about N-point optimal
search policies fail to hold up when Cij’s are unequal to 1. In an N-point problem, for
example, it is conceivable that the observer should never visit the busiest point, because
it is so far from the other points that travel times to and from it are prohibitively large.

Under the circumstances, those considering the N-point problem face a formid-
able task. While one can imagine progress with heuristic approaches, the outlook with
analytical methods does not seem particularly bright. Future work, of course, could
make such pessimism seem very foolish.

4 While he uses the word "region" rather than "point", he effectively approximates each region by a
point. The time to travel between regions, for example, is assigned a constant value.
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CANDIDATE KEYS AND ANTICHAINS*

J. DEMETROVICS"

Abstract. It is shown that a matrix can be constructed in which a row is determined when specified in any
collection of column sets with the property that B c C, A c B implies Ac C. The problem of determining the
minimum number of rows needed for a collection C on n rows in worst case is raised. Some bounds are given.

In the relational data model proposed by Codd [1]-[3] data are represented by
matrices with rows corresponding to records and columns corresponding to attributes.
One can identify a row by examining the values of its elements in certain sets of
columns, namely those for which no two rows are identical. We call such sets of columns
keys, and minimal keys are called candidate keys.

The candidate keys, being minimal column sets that are keys, form an antichain. If
there are n columns there can be at most (n_) candidate keys by a well-known theorem
of Sperner. In this paper we address the question" given an antichain (collection of
subsets of n elements such that no member contains another) is there always a matrix
having it as its set of candiate keys? Some related questions are discussed.

THEOREM. IrA is an antichain on n elements which are column indices, there exists a
matrix ]’or which the candidate keys consist of the sets ofcolumns that are members ofA.

Proof. Let the antichain B consist of the maximal sets that do not contain members
of A. Let the members of B be B, , B. We define 2a rows as follows: For 1 _-< _<-- a
let rows 2i- 1 and 2i have zero entries in the columns of Bi and entries 2i- 1 and 2i
respectively in all other columns. Obviously any set of columns not containing a
member of A is not a key, as it leaves an ambiguity between the two rows corresponding
to each Bi containing it. On the other hand, the number of any row will be displayed for
at least one element of each Ai.

Two further questions are suggested here:
1. What is the largest number r(n) of rows needed for some A having n columns?
2. What is the smallest alphabet a (n) that the matrix elements may be restricted to

for a matrix on n columns to work here?
These two problems are in general open. However, we make the following

remarks.
If one member of the antichain is a one element set, all the rows must differ in that

column, so that a(n)>-r(n- 1). The construction above gives r(n)<-2(n2). One can
easily obtain (2(,72))1/2 as a lower bound for r(n). The upper bound here can be
improved somewhat but the gap between these is still wide.
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EFFICIENT ALGORITHMIC SOLUTIONS TO EXPONENTIAL
TANDEM QUEUES WITH BLOCKING*

GUY LATOUCHE" AND MARCEL F. NEUTSt

Abstract. Stable queuing systems consisting of two groups of servers, having exponential service times,
placed in tandem and separated by a finite buffer, are shown to have a steady-state probability vector of
matrix-geometric form. The queue is stable as long as the Poisson arrival rate does not exceed a critical value,
which depends in a complicated manner on the service rates, the numbers of servers in each group, the size of
the intermediate buffer and the unblocking rule followed when system becomes blocked. The critical input
rate is determined in a unified manner.

For stable queues, it is shown how the stationary probability vector and other important features of the
queue may be computed. The essential step in the algorithm is the evaluation of the unique positive solution of
a quadratic matrix equation.

1. Introduction. The queuing model consisting of two units in series with a finite
intermediate waiting room has an extensive literature, dating back to 1956 with the
work of G. C. Hunt [9]. The study of blocking in two or more units in series without
intermediate waiting spaces was initiated by B. Avi-Itzhak and M. Yadin [2]. Further
contributions to this model are due to N. U. Prabhu [18] and A. B. Clarke [3].

Models in which there is a finite waiting room between the two units and the service
times in the first unit have a general distribution were discussed by T. Suzuki [21 ], M. F.
Neuts 11 ], [12] and K. Hildebrand [7], basically using transform methods which are not
readily computationally implemented. The thesis by I. Hannibalsson [5] utilizes a buffer
model to represent a queue with delayed feedback. The second unit then represents a
holding stage for those customers who will rejoin the queue in front of unit I. In this
paper and also in that by B. Wong, W. Giffin and R. L. Disney [23], the analysis of finite
capacity buffer models is carried out by fairly involved spectral decompositions of the
transition probability matrices. Related models, with finite total numbers of customers
were treated in the papers by K. L. Arya 1] and O. P. Sharma [20]. These papers also do
not have an algorithmic orientation.

In recent years, there has been a growing interest in the development of compu-
tational methods to evaluate the stationary probability vector and related quantities for
tandem queues with blocking. This interest came primarily from the recognition that
these models are useful in the study of the behavior of subsystems of computers. In
addition to detailed descriptions of several computer-related applications, A. G.
Konheim and M. Reiser [10] propose an algorithm for the solution of a system
consisting of two single-server units with exponential service time distributions. They
also allow feedback of some departures from the second server to the queue in front of
the first unit. In [19], these same authors further considered more elaborate forms of
feedback and discussed additional applications in computer modeling. Iterative
numerical procedures of the Gauss-Seidel type, such as proposed by F. S. Hillier and
R. W. Boling [8], may also be implemented for these models.
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In addition, bounds on the blocking probability were investigated more recently by
F. G. Foster and H. G. Perros [4]. A particularly detailed study of diffusion approxima-
tions in tandem queues is due to G. Newell [16], [17]. The recent paper by J. M.
Harrison [6] is also relevant in this context.

It is the purpose of this paper to show that a large number of buffer models with
exponential servers may be numerically solved in a unified way. The key result identifies
their stationary probability vector in a (modified) matrix-geometric form. Appro-
priately partitioning that vector x as (Xo, Xl, .), we show that

Xi Xr-lR i-r+1 for -> r- 1,

where r is the number of servers in the first unit. The matrix R is the unique positive
solution to a matrix quadratic equation. The spectral radius of R is less than one. The r
vectors Xo,’’’, xr-1, are also uniquely determined.

The approach, which is used here, is already implicit in the thesis of V. Wallace
[22], but the proofs are based on further refinements and generalizations given in Neuts
[13], [14], [15].

Description of the model. The system consists of units I and II and a finite
intermediate buffer. Unit I consists of r parallel exponential servers, processing
customers at the same rate a. In unit II, c parallel exponential servers process customers
at the common rate/. Arrivals to unit I occur according to a homogeneous Poisson
process of rate A. (See Fig. 1.)

servers c servers

FIG.

The servers in unit II can be active as long as there are customers, who have
completed a pass through unit I and are requesting their service. There are M- c 1
0 places in the buffer, so that at mostM 1 customers can be either waiting in the buffer
or being processed by one of the servers in unit II. If the number of customers who have
completed a pass through unit I but have not cleared unit II reaches M, one of the
servers in unit I becomes blocked.

Depending on the application, the blocking of one or more servers in unit I may
affect the ability of the unblocked servers either to accept a customer for service or to
complete a service in course. We shall assume that when the number of blocked servers
in unit I reaches r*, 1 -< r*-< r, all unblocked servers in unit I also cease service. This
situation will be referred to as .full blocking.
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In a partially blocked system, when a service completion in unit II occurs, one of
the blocked servers of unit I releases his customer into the buffer. This server may now
again initiate a service.

Next we specify the unblocking rule. In a fully blocked system there are M+ r*- 1
customers who have completed a pass through unit I and are requesting service in unit
II. We define an integer k*, 0 _-< k* _-<M+ r* 2. When the number of customers, who
have not been cleared by unit II, drops to k*, all interrupted services in the servers in
unit I resume and any free servers can again initiate services.

We shall allow a feedback loop of departures from unit II back to the queue in front
of unit I. With probability 0’ 1 0, 0 _-< 0 < 1, a customer who completes a service in
unit II leaves the system. Feedback occurs with probability 0.

In order to concentrate only on parameters which have substantial significance, we
shall not discuss further extensions in which customers may leave the system from unit I
or may enter feedback loops from the buffer to unit I or from unit II to the buffer. The
relevant matrices which govern such cases can be constructed easily; the theorems and
algorithms discussed below carry over routinely.

We also make the standard independence assumptions. All service times and
interarrival times are mutually independent random variables. From a numerical
viewpoint, it is routine to consider extensions such as the case where the rate of the
Poisson arrival process depends on the number of blocked servers in unit I, but in order
not to add to the number of parameters of the model we shall not pursue this topic
further.

Notational convention. The material in this paper involves a large number of
Jacobi matrices, whose detailed definitions require display. A matrix such as

0

1
2

rn-2
rn-1

rn

will be displayed as

bo Co 0 0

a b Cl 0

0 a2 b2 c2

"a 2 bin-2 C 2 0

0 am--1 b,-i

0 0 a, b,

bo bl b2 b.,-2 bm-1 bm
al a2 a3 am-1 am

2. The structure of the Markov process. Under the assumption of exponential
service times for the servers in units I and II, the queuing model may be described as a
continuous-parameter Markov chain on the state space {(i, j), >- 0, 0 >-/" <- N}, where N
is a finite nonnegative integer. The index will denote the number of customers queued
up or in service in unit I. Such customers will be called I-customers. Upon completion of
a pass through unit I, a customer becomes a II-customer. We note that because of the
possibility of feedback, a customer may be termed a I- or a II-customer several times in
succession before leaving the system. The role played by the index j is more complicated
to describe and will be spelled out for the specific cases discussed below.
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In all cases, however, the infinitesimal generator P of the Markov chain will have
the structure of a block-tridiagonal matrix of the form

(1)
II A02 A12 A,-3.2 At-2,2 A2 A2 ...ll

P= I1 Aol All A21 At-2,1 Ar-x, Ax Ax 1[,A10 A20 A3o Ar-l,O Ao Ao Ao
where all entries are square matrices of order N + 1. The rows in the block-partitioned
matrix correspond to the sets of states {(i, 0), (i, 1), , (i, N)} for i_> 0.

We shall now give the detailed definitions of these blocks for various models of
increasing complexity.

Model A. Unit I blocks as soon as there are M II-customers in the system. All c
servers in Unit II are busy; there are M-c 1 customers in the waiting room and one
server in unit I has completed service of a customer who cannot enter the waiting room.
Unblocking occurs as soon as a departure from unit II occurs. In terms of our general
description, Model A corresponds to r* 1, k* M- 1.

In this case N M. The matrices A0, A and A2 are given by

A0 0 0 0 0 0

0 0 0 0

-A-ra -A-ra-fl
O’ 20’

0 0

-A ra (c 1)fl X rt cfl
cOO’ cOO’

0

X rot c
cBO’

-X -cB

A2 A A A A A A

0 20 cO cO cBO
and for 1 -<_ <= r- 1,

Aio 0 0 0 0 0

0 0 0 0

For 0 _-< _-< r- 1, the matrices Ai2-" A2, and the matrices Aix are given by

[[ 0 0 0 0

Ail-’- ]] * * * * * * [[.0’ 200’ cOO’ cO’ cOO’
The asterisks correspond to the negative diagonal entries, which are such that the row
sums of the matrix P are zero.

Model B. This model is as the preceding one, except that full blocking occurs only
when r*, 1 <-r*_-< r, servers in unit I are blocked. The index ] now ranges from 0 to
M+ r*-1 and denotes the number of II-customers in the system. Unblocking occurs
again upon a subsequent departure from unit II, which corresponds to the case
k*=M+r*-2.
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The blocks in the partitioned matrix P are now of orderM+ r*. They are obtained
by augmenting the blocks in Model A in a systematic manner. Specifically

ra (r-1)a (r-r*+2)a (r-r*+l)a
0 0 0 0

0 0 0

M M+r*-I
0 0 0 0 0

* * * *

cl3O’ cO’ cO’

M
0 0 0

A k k

cBO cBO cBO

0

A

cBO 0[
where the asterisks stand respectively for the entries -A c/3 (r 1)t, , -A c/3
(r- r* + 1)a, -A -cfl, chosen so that the row sums of P are zero.

The matrices Aio are given by

ia min(r-l,i)c min(r-2, i)a min(r-r*+l,i)a
Aio 0 0 0 0

0 0 0

M M+r*-I
for l <--i<--r-1.

For 0 _-< <_- r- 1, the matrices Ai2 A2 and the matrices AI are given by

0 0 0

* : * * IIcO’ cO’ cBO’
The asterisks correspond to the negative diagonal entries, which are such that the

row sums in the matrix P are zero.

Model C. In this model, we add further complexity to Model B by assuming that
when full blocking occurs, unit I does not become unblocked until the number of
II-customers drops to k*. In most cases of interest, we will have c _-< k*_<-M+ r*-2,
and in order to limit the number of variants, we shall assume that this is the case. The
case k*=M+ r*-2 corresponds to Model B, so we only need to discuss the cases
where c -< k* -<M+ r*- 3.

We now consider the indices ]:

O, 1,... ,M-1, M,... ,M+r*-l,M+r*-2, M+r*-3,’.., k*+ 1.

The index values with a bar correspond to the situations where the unit I is blocked,
although fewer than M+ r*-1 II-customers are in the system. The blocks in the
partitioned matrix P are now matrices of order 2M + 2r* k*- 2.

The matrices A0 and A0, 1_-< i_-<r-1, for this model are obtained by adding
M + r*-k*-2 rows and columns to the corresponding matrices for Model B. These
rows and columns are identically zero.
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The matrices A and Ail, 0 _-< _-< r 1, are obtained by addingM+ r* k* 2 rows
and columns to the corresponding matrices for Model B, and changing the row with
index M+ r*- 1. The diagonal elements to be added are all equal to -h -cfl. To the
right of these diagonal elements we add an entry cO’, except for the last row, where the
entry cO’ is placed in the column labeled k*. In the row with indexM+ r* 1 the entry
cO’ should appear immediately to the right, rather than to the left of the diagonal entry.
All other added elements are zero.

The matrices A2 and AlE, 0 -< _--< r-- 1, are similarly modified, with entries h and
cO now playing the role of the quantities -A -c/3 and cO’.

We see that in the present model, the matrices are no longer Jacobi matrices, but
remain highly structured sparse matrices. The theoretical results in this paper do not
depend on the detailed structure of the blocks in the partitioned matrix P, but
particularly when the order of these blocks becomes large, their sparsity may be
exploited to economize on the storage and processing time requirements of the
algorithm.

3. Quasi-birth-and-death process. Consider an irreducible continuous parameter
Markov chain with state space {(i, j); _-> 0, 0 _->/" _-< N} and infinitesimal generator P of
the form (1).

Let us denote by x the vector of steady-state probabilities, associated to P, xP
0, xe 1, and define the conservative stable matrix A byA A0 +A +A2. We assume
that A is irreducible and denote by xr its vector of steady-state probabilities, i.e.,
xtA 0, xte 1. Each component of xt is strictly positive. In the tandem queue models
considered here, A will obviously be irreducible.

We partition x as x (Xo, xl, .), where each vector xi has N + 1 components. We
shall examine below the existence of a solution of the form xi Xr-1Ri-r+l for => r- 1,
where R has a spectral radius strictly less than one (sp(R)< 1). For such a solution to
exist, we must have that

xoAo,1 -I- XlA 1,o O,

IgiAi,2 + Xi+lAi+l,1 d- xi+2Ai+2,0 0 for 0 --< =< r 3,
()

Xr-2Ar-2,2 d- Xr-lAr-l,1 d- xrAo O,

Xr_IRi-r+I(A2WRAI-+-R2Ao--O for i__>r- 1.

We shall show that in the positive recurrent case, a strictly positive probability
vector x of the stated form exists, for which the matrix R is a nonnegative irreducible
matrix of spectral sp (R) less than one and such that A2 +RA +gEAo- O.

We now have to make several technical assumptions that are satisfied for the
models we consider:

(a) A is nonsingular. By Wallace [22, Thm. 3.1], a sufficient condition is that
Ale < 0 which means that from any state (i,/’), _-> r, it is possible to move in one step to a
state (i + 1, ’) or (i- 1, ]’). By Wallace [22, Lemma 3.4], A-1 is a nonpositive matrix
with strictly negative diagonal elements.

(b) The matrix C2--AEA-, has at least one nonzero element in each row. A
sufficient condition is that all diagonal entries of A2 are strictly positive, which means
that arrivals can occur when the system is in any state (i, ]), _-> r.

(c) If we define Co -AoA- and C Co + C2, we assume that C is irreducible.
The equation A2+ RA1 + R2Ao 0, may now be rewritten in the form

(3) R =C2+R2Co.
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LEMMA 1. The matrix C has a maximal eigenvalue equal to one with corresponding
left and right eigenvector, respectively proportional to r and Ale.

Proof. (a) rC -r(A0 +A2)A-1 ’rt(A1 -A)A- o, since rA 0. (b) CAxe
-(Ao+A2)e=(A1-A)e=Ale, since Ae=0.

Define the sequence {R (n), n _-> 0} of matrices as follows:

R(0) 0, R(n + I)=Cz+R(n)2Co forn->O.

THEOREM 1. ff rAoe _<-- rA2e, the equation R C2 +R2C0 has a unique solution R
for which R >-O, sp (R)_<- 1. This solution is limn-.ooR (n) and sp (R)= 1.

ff rAoe > ’rrAEe, the equation R C2 + R2Co has a unique solution R for which
R -> 0, sp (R) < 1. This solution, limn_,ooR (n), is the minimal solution to the equation and
is irreducible.

Proof. This theorem is proved by repeating almost verbatim the argument given in
[14, Thms. 1 and 2, Lemmas 2, 3 and 4].

The irreducibility of the matrix C is needed primarily to derive the equilibrium
condition in the explicit form rA0e > AEe. The requirement that C2 has no vanishing
rows entails the irreducibility of the matrix R. For the models discussed in this paper,
these conditions are verified. It is easily seen that after a small number of iterations, the
matrices R (n) and hence also R are strictly positive.

In [15], the existence of a matrix-geometric invariant vector is established without
irreducibility conditions on the matrices arising in the partition of P. As in [14], the
detailed proofs are given for stochastic matrices, but the translation to the case of
infinitesimal generators is elementary. The algorithmic simplifications due to the
reducibility of the matrix R are discussed in a forthcoming monograph by the second
author. Since in the present case, R is positive, these issues are not germane to the
discussion here.

Let x* (Xo, Xl, Xr-1), and

A02 At-3,1
P* A01 All At-2,1

Alo A20 At-l,0

At-2,2
At-l,1 -b RAo

LEMMA 2. P* is an infinitesimal generator.
Proof. Since P is an infinitesimal generator and RAo >-0, all off-diagonal elements

of P* are nonnegative.
To prove that P*e 1}, one needs only consider the last N + 1 rows of P*, since the

other rows are identical to rows of P. However

Ar-l,0e + (At-l,1 + RAo)e -A2e + RAoe

=-A2e+RAoe+ Y. R(AE+RAI+REAo)e

R (I -R)-I(Ao +A +AE)e 0.

LEMMA 3. Since At-l,1 + RAo is irreducible, P* is irreducible.
Proof. The proof is straightforward.
THEOREM 2. Under the assumption ofLemma 3 and Aoe>A2e, letR >- 0 be the

minimal solution ofR C2 + R2Co. Let x* (x0*, x, *x-1 be a solution of x’P*
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O; then x* has components all of the same sign. Furthermore x* may be normalized by

r--2
* -Ie(4) . x*e+Xr-l(I-R) 1

,-----0

The vector x (x0, xl," ") with

(5)
xi x/* forO<--i<--r-1,

, i--r+l
Xi Xr-lR for r- 1 <= i,

is the unique, strictly positive steady-state probability vectorof the matrix P.
The proof is now obvious.
Remark. Since R is irreducible and sp (R)< 1, (I-R)- exists and is strictly

positive.
COROLLARY 1.

(6) RAoe=A2e.

Proof.

hence

and

R C2 + g2Co -A2A- -REAoA-I;

RAle -A2e-R2Aoe

-R(Ao +A2)e -A2e R2Aoe,
(I R)A2e (I R)RAoe.

Since I-R is nonsingular, formula (6) follows.
Remark. In the tandem queue models considered here, A0e is the vector of rates of

departure from unit I when all servers are busy. A2e is the vector of rates of arrival to the
queue in front of unit I. This corollary shows that R plays a role similar to a traffic
coefficient. In numerical computations, this relation serves usefully as an accuracy
check on the evaluation of R.

4. Explicit forms of the equilibrium condition. For the specific versions A, B and C
of the buffer model, the equilibrium condition xtA0e > xtA2e, may be explicitly written
in terms of the parameters of the model. Although the analytic expressions of these
explicit forms are complicated, they are are of the general form

(7) A < (1 O)ra,

where 0 < < 1, and is a function of all the parameters of the model, except for A
and 0.

The quantity (1 0)rc is the critical input rate of a system consisting only of Unit I
with a feedback probability 0. The entire right hand side of (7) may be interpreted as the
critical input rate A* to the system under consideration. The dependence of A* on the
various parameters of the model provides us with a readily accessible means of
comparing the effects of buffer size and unblocking rules. It must be borne in mind,
however, that queues for which A is close to or equal to A* will exhibit the typical,
frequently undesirable, long-range fluctuations inherent in near-critical queues.



EFFICIENT ALGORITHMIC SOLUTIONS 101

(8)

THEOREM 3. The vector r and the equilibrium condition rAoe> A2e, are given

For Model A,

M-1(9)
h <(1-0)ra Y. ri=(1--0)ra(1--zrM).

i=0

For Model B (2 -< r* <- r),

"n’= [ c1 1 ()i’=o. q--.cC
,=c \C’q-(r’ .C M+r’-li=M+1 (-)’ "l-I--t ( 1--;9)] -1,

1 , /
’o [or 1_-</-<c,

(10)
c[ra

7ri=-.\cfl] =1
1- ro forM+l<-f<-M+r*-l.

[M--1 r*l(h<(1-0)ra zri+ 1- rM+i-1
i=0 i=1

(11)

(1- O)ra 1- ’+.-1
i=lr

For Model C (1 <- r* <- r, c <= k* <=M+ r* 2), we shall give detailed formulas only
]:or the most useful case where c <= k* <=M-1. The equations for the other cases are
entirely similar. We denote by *+1, , M+;-, the components of r corresponding to
the indices ] k* + 1, , M + r* 2. The explicitformulas for the components of vt are
uninspiringly complicated, but their numerical values may readily be computed by solving
the linear equations

rot=-_, /or <-i <-c,

"ffi --’-’Tri_1 for c </ < k*

r
(12) 7ri --’-T/’i--1--7’k*+1, for k* + l <-] <__M,

TI’M+]-I Trk*+l, ]:or 1 =<j=<r*-2,

T/’M+r*-I T/’M+r*-2 T’k*+l "--’. 1- 0-1

=1
TrO,
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where
h+r*-I

7/’M+r*-I T’M+r*-2 "/’/’k*+l.

These are clearly equivalent to

rarj-1 rain (, c)flzrj for 1 < j < k*

raTr_1= C[37r/+cffk.+l for k* + l <=j <-M,

(15) (r-j)aTru+_l =c/3ru++c/’*+l for l _<- /" _<- r* 2,

(r- r* + 1)a’trM+r*-2 CTTM+r*-I,

TrM+r*-I 7TM+r*-2 T’k*+l.
Equating the expression recursively computed for ZrM+*-i with *+1, we obtain the
stated formula relatinfi r.+l and 7ro.

The inequality vrAoe >Ae is equivalent to

M

A < , (ravrj_l -]flOTri) + , (raTri_l cO’i)
/=1 /=c+l

r*-I

+ [(r --])rM+i-1 C07rM+j]-- cflO(M + r* k* 2),

and by using (14), we obtain formula (13).
Remarks. 1. It is preferable not to write the geometric sums in (8) and (10) in closed

forms, so that we do not have to write separate expressions for the case where ra c/.
2. For r c 1, and A chosen, without loss of generality, to be equal to one, we

obtain for Model A that the queue will be stable if and only if

<(1-0)a
=0 =0

This agrees, after elementary manipulations, with the conditions (2) for a /3, and (3)
for a =/3, stated in Theorem 2 of A. G. Konheim and M. Reiser 10, p. 334]. A minor
correction is, however, needed in the statement of that theorem. Condition (1), i.e.

= 1- + 1--
h=l \C] r -v=l v=l h=O

Finally 7to is obtained from the normalizing condition re 1.

(13) A < (1-O)ra zrj + 1- ZrM+-I
/=o i=1

Proof. We shall only sketch the proof for Model C. The equationsA 0 may be
written as

-raTro + TI’I O,

ra’n’i_x (ra + ]fl)Tr + (] + 1)flTr.+ 0 for 1 --< ] <- c 1,

raTri_l-(ra + cfl)zri + cflri+x + 8i,k*Cflk*+X =0 for c <-] <-M- 1,

(14) (r--j)a,rrM+i_x--[(r--j--1)a+cfl]TrM+i+cflTrM+i+l=O for 0_-<] <- r*-3,

(r- r* + 2)avrM+r.-3 [(r r* + 1)a + C]ZrM+r.-2 0 for r* --> 2

(r r* + 1)O7’M+r*_2 CTTM+r*-I O,
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(1- 0) min (a,/3) < 1, is claimed to be the equilibrium condition for the system where
M=. As it is implied by one of the other conditions, depending on whether a /3 or
a =/3, its inclusion in the stability condition for finite M is clearly inappropriate.

5. The system considered at service completions in unit I. Upon considering the
numbers of I- and II-customers immediately after service completions in unit I, we
obtain a Markov chain with the states (i,/’), where _-> 0 and j 1, , M+ r* 1. In the
interest of notational simplicity, we shall preserve the earlier state space, but note that
since service completions during full blocking in unit I are impossible, the states with
/" 0 and the additional states corresponding to full blocking are ephemeral. Our
formulas will correctly assign "steady-state probabilities" equal to zero to all such states
and it will not be necessary to adjust the dimensions of the matrices which are involved.

THEOREM 4. The stationary probability vector z= (Zo, Zl,’’ ") of the embedded
Markov chain at service completions in unit I is given by

(16)

where " is given by

Zk zXk+lAk+l,0 for 0 <-- k <= r 1,

zk zXk+lAo 7"Xr-lRk-r+2Ao for k =r> 1,

(17) z xiAioe+Xr-lR(I R)-IAoe
i=1

The zero components in the vectors zk are ignored.
Proof. The formulas (16) are readily obtained by a conditioning argument for the

elementary probabilities. The quantity --1dt is clearly the elementary probability that a
service completion occurs in (t, + dt) and the components of Xk+lAk+l,odt or Xk+lAodt
are elementary probabilities of transitions of the type (k + 1,/’)--> (k, j’).

COROLLARY 2. The components with M+ u, 0 <- u <-_ r* 1, of the vector

(18) 2 r A0+_R(I R)-Ao
k=0 =1

yield the stationary probabilities that upon completion of a service in unit I, u + 1 servers
are blocked in unit I.

It would satisfy higher standards of rigor to set up explicitly the transition
probability matrix of the embedded Markov chain and to verify that z is indeed its
invariant vector. In order to avoid introducing a large amount of extra notation, we shall
only do this for the case r 1. In the process we shall also obtain a different formula for, which is also easily implemented and therefore provides us with an accuracy check in
numerical computations.

Completely elementary probability arguments yield that for r 1, the transition
probability matrix of the embedded chain is given by

(19) P

Bo B1 B2 B3
Ao A1 A2 A3
0 Ao A1 A2
0 0 Ao Ax
0 0 0 Ao

where An (-A-IA2)’(-A-IAo), and/, (-A11A2)fi.,, for n _->0.
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The steady-state equations zP =z, will be satisfied by the vectors defined in
formula (16) provided that

k+l

(20) xoR k/lAo xoRAo(-AA2)fi,k + xoR /lAoAk/l- for k => 0.

Since Xo xoR (-AoA-), and using the explicit form of the matrices An, this equation
may be equivalently rewritten as

(21) Xo Rk+I-(-A2A-I)k+l- Rv+I(-AoA-(1)(-A2A-(1)k+l- Ao=0 for k->_0.

In order to see that the matrix square brackets is zero, write the equation
R =(-AEA-(1)+RE(-AoA-I), k + 1 times. Multiply the gth equation on the left by
R -1 and on the right by (-AEA-I)k-v+1 and sum up.

Finally the expression for z is obtained from the normalizing equation ze 1.
COROLLARY 3. In the case r 1, the vector Z is also given by

Z (rAoe)-lrAo
(22)

zxo(Aol + AE)(A +AE)-IAo[A -(rAoe)-lAoIIAo]-l(A1 + A2),

where II is a matrix with M+ 1 identical rows given by .
Proof. Adding the steady-state equations for the matrix P, we obtain

(23) Z[I + (31 + 32)-130] Zo(-AAE)[-(A1 +A2)-lAo]-Zo[-(A1 + AE)-lAo].
The matrix -(A +A2)-1 A0 is a stochastic matrix, whose first column is zero. All other
elements are strictly positive. It has the left invariant vector Ao, whose first
component is zero and all other components strictly positive. It now follows readily
from the theory of finite Markov chains that the matrix

(24) I+(AI+AE)-IA0 + (vtA0e)-lrIAo (A1 --F-AE)-I[A (vtAoe)-lAoYIAo],

is nonsingular. Adding (rAoe)-lZIIAo=(Aoe)-lrAo to both sides of (23) and
replacing xoR(-AoA) by Xo, we obtain the stated formula after routine matrix
manipulations.

We note that the formula assignsthe correct value zero to the first component of Z.
Verifying that the result so obtained agrees with Z= -xoR(I- R)-IAo (Corollary 2)
provides a partial check on numerical computations.

6. Remarks on numerical computations. The solution, presented here, lends itself
to a ready numerical implementation. Efficient programming, which takes the high
degree of sparsity of the transition probability matrix into account, results in substantial
savings in memory storage and execution times. This is particularly worthwhile when
the program is to be used to study the design and control aspects of the model. In such
studies, one or more parameters of the model need to vary over a range of values, which
may require a substantial number of executions of the program. In view of the
complicated dependence of the model on each of its parameters, detailed numerical
studies appear to be the only way of obtaining the hard qualitative information needed
in problems of design and optimization.

The first step, after ascertaining that the queue is stable, is to compute the matrix R.
This may be done by successive substitutions in the equation R -A2A
starting with R 0. The relation RAoe A2e, proved in Lemma 2, serves as an
accuracy check.



EFFICIENT ALGORITHMIC SOLUTIONS 105

If r > 1, the vectors Xo,’’’, xr-1, are computed by solving the system of linear
equations, discussed in Theorem 2. Since the number of equations in that system may be
very large, it is again desirable to take the special structure of its coefficient matrix into
account. This may be done as follows. In the system

x0A01 + xlA lo O,

(25) x-lA-l.2 "+" xvA,,1 q- xg+1A+1.o 0 for 1 _-< , <- r 2,

xr-2A,-2.2 + x-l(Ar-l.1 + RAo) O,

the matrices A.2, 0-< ,-<_ r- 2, are clearly nonsingular, so that, using all but the first
equation, we can write the vectors Xo, , xr_z, as x x,_l C*, 0 -< , <_- r 2, where the
matrices C* are readily computed. The first equation now yields

(26) X,-l(C0*A01 + C*IA lo) O,

which together with the normalizing condition

(27) x-i Y. C* -ee+(I-R) 1,
,=0

uniquely determines the vector x-I and hence also the vectors Xo, , x-2.
If there is need to economize on memory storage, as when r and the order of the

matrices are large, we can avoid storing the matrices C, as they may be evaluated
recursively. This can be done using only three arrays of size N xN and one linear array
of length N. In the latter the vector YL-o C* e is accumulated. This does not significantly
increase the processing time, as the systems of equations x42 d, where d is a known
vector, are particularly easy to solve.

The simplifications, discussed above, are particularly striking when /9 0 (no
feedback) as the matrices A2, 0 <= , <-r- 2, are then scalar matrices.

The remaining computations of the vector x, of various moments and of the
marginal queue length densities, as well as the blocking probabilities are now entirely
routine.
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ON CONSTRUCTION OF MATRICES WITH DISTINCT SUBMATRICES*

SHARAD V. KANETKAR" AND MEGHANAD D. WAGH:

Abstract. Given N, M, and s, a method of generating an N xM binary matrix such that every nonzero
x s binary pattern occurs exactly once as its submatrix is presented. This construction is based upon a

systematic filling of the matrix with a maximal length recurrent sequence and gives several new solutions yet
unreported.

1. Introduction. In this paper we consider the problem of construction of an
N xM binary matrixA such that any s nonzero binary pattern occurs exactly once as
its submatrix. Similar problems have been attempted earlier by various authors.

Reed and Stewart [5] considered the existence of A given only and s. Gordon [2]
later extended their result and showed that given any and s, one can always find N and
M, N> t, M> s such that all s submatrices (in the toroidal sense) in A are distinct. A
is then called a perfect map. All the s nonzero binary patterns are not necessarily the
submatrices of a perfect map. However, a perfect map with parameters M 2 1 and
N (2s’- 1)/M and containing all the x s nonzero binary patterns was exhibited in
12]. WhenN andM are relatively prime, a pseudorandom array also gives a perfect map
with the same parameters [3].

The toroidal perfect maps of [2], [3] and [5] can be easily converted into
nontoroidal ones by repeating the first t- 1 rows after the last row and the first s- 1
columns after the last column. In this paper, we will be concerned only with N xM
nontoroidal perfect map A in which every nonzero binary s pattern occurs exactly
once as a submatrix. Obviously, the four parameters are then related as

(1.1) (M-s + 1)(N- + 1)= 2st- 1.

Banerji [1] has recently described a procedure of designing A when (i) M s and (ii)
M 2 + s 2. Note that the required matrix A whenM 2 + s 2 was also obtained
earlier by Gordon [2].

In this paper, we give a criterion for filling up the matrix A with a maximal length
recurrent sequence (MLRS) such that A will have the required property. Four schemes
have been described which satisfy the criterion and hence generate A for all the earlier
known cases and for several new ones. This criterion also enables one to construct A for
any M, N, s and satisfying (1.1). We have included here the solution to the problem
(for all the possible parameter combinations with st <-15) obtained by a computer
search made easy with the help of the criterion.

2. Preliminaries. A linear recurrent sequence {Xi} of the elements of GF(q), (q" a
prime power) of period q"-1 may be obtained from the recurrence relation

(2.1) Xi alxi-1% a2xi-2 -1- --l.- anXi--n

over GF(q) with arbitrary nonzero initial condition if the constants a l, a2,’’’, an
GF(q) are chosen such that the polynomial

(2.2) x -alxn-l-aEx n-2 an
is primitive over GF(q). We will use the following property of this maximal length
recurrent sequence (MLRS).
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LEMMA 1. Let be the root of the polynomial (2.2) and il, i2, i,, any n integers
such that i1,i2,... ,fli. are linearly independent over GF(q). Then the n-tuple
(xi+il, xi+i," xi+i.) assumes all the nonzero values exactly once in the range 0 <-i <-
qn -2.

Proof. Solution of (2.1) can be expressed as [6]

xi=Tr(bi),
where Tr denotes the trace function

Tr (a)=a +a q +aq+ .+a

from GF(qn) onto GF(q) and b GF(q) is determined by the initial conditions. Then

xiti I [i,+
LXi+in]

The matrix on the right-hand side is nonsingular over GF(q) as the elements in the
first column are linearly independent by assumption. Thus there is a one-one cor-
respondence between the n-tuple (xi+i, xi+i, , x/.) and the quantity b i. But as fl
is the primitive element of GF(q"), bfl and hence (xi+i, x+i,"’, xi+i.) takes all the
possible q" 1 nonzero values as runs over 0 <_- <_- q" 2.

Since we are interested in binary matrices we will restrict ourselves to q 2.
However it should be mentioned that the methods developed in this paper can be
generalized to the case of matrices with q symbols.

Consider an MLRS {xi} of period 2st- 1 generated by (2.1) with n st. We now
state the central result of this paper.

THEOREM 1. IfA is filled as

A(u, v) x(+,+>, 0<=u <_-N-l, O_<_v <-M-l,

such that

(C1)
(C2)

(C3)

f is linear in u and v;
when u and v are restricted to O <-_ u <=N-t, O <- v <=M- s, f(u, v)arealldistinct
modulo 2st- 1;
flr(u.v), 0 < u < t- 1, 0 < v < s 1 are all linearly independent over GF(2) where
fl is the root of (2.2) with n st;

then each binary x s pattern occurs as a submatrix ofA exactly once.

Proof. Denoting f(u,v), O<-u<-t-1, O<-v<-s-1 by il, i2,’" ,is,, it is obvious
from (C1) that any s submatrix in A with its left-hand top corner at (u, v) has
elements

Xi+il, Xi+i2, ", Xi+ist where f(u, v).

Further, as u, v run over 0 <= u _-< N and 0 _-< v _-<M s, (i.e., all possible coordinate
values taken by the left hand top corners of s submatrices), runs over 0 to 2st 2
because of (C2) and (1.1). Finally, from (C3),/3 q, fli2,..., flis, are linearly independent
over GF(2) and hence an application of Lemma 1 gives the required result.
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3. Generation of A matrix. Several schemes to fill up A to satisfy the conditions
(C1)-(C3) may be given.

Scheme 1.
f(u,v)=u+tv, O<-u<-2st+t-3, O<=v<=s-1

generates a matrix A with N 2st + t- 2 and M s. Here, (C1) is obvious. To check
(C2), note that for O<-u<-N-t, O<-v<-_M-s=O, f(u,v)=u and therefore in this
range all f(u, v) are distinct modulo 2st 1. Finally, the set {flr(u’o)[0 u _-< 1, 0 _-< v -<_
s 1} is {1, fl,/2,...,/,-1} elements of which are necessarily linearly independent
over GF(2) giving (C3). The generated matrix A will then have the desired properties
by Theorem 1. This leads to Banerji’s case (i).

The mappings
f(u, v) (M s + 1)u + v (H mapping)

f(u, v)= u +(N-t+ 1)v (V mapping)

0_<u_<_N-1, O__<v_<M-1,

obviously satisfy (C1). In the case of H mapping, when u and v are restricted to
O<=u<-_N-t, O<_v <-M-s, one gets 0-f(u, v)_-<2-2 by using (1.1). Thus, if in this
range f(ul, Vl)=-f(uz, v2) (mod 2t- 1), then (M-s + 1)(Ul-U2)=(v2-Vl). But, M-
s + 1 cannot divide v2-vl (as 0_-<Vl, v2<-M-s) unless v2= vl and in that case Ux also
equals u2. Thus f(u, v) are distinct modulo 2’- 1 in this range showing that (C2) is
satisfied. Similarly, V mapping also can be shown to satisfy (C2).

We now present three more schemes based on H and V mappings which satisfy
(C3).

Scheme 2. When 1, choosing H mapping, the set {/3r(u’v)10_<-u _-<t-1 =0,
0_-< v _-<s 1} is {1, fl, flz,..., fls-1}. Its elements are linearly independent over GF(2)
as/3 is the primitive element of GF(2S’). Thus (C3) is satisfied and the matrix generated
will have the required properties.

Scheme 3. When M 2s- 1, using H mapping, f(u, v)= su + v. Then the set
{/r("’v)[0-<_ u -<_ t- 1, 0-<_ v <- s 1} {1,/,/2,..., [3st--l} has elements which are
linearly independent over GF(2) as fl is the primitive element of GF(2’). Thus (C3) is
satisfied and one gets the matrix with the required properties.

Scheme 4. Let z (2s’- 1)/(2 1) and ] any integer satisfying/’[(2 1) and

(3.1) (2a- 1), 0<d<s.
I

When A has dimensions N z] + t- 1 and M (2 1)/] + s 1, one may use V
mapping. Then f(u, v)= u + z]v. To check (C3) one should prove the linear indepen-
dence over GF(2) of the elements of {flu+zJ[0-< u <_-t-1, 0_-< v _-<s-1}. Note that
flz GF(2s) and (3.1) implies that flzJ does not belong to any subfield of GF(2). In
other words, 1, fli, fl-i, ,/(+)i are linearly independent over GF(2) because
otherwise /3 i will satisfy a polynomial of degree-<_s-1 over GF(2) implying

2belongs to a proper sub,field of GF(2 ). Further, 1,/3,/3 ,..-,/3 are also linearly
independent over GF(2 because/3 cannot satisfy a polynomial of degree less than
over GF(2). Now if a linear combination of/3 "+zi is equal to zero, then

t--1 s-1

0=2 Eau,fl
u=0

tl ( s--1 "v)Bu E au,fl ’
u=0 v=0

au s GF(2).
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The result of the inner summation belongs to GF(2S). But as {13ulo<-_u <-_t-1} are
linearly independent over GF(2S), one has from this

s-1

0= Y’. auoiv

u=0

which, from the linear independence of {Bz10 <_- v <-s-1} over GF(2) gives auv
0, 0_-< u-<t--1, 0_<- v_-<s-1. Thus (C3) is satisfied and A will have the required
property.

/" 1 trivially satisfies (3.1) and gives dimensions identical to Banerji’s case (ii).
Table 1 lists the possible values of/" for 1 -<s -<_ 18 satisfying (3.1). Each gives a matrix
with distinct parameters.

Example. To illustrate Scheme 4, consider 2 and s 4. One then has z 17
and by choosing/" 3, N 52 andM 8. The required 52 x 8 binary matrix A may be
obtained by

A(u,v)=x+slv, 0_-<u-<51, 0-<_v_-<7,

where {xi} is obtained from the recurrence relation over GF(2):

Xi Xi-1 + Xi-2 + Xi-7 "+" Xi-8

(For a list of primitive polynomials over GF(2), refer to [4]). With the initial conditions
x0 xl x6 0, x7 1, one gets the MLRS as

0 0 0 0 0 0 0 1 1 0 1 1 0 1 0 1 0 0

TABLE 1
Allowed values of] for s <= 18

allowed

1 1
2
3 1
4 1,3
5 1
6 1,3,7
7 1
8 1, 3, 5, 15
9 1,7
10 1, 3, 11, 31, 93
11 1
12 1, 3, 5, 7, 9, 13, 15, 21, 35, 39, 45, 63, 91, 105, 117, 315
13 1
14 1, 3, 43, 127, 381
15 1, 7, 31,151,217
16 1, 3, 5, 15, 17, 51, 85, 255
17 1
18 1, 3, 7, 9, 19, 21, 27, 57, 63, 73, 133, 171,189, 219, 399, 511,657, 1197, 1387, 1533, 1971,

4599, 9709, 13797
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We give below the transpose of the required matrix whose rows, for convenience, have
been coded in right justified octal representation.

0 0 0 6 6 5 0 4 5 7 1 3 0 4 3 1 4 3

1 4 1 4 0 7 3 0 2 5 4 4 7 1 6 5 3 7
1 7 3 3 1 7 0 6 5 6 2 0 7 5 6 7 5 0

0 1 0 0 5 5 7 4 6 7 0 5 6 4 6 2 5 2
0 2 2 1 2 0 4 6 4 3 7 2 6 4 5 1 7 6
0 0 0 6 6 5 0 4 5 7 1 3 0 4 3 1 4 3

1 4 1 4 0 7 3 0 2 5 4 4 7 1 6 5 3 7
1 7 3 3 1 7 0 6 5 6 2 0 7 5 6 7 5 0

4. Solutions for ts <_- 15. The schemes described in the last section do not provide
matrix A for all possible combinations of the four parameters satisfying (1.1). However
in the cases not covered under the schemes, it may still be possible to obtain the required
A matrix by utilizing the V orH mappings described earlier (which already satisfy (C1)
and (C2) and finding a primitive polynomial of degree st such that (C3) is also satisfied.
This calls for only a checking of linear independence over GF(2) of st different powers
of ft. With the tables of primitive polynomials already available [4], this task can be
performed very rapidly with the help of a computer.

We have made a computer search based on this and have obtained solutions in all
the cases for ts <-15. The results given in Table 2 provide ready design data in these
cases. In this table the entries in the column ’mapping’ denote either H mapping or V
mapping described in 3. N- + 1 takes all values dividing 2st- 1. M can be computed
using (1.1). The primitive polynomials used are:

P1 x6d-x -t- 1,

P2 xS+x5+x3+x+l,
10P3 x
lOP4 x
12P5 x
12P6 x
12P7 x
12P8 x
12P9 x
14PIO" x
15Pll" x
15P12" x

+ x 3 + 1,

+X4+X3 +X + 1,

+x6+xn+x+l,
-bx 11 -+-X 9 q- xS-[- x 7 q- x 5 -[- X2 q- x q- 1,

"q- X
11 "+" X 10

" X
8 "q- X

6 "q" X
4

"if" X
3 "q- X -- 1,

+X 11 "]- X
6

"l- X
4 "q- X

2 4r" X -I’- 1,

"q-X 11 +X9 q-X 7 q-X6+X5"q 1,

q-X 13 "+’X 11 -[-X 7 q-X 6 "’X 5
-1- X

4 -[-X 3 q-X2d-X "b 1,

+ X
12

d- X
9 q- X

8 - X
6

"if- X
3 q’- 1,

d-X 14 q- X 12"+" X 9 q" xS’" X6-t" X4 -[" X
3 dt" X2-[- X q- 1.

In the cases under Schemes 3 or 4, any primitive polynomial of degree st may be used.
The cases when either N + 1 1 (orM s + 1 1) or 1 (or s 1) are not included
in the table as they can be directly obtained from Schemes 1 and 2 respectively.
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TABLE 2
Design o1 A matrix when ts <-_ 15

N + Mapping Polynomial

2 2 3 H Any (Scheme 4)
5 V Any (Scheme 4)

2 3

2 4

3 3

2 5

2 6

3 H Any (Scheme 4)
7 H P1
9 V Any (Scheme 4)

21 H Any (Scheme 3)

3 H Any (Scheme 4)
5 H P2

15 H P2
17 V Any (Scheme 4)
51 V Any (Scheme 4)

7 H Any (Scheme 4)
73 V Any (Scheme 4)

3 H Any (Scheme 4)
11 V P3
31 H P3
33 V Any (Scheme 4)
93 H P4

3 H Any (Scheme 4)
5 V P6
7 H P8
9 H P7
13 H P8
15 H P9
21 H P7
35 H P8
39 H P8
45 H P6
63 H P9
85 V Any (Scheme 4)
91 H P8

105 H P8
117 H P7
195 V Any (Scheme 4)
273 H P8
315 H P9
455 V Any (Scheme 4)
585 H P8

3 V Any (Scheme 3)
5 V P5
7 H Any (Scheme 4)
9 V P5
13 V P5
15 V P6
21 V P5
35 V P6
39 H P6
45 V P7
63 H P7
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3 5

TABLE 2 (Contd.)

N + Mapping Polynomial

85 V P5
91 H P8
105 V P5
117 H P5
195 V P5
273 V Any (Scheme 4)
315 V P9
455 V P5
585 H P5
819 V Any (Scheme 4)

3 H Any (Scheme 4)
43 H P10
127 H P10
129 V Any (Scheme 4)
381 H P10

7 H Any (Scheme 4)
31 H Pll
151 V Pll
217 V Pll

1057 V Any (Scheme 4)

4081 H P12
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RANDOM WALKS ON A 600-CELL*

GtRARD LETACS- AND LAJOS TAK,CS

Abstract. In a series of random walks (random flights) a traveler visits the vertices of a 600-cell (a
four-dimensional regular polytope). The traveler starts at a given vertex and in each walk, independently of
the others, chooses a vertex at random as the destination. In each walk the transition probability depends only
on the distance between the starting vertex and the end vertex. In this paper we determine the probability that
the traveler returns to the initial position at the end of the n th walk.

1. Introduction. In this paper we shall study random walks (random flights) on a
four-dimensional regular polytope, the 600-cell. There are six four-dimensional
regular polytopes" the regular simplex, the cross polytope, the measure polytope, the
24-ce11, the 600-cell and the 120-ce11. See Table 1 where {p, q, r} is the Schlifli symbol
and No, N1, N2, N3 are the numbers of vertices, edges, faces and cells of the polytope.
The symbol {p, q, r} means that the faces of the polytope are p-gons, a vertex belongs.to
q faces and an edge belongs to r cells. We note that No-N1 +N2-N3 0. For the
theory of regular polytopes we refer to H. S. M. Coxeter 1], D. M. Y. Sommerville [7]
and L. Schlifli [4]. The 600-cell has been studied in detail by P. H. Schoute [5], S. L. van
Oss [8], [9] and D. M. Y. Sommerville [6].

TABLE
Regular polytopes in four dimensions

Polytope Schlifli symbol N N N N

Regular simplex {3, 3, 3} 5 10 10 5
Cross polytope (3, 3, 4} 8 24 32 16
Measure polytope {4, 3, 3} 16 32 24 8
24-cell {3, 4, 3} 24 96 96 24
600-cell {3, 3, 5} 120 720 1200 600
120-cell {5, 3, 3} 600 1200 720 120

In a previous paper [2] the authors have already studied random walks on the first
four polytopes of Table 1. Here we are concerned with random walks on the 600-cell.

We shall use the notations x- (Xl, x2, x3, x4), y (yl, Y2, y3, Y4), for the points
of the four-dimensional Euclidean space. We define the norm of x by Ilxll
(x + x22 + x32 + x42) 1/2, the distance between x and y by IIx- yll, and the inner product of x
and y by (x, y) XlYl + xEY2 + x3Y3 + x4y4.

A 600-cell contained in a sphere of radius 2 and center (0, 0, 0, 0) has the following
120 vertices" the 8 permutations of (+2,0,0,0), the 16 permutations of
(+1, +1, +1, +1) and the 96 even permutations of (+r, +1, +r-1, 0) where

(1) r 1.618 033 988 7 .
2

We shall denote the vertices of this 600-cell by Xr (r 0, 1, , 119). This polytope has
720 edges of length 2r-1 2(r- 1).

First, we suppose that a traveler takes a series of random walks along the edges of
the 600-cell. The traveler starts at a given vertex and in each walk, independently of the

* Received by the editors, November 13, 1978.
t D6partment de Math6matiques, Universit6 Paul Sabatier, 31400, Toulouse, France.
$ Department of Mathematics and Statistics, Case Western Reserve University, Cleveland, Ohio 44106.
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others, moves along an edge to one of the 12 adjacent vertices with probability 1/12.
Denote by p(n) the probability that at the end of the nth walk the traveler returns to the
initial position. We shall prove that

for n 0, 1, 2,- where Vo, Vl, v2," are the co-called Lucas numbers defined by

1 + x/-)" + (1 x/)"
(3)

for n 0, 1, 2, . Starting from vo 2 and v 1, we can also determine v, by the
recurrence formula v,+ v,+ + v, (n 0, 1, 2,. .). (See E. Lucas [3].)

We shall obtain the above result as a particular case of a more general one. In the
more general problem we assume that the traveler takes a series of random flights on the
600-cell. The traveler starts at a given vertex and in each flight chooses a vertex at
random as the destination. The successive flights are independent and in each flight the
transition probability depends only on the distance between the starting vertex and the
end vertex. Define v0 as the initial position and v (n 1, 2,. .) as the position of the
traveler at the end of the n th flight. The distance between any two vertices may take
only nine possible values" do, dl,’", d8. Let d0<dl<"" <d8. Then d0=0 and
d8 2. Denote by cry. the number of vertices whose distance is d. from a given vertex. We
assume that the probability of the transition Yn-1 "- IZn is p. if IIv Vn-lll d. where p. ->_ 0
and

8

(4) Y o’p. 1.
/=0

The numbers o- (j 0, 1,..., 8) are given in Table 4.
We are interested in determining p(n), the probability that at the end of the nth

flight the traveler returns to the initial position. The sequence {v, n 0, 1, 2, .} is a
homogeneous Markov chain and we can determine p(n) by calculating the n-step
transition probabilities. Since the state space contains 120 states, it is not easy to
determine the n th power of the transition probability matrix. Fortunately, we can solve
the problem in a simpler way too. Let us choose a fixed vertex, say, Xo (0, 0, 0, 2), and
define :, j (/" O, 1, , 8) if Ilvo -xoll- di. It can be shown that {so,; n O, 1, 2,...} is
a homogeneous Markov chain with state space I ={0, 1, 2,..., 8} and transition
probabilities

8

(5) Pii ’. aiikPk,
k=0

where ai]k is equal to the number of subscripts r 0, 1, 2,. , 119 for which IIx, Xoll
d and IlXr Xsll dk, and xs is any vertex for which Ilxs Xoll =di. We shall determine the
transition probabilities

(6) P{sC

for s L j I and n 0, 1, 2, . Then p(n) p) is the probability that the traveler
returns to the initial position in n flights.

We shall prove that

8

(7) 120p
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where

8

v=0

and the matrices [h/] and [,v] are given in Tables 2 and 3. In Tables 2 and 3, r is defined
--1by (1) and r r-1. In the above formulas po, pl,"" ", p8 are nonnegative numbers

satisfying (4).

TABLE 2

hii

4

0 4 3 3 5 4 6 2
-1 r -r

-1 0 -1 r
2 0 0 -1 -1 0
3 -1 -r r 0 -1 r
4 0 -1 -1 0 0 0
5 -1 -r r 0 -1
6 0 0 -1 0 -1
7 -1 r -r

-1 0 -1
8 4 3 3 5 -4 -6 -2

2

TABLE 3

4 6

0 12 20 12 30 12 20 12
-3 5 -3 0 -3 5 -3

2 4r 0 -4r-1 -10 -4r-1 0 4r
3 -4r-1 0 4r -10 4r 0 -4r-1

4 0 -4 0 6 0 -4 0
5 3 -5 -3 0 3 5 -3 -1
6 -2 0 2 0 -2 0 2 -1
7 6r 10 6z-1 0 -6z-1 -10 -6r -1
8 -6r-1 10 -6r 0 6r -10 6r-1 -1

In particular, it follows from (7) that

(9) 120p(n) h0 + 16A +9A2 +9A3 +25A4 + 16h5 +36h6 +4A7 +4As
for n -0, 1, 2,. . If PI 1/12 and Pi =0 for 1" 1, then (9) reduces to (2).

Before proving (7) we would like to mention another generalization of (2). Denote
by D(xr, xs) the smallest number of edges in the paths connecting the vertices xr and xsof
the 600-cell. The possible values of D(xr, Xs) are 0, 1, 2, 3, 4, 5. Let us assume, as an
alternative, that in the random flights, the transition vn-1- vn has probability qi if
D(Vn-l, Vn) ] where qi ----> 0 and

(10) qo + 12ql + 32q2 + 42q3 + 32q4 + q5 1.

Then, p(n), the probability that the traveler returns to the initial position at the end of
the nth flight, is given again by (9) where now po qo, pl ql, p. p3 q2, P4 P5 q3,

P6 P7 q4 and P8 qs.
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2. The numbers ajk. We denote by Xr(r 0, 1, 2, , 119) the 120 vertices of the
600-cell and fix Xo (0, 0, 0, 2). We can divide the 120 vertices into 9 sets Sj (j
0, 1,. , 8) so that Sj contains the vertices xr (r 0, 1, 2,. , 119) for which [[xr-Xo[[-
di. If ][xr- Xol] di, then D(xr, Xo) Di is uniquely determined. If ][xr- xoll- then
(xr, Xo) ci=(8-d)/2 Table 4 contains Si, eri, d

2
i, Di and ci for ]=0, 1,..., 8. The

number of vertices in the set Si is tri. In Table 4 only some representative vertices are
displayed. To obtain all the vertices in the set Si we need to equip the first three
coordinates in each vertex by the signs + and form the cyclic permutations of the first
three coordinates. We note that if we use a computer to calculate the distances
IlXr--X01[ dj or the inner products (x, Xo)= ci, then we can use the equations [(d] +
1)/2] [4.5- ci] j for the determination of the appropriate &..

TABLE 4

0 4

1)S (0, 0, 0, 2) (1, 0, .-1, T) (1, 1, 1, 1) (, 0, 1, r- (2, 0, 0, 0)
(, r- 0, 1) (r, 1, T-1, 0)

12 20 12 30

d 0 6- 2x/- 4 10- 2x/- 8
D 0 2 2 3
c 4 2r 2 2r-1 0

6

S/ (r, O, 1,-r- (1, 1, 1,-1) (1, O, r-1, -r) (0, O, O,-2)
(r, r-l, O, -1)

r- 12 20 12
d,2. 6+2x/g 12 lO+2x/ 16

Di 3 4 4 5
c --2r-1 -2 -27 -4

Since Ilxr- xsl[2 IIx ll= + IIx, =- 2(xr, xs) and IIx ll IIx, II- 2, it follows that Ilxr x.[I
di if and only if (xr, x)= ci. Thus we can characterize Si as the set of vertices xr
(r 0, 1, , 1 19) for which (xr, Xo) ci. Since Xo (0, 0, 0, 2), therefore it is indeed
very easy to sort the vertices xr (r 0, 1, , 1 1 9) into the sets So, $1, , S8.

We can easily enumerate aijk if we use the following equivalent definition" aiik is
equal to the number of subscripts r=0, 1, 2,.-., 119 for which (xr, xo)=C and
(xr, x) Ck, and x, is any vertex for which (x,, Xo) ci. Tables 5, 6, 7, 8 contain aik for i,
]=0,1,...,8 and k=1,2,...,7. Obviously ai0=a,8-j,8=l if i=] and aio=
a.8-,8 0 if j.

If we choose Xr such that X119-r=--Xr for r=0, 1,..., 119, then it follows
immediately from the definition of aiik that

(11) aiik a8-i,8-Lk

and

(1 2) aii ai,8-i.8-k.

Furthermore, we have

(13) aii ai
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and

8

(14) Y’, aijk O’k
j=O

for i-0, 1,..., 8.

TABLE 5
ai]l ai,8_],7

i 0 4 6 x\. 0

0 12 0
5 5

2 3 3 3 3 2
3 5 5 3
4 2 2 4 2 2 4
5 5 5 5
6 3 3 3 3 6
7 5 5 7
8 12 8

2 4 6

20
5 5 5
6 6 3

5 5 5
4 2 4 2 4 2
5 5 5 5

3 6 6 3
5 5 5 5

20

i 0 2 4 6 0

0 12 0
5 5

2 3 3 3 3 2
3 5 5 3
4 2 2 4 2 2 4
5 5 5 5
6 3 3 3 3 6
7 5 5 7
8 12 8

TABLE 8

aii4

4 6

30
5 5 10 5 5

3 6 3 6 3 6 3
5 5 10 5 5
4 4 4 4 4 4 4
5 5 10 5 5
3 6 3 6 3 6 3

5 5 10 5 5
30

3. The probabilities p,). We consider the Markov chain {n; n 0, 1, 2, .} with
state space ! {0, 1, 2, , 8} and transition probability matrix

(15) ,fi [Pii]i,.iI,

where pi is defined by (5). If we arrange the nstep transition probabilities in the form of
a matrix, then we get

(16) [P) ]i,kI :,fin

for n 0, 1, 2, . Thus in order to find pl we need to determine ,fin. If we can form
the Jordan decomposition of ,fi, then ,fin can easily be obtained. However, for the first
sight, it seems hopeless to solve the characteristic equation of a 9 9 matrix whose
elements depend on 8 parameters. Fortunately, several favorable circumstances make
it possible to determine the Jordan decomposition of ,ft.

By (5) we can write that

8

(17) ,fi= pkAk
k=0
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where

(18) Ak =[ai]k]i,]I

for k =0, 1,..., 8.
First, let us consider the matrix A1. The elements of A.1 satisfy the symmetry

relation aijl a8-i.8-j, and thus by using the method described irt the Appendix we can
reduce the problem of finding the Jordan decomposition of A to the problem of finding
the Jordan decompositions of a 4 x 4 matrix and a 5 x 5 matrix. Thus we obtain that

(19) AH=HA,

where the elements of the matrix H [hii]i,ieI are given in Table 2 and A1 is one of the
matrices

(20) hv [&iAiv],,iz.

In (20) &i 1 for ], &i 0 for # ] and A. (j L v I) are given in Table 3. In (19) the
matrix H is nonsingular and thus Ail (] 0, 1,..., 9) are the eigenvalues of A1. The
nine eigenvalues of A1 are distinct.

Luckily H has a simple inverse. We observe that if I-l’ is the transpose of H, then

(21) HH’= 120[&io’;-1 ]i,jI,

that is, HH’ is a diagonal matrix and the diagonal elements are 120o- (k I) where trk

(k I) are given in Table 4.
Quite surprisingly, it turns out that

(22) AkH HAk
holds not only for k I but for every k 0, 1, 2, , 8. Since A0 is the identity matrix,
(22) obviously holds for k 0. If (22) is true for k 0, 1, 2, 3, 4, then by symmetry it is
true for k 5, 6, 7, 8 too. Thus it remains to check (22) for k 2, 3, 4. In each case (22) is
indeed correct. It would be interesting to infer (22) from the structure of the symmetry
group of the 600-cell. This would save some calculations. By (22) it follows that the
eigenvalues of Ak are Ak (j 0, 1,’’’, 8).

Finally, by (17) and (22) it follows that

(23) ,rH= HA,

where

(24)

is a diagonal matrix with diagonal elements ai (] 0, 1,. ., 8) given by (8). Accord-
ingly, the eigenvalues of are ai (] 0, 1, , 8) defined by (8). By (21) and (23) we get

(25) 120=

Thus we arrived at the Jordan decomposition of and by (25) we have

(26) 120=" I-I[aiiA ]I-I’[,i.io’i]

for all n 0, 1, 2,.... Hence (7) follows.

Appendix. Let us suppose that the elements of the matrix

(A.1) A [aij]i,i,x,
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where I --{0, 1,. , m}, satisfy the symmetry relation

(A.2) aii am-i,m-i

for i, f e L Define

(A.3)

and

ai,m-i+ for 0_--< _-<_, 0_-</’<
2 2

m
for 0-< i_-<, j= (m even)

(A.4) m m
cii =aii ai,m-j for < --<_ m, < j <= m

2

and write 11 {i 0 <- <- m/2} and 12 {i" m/2 < <- m}.
If there exist two nonsingular matrices [/3ij]i.h, and [Yi]i,ix2 such that

(A.5) [bi][/3jk] [[i]][jklk (i, /, k e I1)

and

(A.6) [C0"][Tik] [’Yi][6ikAk (i, f, k e Iz),

then there exists a nonsingular matrix [aii]i.ix such that

(A.7) [aij][aik [aii][tikAk] (i, j, k e I)

and we have

(A.8)

if e 11, ] e 11,
if/e/z, j e I2,

if Jell, ]eI2,

where yii 0 if m/2 and m is an even integer.
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ASYMPTOTIC EQUILIBRIA IN A CLASS OF N-PERSON
SYMMETRIC GAMES*

HARVEY DIAMOND"

Abstract. In a class of symmetric N-person games we consider the behavior, for large N, of the symmetric
equilibrium. In the game each player independently chooses one ofM alternatives; the payoff is a decreasing
function of the number of players choosing the same alternative. Asymptotic approximations for the
equilibrium strategy and payoff are obtained. A number of examples are treated in detail. We also consider
the maximin strategy of a single player against N 1 minimizing opponents. It is shown, for a certain subclass
of payoff functions, that this maximin payoff is asymptotic to the symmetric equilibrium payoff and the
maximin strategy is related asymptotically to the symmetric equilibrium strategy.

1. Introduction. In this paper we investigate the symmetric equilibrium of the
following noncooperative symmetric N-person game" Let N players independently
choose one ofM alternatives. The payoff to each of n players who choose alternative is
denoted by Si(n). Initially, we require only that the functions Si(n) be nonincreasing but
not constant. Certain asymptotic requirements on the Si(n) will be added later.

As suggested by the title, our primary concern is describing the behavior and
properties of the symmetric equilibrium for large N. The asymptotic procedures and
results developed in 3-5 apply to a fairly large class of payoff functions whose
members are characterized by an asymptotic condition and, roughly speaking, have the
following property: If the function f(x), x => 0, is in the class then E[f(X)]---f(Np) as
N-> where X is a binomial random variable with distribution B(N, p) and El.
denotes expectation. This property allows the asymptotic expansion of the expected
payoffs which appear in the equations for the equilibrium. Formal definitions and
theorems appear in 3.

After obtaining some general first order results in 3, we develop in 4 and 5
asymptotic expansions for the symmetric equilibrium probability distribution and
payoff in a number of special cases, chosen both for their individual interest and to
illustrate collectively the wide range of asymptotic behavior possible within the class of
treatable payoff functions. These cases include Si(n)"-" ai/n and Si(rl)’" ai/rt ’’.

We will also consider, for large N, the behavior of the optimal strategies and payoff
when our game is played by a single player versus an N-- 1 player coalition seeking to
minimize his payoff. The optimal payoff in this game gives the single player a lower
bound on what he can obtain in the non-cooperative game; his corresponding optimal
strategy guarantees at least this lower bound. In 3 we obtain results which relate, for
large N, the optimal strategies and payoff in the coalitional game with those of the
symmetric equilibrium in the noncooperative game. In particular, we show that
the payoffs are asymptotically equal and, in the examples treated later, show that
the symmetric equilibrium strategy is asymptotically optimal for the single player
in the coalitional game.

In 4 we consider a dynamic version of our game in which the alternatives are
presented and chosen sequentially. For large N we show that the sequential nature of
the game has no effect to first order on the equilibria. Finally, 7 contains some general
remarks about the results obtained and some further questions concerning extensions
of the asymptotic analysis.

* Received by the editors February 26, 1979.
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2. Equations and structure of the equilibrium. For the purposes of this paper, the
term symmetric equilibrium (often simply equilibrium) refers to a common randomized
strategy for the players having the property that no player can improve his expected
payoff by unilaterally changing his strategy.

The existence of a symmetric equilibrium in symmetric games was proved by Nash
[2] in an early paper on equilibria in N-person games. We will show uniqueness for our
particular game later in this section.

We introduce some notation first. Let
pi probability of choosing alternative under the equilibrium strategy.
A the set of active alternatives, i.e. those for which pi > 0.
I the set of inactive alternatives having pi 0.
C the expected payoff to each player under the equilibrium strategy.

For a particular player, let
ni the random variable giving the number of his opponents who choose alter-

native under the equilibrium strategy. Observe that ni has a binomial distribution with
parameters (N- 1, pi) or notationally, ni B(N- 1, pi).

If the random variable X---B(N- 1, p), define the functions

Li(p)=E[Si(1 +X)]= Si(1 +k)p (1-
k=O

The equations for the equilibrium strategy {p} and payoff C are then

M

C>=Li(Pi); C>Li(pi)=pi--0; Pi-" 1.
i=1

We note that if s A then C L(p) and if / s I then Lj(pj) Sj(1). The equations for
the equilibrium may then be rewritten as

(2.1) C--ti(pi), isA; C_-> Sj(1),
iA

To prove the uniqueness of the equilibrium we need the following:
PROPOSITION 1. For p (0, 1), Li(p) is monotone decreasing.

Proof. We easily calculate

dL,/dp=(N-1) ., [Si(k+2)-Si(k+l)]pk(1-p
k=O

The functions S(k) were assumed nonincreasing but not constant so each term in the
sum is nonpositive and at least one is negative.

THEOREM 1. There is a unique symmetric equilibrium.
Proof. If {p} and {p} are two distinct symmetric equilibria there exist indices j and

k such that p >p. and Pk <P’k. Evidently pi >0 and p, >0 so that Li(p)>--Lk(Pk) and
Lk(P’k) >--__Lj(p). Applying Proposition 1 however, L(p) <L(p) <--Lk(P’k) < Lk(Pk)
and a contradiction is obtained.

Using Proposition 1 and Theorem 1 we can prove the following useful result:
PROPOSITION 2. For any probability distribution {p’} we have

minLi(pi)<-C <- maxLi(p), whereA =(i" p >0)
iA’

Proof. If {p} is the equilibrium strategy then the conclusion obviously holds.
Otherwise there exist indices j and k such that pi>p and Pk<P. Then
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minimA, Li(p’i <----Lk(P’k) < Lk(Pk) <- C Lj(pi) < Lj(p) -<_max/Li(p[). This proves the
proposition.

Proposition 2 shows that, roughly speaking, any strategy and payoff which
produces a good approximation to (2.1) necessarily provides a good approximation to
the equilibrium payoff.

Propositions 1 and 2 render the structure of the equilibrium relatively transparent.
By "structure" is meant the classification according to player of those pure strategies
which have positive probability and those which have zero probability in the equili-
brium being considered. In the computation of equilibria there are many possible
structures to search through in general. For the symmetric equilibrium of our game
however, it is easy to see at mostM different possibilities for the set A exist: Renumber
the alternatives so that Si(1) is a nonincreasing sequence. Then (2.1) and Proposition 1
together imply that the sets A and I are of the forms A ={1, 2,-.., k} and I
{k + 1, k + 2, , M} (of course I is empty if k M). A simple algorithm for computing
the solution would be to successively try k 1, 2, at each stage solving the equations

kLi(p) C’, Y’.i=l P 1, i= 1,..., k.
In producing successive approximations while solving these equations we use

Proposition 2 to discard alternatives which cannot be active by virtue of their value of
Si (1) falling below the lower bound for C; and cease computations at the present value
of k and increment by 1 if Sk+l(1)>maxieA, Li(p’)>= C’ occurs. The structure of the
equilibrium is determined when either k M or Sk/l(1)--<_ minimA, L(pl) occurs.

While it is certainly possible to refine the preceding algorithm to a certain extent we
will not delve into the details here as the computational aspects of the solution are not
our primary interest. Similarly we will not consider the numerical solution of the
nonlinear equations in (2.1). The following sections deal with the asymptotic behavior
of the p and C under various additional assumptions on the S(n).

3. Some general asymptotic results. Our motivations for investigating asymptotic
behavior and developing asymptotic approximations for the equilibrium are several:

(a) The numerical solution becomes more difficult for large N;
(b) The asymptotic solution becomes more accurate for large N;
(c) The asymptotic solution exhibits analytically the dependence of the solution on

N and the parameters of the problem. This dependence is often of a simple character
capable of explicit description via elementary functions.

(d) The asymptotic solution has a number of interesting and intuitively appealing
properties.

Notationally, it will often be necessary to explicitly point out the dependence of the
solution on N by writing pi (N) and C(N). Asymptotic approximations will generally be
denoted by an asterisk viz. p/* (N), C*(N). For the remainder of the paper we will
assume that S(n)- 0 as n - o for each i.

A simple asymptotic result is the following:
THEOREM 2. If for each i, Si(n) - 0 as n c then C(N) - 0, Npi(N) -> cx3 and

Npi (N)qi (N) - o as N-o for each i, where qi 1 pi.

Proof. We first show C(N) 0. For each m _-> 1, n -> 1 we have

(3.1) S(n) <=Si(1)2 + S(m).

By definition, L(p) ElSe(1 +X)] where X.--.B(N- 1, p). Using (3.1) gives

L,(p) <= S,(1)2-E[2-x]+ S,(m)= $,(1)2-x(1-p/2)- + Sg(m).

Now for each N there is some index/" for which pi(N)>- 1/M. Then

C(N) Li( pi) <-- Si(1)2-x[1 1/(2M)]u-1 + $i(m ).
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Letting N c, we have

lim sup C(N) _-< max Si(m
N

and by choosing rn large enough we can make the right hand side as small as we like.
Thus C(N) 0.

For the second part of the proof, suppose that for some i, Npi(N) doesn’t go to
infinity. Then there exists a constant K such that Npi (N) <K for infinitely many N. For
such an N, sufficiently large

C(N) >=L,(pi) >= S,(1)[1 pi(N)]N-1 > S,(1) exp (-2K)

which contradicts C(N) --> O. Thus Npi(N) -> oo. It then follows that Nqi(N) "-> cX3 and
finally Npi(N)qi(N)-> cx3. This completes the proof of Theorem 2.

It follows from Theorem 2, in particular the fact that C(N)->O, that for N
sufficiently large all alternatives are active. The equations for the equilibrium are then

M

(3.2) C E[Si(1 + hi)I, where ni B(N- i, Pi)’, Pi 1.

The asymptotic evaluation of E[Si(1 + hi)], on which the bulk of our results
depend, will be accomplished using [1]. The relevant results are presented here for
reference:

DEFINITION. The locally bounded function f(x), x [0, Do), is said to have essen-
tially zero asymptotic relative variation (EZARV) if the function g(x, a) defined by

g(x, a)A sup
f(x + Yx/)-1

lyla f(X)

satisfies g(x, a)- 0 as x - o for any fixed a > 0.
PROPOSITION 3. If f(x) is differentiable and f’(x)/f(x)=o(1/xx) then f(x) has

EZAR V.
THEOREM 3. Let k >= 0 be even and suppose f()(x) exists, is locally bounded and has

EZAR V. LetX B(N, p(N)) where Np(1-p)- o. Then

f(i)(tx) f()()
(3.3) E[f(X)] /.., Si-[-" SkO(1), wheresk=E[(X-ix)k], tx=Np.

i=0 i! k!

For the remainder of the paper, all functions Si(n) we consider will be assumed to
have EZARV unless otherwise noted.

It is our intention to replace the exact equations for the equilibrium (3.2) with the
asymptotic equations obtained by replacing E[Si(1 + ni)] with the appropriate asymp-
totic expansion from (3.3). Hopefully these asymptotic equations will have a solution
which is at the same time easily calculated and asymptotic to the exact equilibrium
solution. Notationally, we will use L*(p) to denote an asymptotic expansion of Li(p)
valid for p p(N) satisfying the hypothesis of Theorem 3. In particular of course, we
can write Li(pi)"--" L*i(p). We then seek solutions of the asymptotic equations

M

(3.4a) C*(N)---L.*,(p*), i=l,...,N; EP/*=I; Np*i(1-pf)o.

We will use Proposition 2 in our examples to show that C(N)-- C*(N) holds. Admit-
tedly, it is slightly unclear exactly what Li(p)"L(p) and (3.4a) mean. Our examples
will clarify this point better than a clumsy formal definition.
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Of special interest to us will be the first order asymptotic equations obtained by using
for L* (p) a one term expansion of Li(p) from (3.3). As defined in 2, ifX B(N- 1, p)
then Li(p)= E[Si(1 +X)]. By hypothesis Si(1 + x) has EZARV and using (3.3) with
/x (N- 1)p gives L(p) E[Si(1 +X)] Si(q + Np)[1 / o (1)]. Because of the EZARV
condition, dropping the q produces a relative change of o(1) so that Li(p)
Si(Np)[1 to(l)]. We then take L*(p)=S(Np). The first order asymptotic equations
are then

M

(3.4) C* S,(Np*i)[1 + o(1)]; Y p/* 1.

Certainly, C*= C, p* =p is one solution to (3.4). We would hope to be able to
guarantee that any solution of (3.4) satisfies C*-C[1/o(1)], p/* =pi[1+o(1)]. An
example presented later shows that the latter conjecture does not necessarily hold. As
for the former, suppose p* is a solution to (3.4). Then

L,(p*i) Si(Np*i)[1 / o(1)] C*[1 / o(1)].

By Proposition 2, C must fall within the range of the Li(p*i); we must have
C C*[1 + o(1)] or C C*.

In addition to the symmetric equilibrium, it is also of interest to consider, for an
individual player, the strategy which maximizes his minimum expected payoff under the
least favorable actions by his N- 1 opponents. This problem may be cast as a zero-sum
two-person game in which the single player (which we call the individual) attempts to
maximize his payoff against the efforts of the coalition formed by his N- 1 opponents
(called the director). We denote this game by G. The next proposition shows that under
certain additional restrictions on the S, the individual can guarantee himself a payoff
which is asymptotic to C(N); further, the payoff C(N) can be asymptotically guaran-
teed by using a strategy expressed in terms of the asymptotic equilibrium strategy p*
obtained from (3.4).

PROPOSITION 4. Suppose Si(x) is continuous, piecewise differentiable and
for x sufficiently large, S (x) is monotone decreasing in magnitude. Let V(N) denote the
value of the game G and let {p*} be any solution of (3.4). Then

(3.5) V(N) C(N)[1 + o(1)]

and any strategy {p} for the individual which satisfies

[S, (Np)] M

(3.6) i "Eli [S (NP[ )]- Y" 1

guarantees a payoff V(N)[1 + o(1)].
Proof. It is clear that the director can hold the individual to a payoff C(N) by having

his N- 1 agents independently play the equilibrium strategy {p}. Thus V(N) <- C(N).
On the other hand, if the individual plays some strategy {/5i} he is guaranteed a payoff of
at least

M M

(3.7) ZAminiSi(ni+l) subjectto ,ni=N-1.
ni

If we further restrict n _-> x/, the individual’s minimum payoff will rise to at most
Z[1 + o(1)]. This is because, in any optimal solution of (3.7), (M- 1)x/players can be
reallocated from the maximum of the n to the other M-1 alternatives with the
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EZARV condition guranteeing a payoff increase of relative size at most [1 +o(1)].
ReplacingN 1 byN in (3.7) and dropping the integrality constraints on the ni can only
decrease the payoff. We consider then

M M

Z’ _a_ min E ffiSi (Xi) subject to Xi %/- X N
xi

and have Z’ _-< Z[1 + o (1)].
Now choose Pi so that

M

(3.8) ffiS (Np*i Y ., Pi 1.

(Note that (3.8) implies equality in (3.6).)
Given this choice of Pi by the individual, we claim that xi Np*i, if feasible, (i.e.

Np*i >-x/l’) gives the minimum payoff of Z’. This is because (3.8) shows that Xg Np
satisfies the Langrange multiplier optimality condition; and the monotonicity condition
on Sl along with the constraint xi _-> x/shows this choice to be uniquely optimal. In that
case, since (3.4) is satisfied we have

M M

Z’= ., PiSi(Np) E piG[1 -t-- o(1)] C[1 + o(1)].

If xi Np*i is not feasible then Z’>_- C[1 + o(1)] must hold. In any case, it is then
true that Z _->C[1 +o(1)] and finally V(N) >= Z -> C[1 +o(1)]. It is easy to show that
asymptotic optimality of the Pi is retained if equality in (3.6) is replaced with the
asymptotic condition shown there; the reader may supply the argument. This completes
the proof of Proposition 4.

Proposition 4 is an interesting result, for it says that the equilibrium non-
cooperative payoff is asymptotically the minimum a player will obtain if he uses the/i of
(3.6). If it happened that the asymptotic equilibrium or in fact the exact equilibrium
{pi} was not asymptotically optimal for the game G (in that it guarantees a payoff
C(N)[1 + o(1)]) then serious doubt would be cast on its use, for the strategy of (3.6)
would then be preferable, at least for large N. On the other hand (3.6) does give an
asymptotically optimal strategy for G in terms of solutions to the first order asymptotic
equations ({pi} of course being one of them) and so the asymptotic equilibrium
strategies are worthwhile for study in any case. It happens however, that in all the
examples treated later, the asymptotic equilibrium does turn out to be asymptotically
optimal for G. While this suggests a general result along these lines is possible, we have
been unable to prove one. It would also be of interest to investigate in some examples
how good the equilibrium strategy {pi} is for the game G and how close V(N) and C(N)
are when N is taken as finite and fixed as opposed to the limiting case we discuss here.
We do not provide such examples in this paper.

4. Examples with St algebraically decreasing. The payoff functions we will
consider in this section will be assumed most generally to have an asymptotic expansion
of the form

(4.1) S(x)"--, ai/x ’’, where {Oi} is an increasing sequence;

Our object will be to replace the equations for the equilibrium (3.2) with their
asymptotic expansions obtained by using Theorem 3 on E[Si(1 + ni)] and finally to
calculate an expansion for the
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PROPOSITION 5. Let f(x)= (1 +x)-o‘. Then for each even k the conclusion of
)o‘oTheorem 3 holds ((3.3)). In particular Elf(X)] 1/(1 +/z

Proof. For every integral k >-0, f(k+l)(x)/f(k)(x)- O(1/X), SO Proposition 3 shows
that f(k)(x) has EZARV and Theorem 3 may be applied when k is even.

PROPOSITION 6. If S(X) satisfies (4.1) andX is as in Theorem 3 then

(4.2) E[S(1 + X)]--- . a,E[ll(1

Proof. Taking the first k terms in (4.1) we have, from the definition of an asymptotic
expansion S(x) i=lk ai/xo‘’ +f(x) where f(x) o (x-o‘,‘). Now for x > 1, f(x) is clearly
bounded, say by K and for any e >0 we can choose an re(e) to satisfy If(x)[ < e/x-’"
for x > m. We then have If(x)l < K2 + e/xo‘" and taking expectations

E[lf(1 +X)[]<K2m-I(1-p/2) +e(1 +Np)-o‘,‘ [1 +o(1)]<2e(Np)-o‘’

for N sufficiently large, where we used Proposition 5 to asymptotically evaluate
E[(1 +X)-o‘" ]. The last inequality however means precisely that

E[If(1 +X)l] o[(Np) 3,

whence it follows that for each k

k

E[$(1 +X)]= Y. aiE[1/(1 +X)O‘’]+E[1/(1 +X)o‘]o(1)
i=1

which is the definition of (4.2).
Using Proposition 5 we calculate as an example and for our future reference the

three term expansion of E[1/(1 +X) + where X B(N 1, p) and a > 1"

(4.3) E[1/(I +X)a+I] 1 (a2+a)q
(Np)+

1+
2Np

q([3a4 + 14a 3 + 21a 2 + 10a]- [3a4 + 10a 3 +9a2 + 2a]p)
+ O[1/(Np)3]]J+ 24(Np)

The first two terms are easy to verify. The exponent a + 1 was chosen because the case
a 0 can be computed exactly as the first term in (4.3) with exponentially small error
and (4.3) is easily seen as confirming this through three terms. As usual, q 1- p. We
proceed now to treat some important examples.

A special case of particular interest is Si (x) s/x. Using elementary techniques, we
can compute the relevant expectations explicitly in closed form:

1 -[1 p(N)]N(4.4) L(p) si Np(N)
where we write p(N) to remind ourselves that p depends on N.

In (4.4) the term [1 p(N)]N is exponentially small, i.e. is o[(Np)-k ] for any k. This
is because Np-. o. Thus (4.4) has the asymptotic expansion

L(p) s/Np +e.s.t. (e.s.t =exponentially small terms).

We now replace the exact equations for the equilibrium, (3.2), by their asymptotic
expansion. Solutions to these asymptotic equations will be denoted with an asterisk,
p*, C*. We have

M

(4.5) C*=si/Np(N)+e.s.t.; ,p 1
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with solution

M M
(4.6) p* slE s; c* E slN.

Since p*, C* satisfy the exact equations with exponentially small error we would hope
that (4.6) is in error by a similar magnitude. We show this next.

PROPOSITION 7. If Si(x)= si/x then the error in (4.6) is exponentially small with
respect to powers o] 1/N, i.e. Ipi-p* o(N-k); IC-C*I o(N-k) ]or every integer k.

Proof. It is easy to show that C C* +e.s.t. We have Li(p)= si/Np +e.s.t.
C* + e.s.t, and C C* + e.s.t, follows from Proposition 2. With this result established
we can write, for any k, C*+ o(N-k) si/Npi + o[(Npi)-k]. Assuming for some that
pi > p*i + o(N2-k) then produces a contradiction and the proposition then follows.

The asymptotic solution (4.6) has intuitive appeal" One chooses alternative
according to the relative weight of si. The common payoff to the players is the total
amount of money divided by N. Because some alternatives may not be chosen by
anyone (an event with exponentially small probability) the value of C is actually slightly
less than C*. Now consider the game G of individual vs. director. Proposition 4 shows
that each player can asymptotically guarantee himself a fair share of one Nth of all the
money. On the other hand from (3.6), we have Sl(Np*i)=-si/(Np*i)2=-C*/Np*i
-(C*)2/si whence asymptotically optimal for the game G is the asymptotic equilibrium
strategy p*. Thus we have the very satisfying result that the intuitively appealing
relative weight strategy asymptotically guarantees each player his fair share of the spoils
even with hostile, collusive opponents.

A more general class of payoff functions, which we consider next, is

(4.7) Si(x)" , Sik
‘‘+k, where Sio # O.

k=OX

The payoff functions thus decrease at the same algebraic rate and are O(1) with respect
to each other.

The first order asymptotic equations are

C* =[Sio/(Np* )‘‘][1 + o(1)]

with solution

(4.8) p’ (Sio) 1/‘‘ (S]0) 1/‘‘ C*
M

1/‘‘/(Sio)

It is not difficult to show that p/* and C* are in fact asymptotic solutions for the
equilibrium; we will prove this more generally for the expansion discussed below. We
observe from (4.8) that if c is large then we have roughly p*i =I/M, C*
[I-I sio]/M(M/N)". A later example with payoff functions exponentially decreasing
will have solutions asymptotically exhibiting this behavior.

We can treat the payoff functions in (4.7) in greater asymptotic detail by replacing
E[Si(1 +X)] with its asymptotic expansion calculated using Propositions 5 and 6 and
substituting into the equations (3.2) for the equilibrium. Asymptotic solutions of these
equations will then hopefully give us higher order approximations to the exact solution.

The expansion of E[Si(1 +X)] (where X.-.B(N- 1, p)) is

aii(P) a__L(p)(4.9) E[Si(1 +X)]" iE_0 (Np)+



ASYMPTOTIC EQUILIBRIA 129

where aij(p) is a polynomial of degree/" in p, with coefficients depending on a and Sik for
k-<j. Truncating the expansion (4.9) after k terms results in an error which is
0[1/(Np)’/k/l]. We then seek solutions of the asymptotic equations for the equilibrium

M

(4.10) C*--.L*(p:), i= 1,... ,M; .,p*i 1.

To solve (4.10) we assume asymptotic expansions for p/* and C* of the forms
P/* j=o bgi/Ni and C* --0 ci/N’/i. Then we reexpand (4.10) in inverse powers of
N and equate coefficients. The result is a sequence of equations for the coefficients. The
lowest order equations (resulting from equating coefficients of 1IN in C* "--L*(p*i)
and 1/NO in p/* 1) provide the first order solution given by (4.8) with bg0 in place of
p/* and Co in place of C*. Successive sets of unknown coefficients can then be explicitly
computed in a recursive fashion as the solutions of simple linear equations. We explain
further directly.

In the reexpansion of (4.10) using the assumed expansion for p/*, the coefficient bgi
first appears in the coefficient of 1IN’/ as a result of the expansion

(Np )-o, 1 oz k.,o= bioN
+’’" (Nabo ).

Thus bgi first appears linearly. Also appearing in the coefficient of 1/N’+ may be {bik}
for k < j. Recalling that (4.8) gives the solution for bgo and Co, we inductively assume that
bgk, l, M k l, /’- i and ck, k l, ]-- i have been computed.
Equating the coefficients of 1IN’/ in C* L*(p*i) and 1IN in p/* 1 givesM+ 1
equations for the m + 1 unknowns bgi, 1, , M and ci of the form

M

(4.11) C]/Co=fi(bik, k </)/bio-cebii/b,o, i= 1,... ,M; E bi]--0,
i=1

where fi is a multinomial in its arguments. The unknown coefficients can then be trivially
solved for, e.g. sum the set of M equations over using Y,1 bii --0 to solve for ci, then
substitute back and solve for the bii. We have therefore shown that the coefficients in the
asymptotic expansions of p* and C* can be recursively solved for in a very simple
manner. The explicit equations for j 1 are"

(1 bio)(a 1)a + 2Sil/sio ol.bil M

--; bix O.Cl/Co
2bio bio i=1

Computations for higher order terms, while elementary, are also messy. In practice
of course, the work is simplified in dealing with the particular parameters of the problem
at hand. It would seem, in general, that a two-term expansion ought to be adequate for
large enough N. One would want the second term in the event that one’s expenses in
playing the game are of the order of the equilibrium payoff so that the net payoff might
be the same order as the second term in the expansion of C*.

We prove now that p/* and C* are in fact asymptotic expansions of pi and C.
THEOREM 4. Let Si(x) be given by (4.7) and suppose C*,p*i satisfy C*+

O(N--k) Li(p*i ), 1,. , Mand k >= 1 a fixed integer;

M

Zp* =1; Np*(1-p)-c.

Then C C* + 0(N-’-k) and Pi P*i + 0(N-k), 1,. , M.
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Proof. By Proposition 2, we must have C C*+ O(N--k). If Pi P*i + O(N-k)
does not hold then given any R > 0 there are infinitely manyN such that for some index
](N), pj(N) >p +RN-k. Then Lj(pi) < Li(p +RN-k). Using (4.9) to compare the
asymptotic expansion of Li(p and Li(p +RN-k) we see that for N sufficiently large
(possibly depending on R)

Lj(p +RN-k) <L(p cRN--k C* + O(N--) cRN--
and c > 0 is a constant independent of N and R. Finally,

C* + O(N--k) C Li(pi) < Li(p +RN-k) < C* + O(N--k) cRN--k

and for R sufficiently large a contradiction is obtained.
Consider now the game G for the class of payoff functions in (4.7). In order to apply

(3.6) we first consider Si(x) s/x. The first order equilibrium for the non-cooperative
game is still given by (4.8), with si in place of s0. Applying (3.6), we have S(Np’)=
-tsi/(Np*i)+l=-tC*/(Np*i) so that i0=p/* is asymptotically optimal for G.
Consider now the general case of (4.7). Recalling the proof of Proposition 4, if the
individual uses p* (or any other strategy for that matter) the optimal allocation by the
director can be assumed at least equal to x/ for each alternative for purposes of
computing the asymptotic payoff to the individual. On the other hand such asymptotic
payoff can then be asymptotically obtained by replacing Si(x) with So/X and in this
latter case the individual receives at least C[1+o(1)] if he uses p*. Thus p* is still
optimal asymptotically in the general case.

PROPOSITION 8. For payoff functions of the form (4.7), the asymptotic equi-
librium of (4.8) is asymptotically optimal for the game G and guarantees a payoff
c[ +o()].

The next class of payoff functions we consider is Si(x)= si/x’ +e.s.t. We assume
the a are not equal and obey the ordering 0<a < 32 <’’" <aM. Determining an
asymptotic expansion for the p in this case is a much more difficult task. We are unable
even to say what form the expansion has other than p ,b/N" and similarly for C.
These difficulties are demonstrated in calculating a two-term expansion below.

Recalling from (4.3) the two-term expansion of E[1/(1 + n)’]:

Si [ Oi(i--1)qi ](4.12) E[si/(1 -- hi)ai]
(Npi)a

1 +
2Npi

+ O[1/(Npi)2]

The equilibrium equations are C E[s/(1 + n)’ Li(p); ,4pi 1. It is easily seen
that only pl can be bounded away from zero for large N so that pl 1; pi- O, 1.

If pl - 1 then C (s/Nl)[1 + o(1)]. To satisfy the equations C Li(pi) for 1
requires that

bi(4.13) pi=-,[l+ri(N)] wherebi=(si/s)/i, fli--1-Otl/Oti, ri(N)=o(1)

and (4.13) holds for all i. Note that 0 <

_
< 1 for 1.

MObserve next that the constrmnt p I can only be satisfied if -b2/N appears
as the second term in the expansion of pl. In that case we can evaluate C to two terms as

(4.14) C s--2-1 [1 + albz/Nt].N

The second terms in the expansions of pi for > 1 are now obtained by satisfying (4.14).
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Substituting (4.13) into (4.12) and retaining the two largest terms:

(4.15t Li(Pi)---N------i [1 + ri(N)]’ + 2biN"’/"’J"
The ri(N) are then chosen to give the same two-term expansion as in (4.14).

If ctl/cti >/32 then we must pick

(4.16) ri(N) "-b2a1/(aiNt32); i: 0ll/0l > 2,

and if 01/O <2 then we must pick ri(N) to cancel the other term in the brackets in
(4.15), i.e.

cti--1(4.17) ri(N)---.....d/,; i" ai/ci </32.

(The case Oll/Oli 2 may be supplied by the reader.)
The two-term expansion for the equilibrium strategy and payoff is then given by

(4.131, (4.161 and (4.17); and (4.14) respectively.
The further development of the asymptotic expansions is apparently a rather messy

exercise though no further conceptual difficulties should arise. We have seen that even
the form of the expansions depends on the particular values of the ai.

Consider now the game G with payoff functions of the form Si si/x ti -- e.s.t. From
(4.14), C (Sl/N)[1 + o(1)] SI(N)[1 + o(1)]. Thus for this game it is a trivial obser-
vation that any strategy for the individual satisfying ffl--> 1 guarantees him a payoff
C[1 + o(1)] and thus is asymptotically optimal. We note though that the strategy of (3.6)
is not asymptotic to the equilibrium strategy (though both satisfy/x-> 1 and are thus
both asymptotically optimal for G). Indeed, (3.6) provides i (a x/ai)p as the
asymptotically optimal solution. It is not immediately clear which strategy for the
individual provides a better guaranteed payoff to second orderwe have not investi-
gated this question.

5. Two more examples. Below we find the first order asymptotic equilibrium
strategy for two examples which exhibit interesting behaviors. In the first example,
although the payoff functions are asymptotically equal (i.e. have limiting ratio of 1) the
first order equilibrium strategy does not share the same property. In the second example
although the payoff functions are not asymptotically equal the first order equilibrium
strategy has the p asymptotically equal to 1/M.

The first example has payoff functions

1 ai
(5.1) Si(x)

log (x + 1) [log (x + 1)]2.

It is easily verified that [log (1 + x)]k has EZARV for any k. The analysis below can be
equally well carried out if (5.1) is only an asymptotic relationship rather than equality.
Indeed it is easy to show as in Proposition 6 that one could in that case simply take the
expectation of both sides to obtain an asymptotic expression for E[Si(1 + X)].

The first order asymptotic equations are

M

(5.2) C*[1 + o(1)] 1/log (Np*); E P* 1.

We observe that (5.2) is satisfied by any constant distribution {p*} (p/* 0). Thus the
first order equilibrium strategy is not determined by (5.2) although Proposition 2 does
imply that C (1/log (N))[1 +o(1)]. (Or more simply, since one of the pi must be
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greater than 1/M infinitely often we must have C--- 1/log (N).) This degeneracy can
only be resolved by including the second order terms in the expansions of E[Si(1 + ni)].

We have, using Theorem 3,

E[1/log (2 + ni)] 1/log [(N- 1)p, +2]+o(1/Npi)= 1/log (Npi)+o(1/Np,).

The requirement C--- 1/log (N) leads to log (pi)/log (N)= o(1) so that we may write

1 1 1
log (Npg) log (N)[1 +log (pgl/log (N)] log (N)

log (pi)
[log (N)]"

A two-term expansion of E[Si(1 +ng)] C using the above gives asymptotic equations"

1
(5.3) C* +

log (N)
ai -log (P/*)

[1 + o(1)].
[log (N)]2

If we put C* 1/log (N)+ c/[log (N)]2 and then choose p* to satisfy

M

(5.4) c ag-log (p*); p* 1,

then (5.3) will be satisfied. Our usual technique will show that in fact C C*, pi p* is
satisfied by the equilibrium. (That is we assume Pi p* +o(1) doesn’t hold. Then we
must have pg > p* + e, pj < pf e for infinitely many N, where (N), ] ](N). This
will produce a contradiction in (5.3).)

From (5.4) our asymptotic equilibrium is then

1 c exp (ai)
(5.5) C-log(N)+[log(N)]2[l+o(1)], Pi Eg exp (ai)[1 + o(1)]

where c log [y./M__ exp (ai)].
We see then that in general, although the payoff functions are asymptotically equal,

the pi will not be.
Considering the game G for these payoff functions, we find the situation rather

uninteresting to first order as was the case with the previous example. Any constant
distribution used by the individual will asymptotically guarantee him a payoff of
C[1 +o(1)]. An investigation into the possible second order optimality of the equi-
librium might prove worthwhile but we will not attempt that here. We note that (3.6)
admits the asymptotic equilibrium as a solution.

Our next example has payoff functions which are exponentially decreasing. We will
see that such behavior in the payoff functions leads to an equilibrium strategy which is
asymptotically equally distributed, provided the payoff functions are of the same order
of magnitude.

We consider Si(x)--Si exp (-xa). If a <1/2, as we shall assume, then Si(x has
EZARV by Proposition 3. The first order asymptotic equations are

M

(5.6) C*=siexp[-(Np*i)a][l+o(1)]; Ep* 1.

We look for a solution in the form

C* c exp [-(N/M)’];

Then (5.6) will be satisfied if

c sg exp [-abi/M’];

p* [l + bi/N’]/M.

M

bi=O
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which in turn implies

C Si bi log
i=1 a

Again, it is not difficult to prove that p* gives p correct to second order and that C is
asymptotic to C*. Thus p is asymptotically equidistributed among the alternatives.
Applying (3.6) to this example shows that p 1/M is asymptotically optimal for the
game G.

6. Application to a dynamic game. As a final application of our asymptotic analysis
we consider the following game" Again we have N players,M alternatives and the same
hypotheses on the payoff functions, but in this game the alternatives are chosen
sequentially in the order 1, 2, , M. The number of players remaining at any stage is
known to each remaining participant.

We consider first the exact calculation of the symmetric equilibrium. This is easily
accomplished, in principle, using backward induction. Suppose we are at the stage of the
game where only two alternatives remain with payoff functions S_x and S and j
players are left in the game. This is clearly our original game with two alternatives, with j
taking the place formerly occupied by N. We can therefore calculate the equilibrium
strategy and payoff as a function of/’. Denote the payoff by C2(]). Taking one step
backwards, consider the stage of the game where three alternatives remain, along withj
players. It is not difficult to see that the equilibrium strategy at this stage, which consists
of a probability of choosing alternative M-2 as opposed to passing, may be found by
considering a two alternative game with payoff functions S_ and C2 and j players.
Solving this game gives the equilibrium payoff function C3(]) and the equilibrium
probability of choosing alternative M-2 as a function of j. The procedure continues
until the M stage strategy is determined.

We inquire next as to the asymptotic behavior of the equilibrium. It turns out that,
roughly speaking, the added information of the sequential game is not of any value to
first order. Consider first the sequential game played as individual versus director. It is
clear that the sequential nature of the game gives the director no new information: his
allocations may as well be determined prior to the start of the game. The value of the
game to the individual must be larger for the sequential game: after all, he can always
use his maximin nonsequential strategy. These observations hold for all N. For large N
however, the director can hold the individual to an asymptotic payoff of C(N) by using
the deterministic strategy of allocating [Np/* players to alternative i, where is the
greatest integer function and p/* is any solution to the first order asymptotic equations
(3.4). On the other hand, under the conclusions of Proposition 4, namely (3.5) and (3.6),
which hold in particular for our examples, the individual can always guarantee himself
C(N)[1 + o(1)] with a non-sequential strategy.

In practice of course, a sequential strategy is advisable. Asymptotically, one would
expect that some improvement could be gained if the individual simply updates his
asymptotically optimal strategy at each stage, taking into account the number of players
actually remaining. Against an optimal director however, the relative payoff increase is
at most o(1).

As for the noncooperative symmetric equilibrium in the sequential game, it can
probably be shown that if each player uses the asymptotic equilibrium strategy in a
sequential manner (updating N after each stage) the remaining player will be held to a
payoff C[1 +o(1)]. Indeed it is probably true that if N-1 players simply ignore the
sequential nature of the game and play the asymptotic equilibrium, the remaining
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player will still only obtain C[1 + o (1)]. We will not try to prove these conjectures here
for any general class of payoff functions. However,. one can perform an explicit
calculation in the examples treated; we briefly consider Si si/n ’, 1, , M.

Let P(/’) be the equilibrium probability of choosing the alternative when stages
remain; thus 1-P is the probability of passing when stages remain. Using (4.8) we
have

(6.1) e2(j) (s4-1)/ ., (Sk C2(j) (Sk)/’ (j).

Thus, when two stages remain and j is large, P2 and C2 approach the asymptotic
equilibrium values; but this was obvious to begin with.

Consider now three stages remaining. P3 and C3 are calculated, as described above,
using the payoff functions S_2 and C2. We showed however that the asymptotic
behavior of P3 and 3 depends only on the asymptotic behavior of S-2 and 2, which
we have calculated above. (The asymptotic specification of (4.7) lead to (4.8).) Note that
the payoff function C2(j) is of the form (4.7). We easily calculate

(. (]l(s_l/ / E (sl/" c(]l (sl// M--2 2

Again, the results in (6.2) are the same as those for the non-sequential equilibrium.
Continuing the induction backwards to alternative 1, we will obtain

(.3 P(]l(sl/ (sl/; c(]l (s)/ (])%

Suppose now that N- 1 players use the asymptotic sequential strategy above; that is,
1/ M 1/ 1/ M 1/N-1 players use P=(s) /2 (s) P_=(s) / (s) ;...;P=

(s_)//_ (s)/. Then the remaining player, by the computations above, is held
to C(])[1 + o(1)] C(])[1 + o(1)] where C is the nonsequential symmetric equilib-
rium payoff. But that strategy is actually nonsequential so the alternatives may be
chosen at the beginning; the resulting unconditioned probabilities are precisely the
asymptotic equilibrium probabilities of (4.8). Thus we have obtained"

For S s/n, a single player is asymptotically held to the nonsequential equilib-
rium payoff if the remaining N-1 players use the asymptotic equilibrium strategy of
the nonsequential game.

Of interest for these sequential games would be first, a higher order asymptotic
calculation of the effects ol the sequential assumption; and secondly some numerical
examples comparing sequential and non-sequential, exact and asymptotic, aspects of
these games.. Fe efis. We have, along the way, suggested some further areas of
investigation in connection with the class of games considered in this paper. In this
section we briefly consider some issues peripheral to the analysis carried out. We make
some unsatisfactory remarks concerning the accuracy and utility of our asymptotic
results; and then we present some alternative asymptotic embeddings which could be
useful in situations where our asymptotic results do not apply.

Estimating the error in an asymptotic approximation is always a dicult task. The
general rule of thumb is to estimate the error as the size of the first neglected term in the
asymptotic expansion and this could be employed for our results, where more than a
first order approximation has been obtained. An alternative is to investigate the
accuracy with which the equations C L(p) are satisfied. More precisely, the first
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neglected term in the expansion of C alone may be a better indicator of the operational
value of the asymptotic strategies. Even cruder is to take pi O(1/M) and estimate
relative error as 1/Npi, in which case M/N is seen to be the important gauge of
asymptotic accuracy. Based on nothing at all, we will suggest that M/No gives
reasonable approximations by the asymptotic results.

The asymptotic equilibrium may of course always be profitably used as a first
approximation for a numerical solution. If one is interested in computing the optimal
strategy in the game G discussed previously, then again the asymptotic equilibrium is a
good starting point, by itself or thru the use of Proposition 4. Some numerical work
would be helpful in clarifying the relationships between the exact equilibrium, the
asymptotic equilibrium, and the optimal strategy and payoff in the game G.

Summing up our thoughts on the utility of the asymptotic analysis in this paper, we
feel we have developed, in analytic form, some interesting qualitative properties of
optimal strategies in the games considered. For large M/N our results are probably
accurate but are probably best and most safely used as part of a more detailed
operational and numerical analysis of the particular situation at hand.

When we apply asymptotic analysis to a finite game as in this paper, we embed the
game in a sequence of games which exhibits limiting behavior. It may not always be
clear however what the most "natural" such sequence is for a particular game which,
after all, is described in terms of a finite set of parameters. In what follows we discuss a
few alternative sequences (other than that considered previously) which may be more
suitable in certain instances and some associated questions.

(a) It is entirely possible that the Si(n) will not be given to us in analytic form (e.g.
si/n, etc.) but rather will simply be, for each i, a set of N given numbers for which no
"natural" analytic extension presents itself. How then, if say N/M is large, shall we (or
can we) apply the asymptotic results of this paper? For instance, might we try and fit
Si(n) with a finite polynomial in 1In and then apply the results? What would constitute
a sufficiently good fit for the asymptotic results to apply? There are actually two parts to
this last question" How good is the approximation; and is N large enough that the
solution depends only on the asymptotic behavior of the analytic extension approxi-
mating Si(n )?

(b) Consider a game where say M 10 and N 30. Then the accuracy of our
asymptotic results are suspect since N/M 3 is not very large. On the other hand, one
feels that 30 is a "large enough" number for some sort of asymptotic behavior to
manifest itself. Clearly, what is called for here is an asymptotic sequence in which M
depends on N, say M N/3 and N-->. But how does one (and can one) embed the
Si(n) for 1, , 10 in an infinite sequence of $i(n) on which asymptotic analysis can
be profitably carried out?

(c) Most generally, one may want to consider a sequence in which everything
depends on N; in particular, the payoff functions may be functions Si(n;N) of N.
Consider for instance this scenario: N commuters await a train with M cars, car
containing ki seats. Assume each commuter independently chooses one car to enter and
his payoff is one if he gets a seat, zero otherwise (or equivalently the payoff is the
probability of getting a seat). This leads to Si(n)= min (1, kiln). Typically, while N/M
is large we also expect that ki O(N/M) will hold, i.e. that the total number of seats is
less than N, but O(N) rather than o(N). It is clear that this requires the scaling of the ki
with respect to N, say ki riN/M and our asymptotic sequence of payoff functions is
Si(n;N)=min (1, riN/(Mn)) where ri is fixed by the given values (e.g. if N=200,
M 10, k, 12 then rl .6). clearly the asymptotic results of this paper will not apply;
the analysis is more difficult.
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The problem of asymptotic embedding poses some interesting mathematical
questions. Beyond this particular game, one may ask whether some classes of "large"
problems might perhaps be investigated by embedding them in some appropriate
sequence possessing asymptotic behavior and amenable to analytic techniques of
analysis.
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ORTHOGONAL POLYNOMIALS IN TWO VARIABLES OF q-HAHN
AND q-JACOBI TYPE*

CHARLES F. DUNKLS

Abstract. Two families of orthogonal polynomials in two discrete variables are constructed for a weight
function of q-hypergeometric type. The polynomials are expressed in terms of q-Hahn polynomials. The
connection coefficients between the two families involve Askey and Wilson’s 4b3-polynomials, which are
certain balanced, terminating basic hypergeometric series. The method is to consider functions on the lattice
of subspaces of a finite vector space which are invariant under the subgroup of the corresponding general
linear group which fixes a pair of nested subspaces.

By limiting methods, corresponding results are obtained for Andrews and Askey’s little q-Jacobi
polynomials, which are orthogonal on a countable compact set. The classical Hahn version of the theory,
where the underlying group is the symmetric group, has been worked out by the author in a previous paper.

Introduction. Results on orthogonal q-polynomials are often suggested by the
theory of the corresponding ordinary polynomials. The theories of the q-Hahn and
classical Hahn polynomials have some close parallels; a group-theoretical explanation
of this is the correspondence between the Hecke algebras of a finite general linear group
with respect to parabolic subgroups, and of the associated Weyl group (a symmetric
group) with respect to Young subgroups. To put it another way, q-Hahn and classical
Hahn polynomials appear in the analysis of functions on the lattice of subspaces of a
finite vector space, and the lattice of subsets of a finite set, respectively.
By analyzing the action of the symmetric group on pairs of disjoint sets, the author [8]

discovered interesting connections among Hahn polynomials, a simple first-order
difference equation, both in two variables, and a family of orthogonal polynomials
expressed as balanced 4F3-functions (closely related to Racah’s 6-] symbols). Askey
and Wilson [3] found a corresponding q-family for these (terminating, balanced
4b3-functions), and it seemed that a similar setting for them could be found on the finite
general linear group. Indeed, that is done in this paper; it turns out there is a neat
interplay between q-Hahn polynomials in two variables and Askey and Wilson’s
4q53-type. Similar results hold for a family of q-Jacobi polynomials in two variables, by a
limiting argument.

We give a short exposition on the relation of the symmetric group to the finite
general linear group. Suppose G is the group of nonsingular N N matrices over a
finite field of order q; then G can be expressed as BWB, where B is the subgroup of
upper-triangular matrices and W is the group of N N permutation matrices (the Weyl
group, isomorphic to Sr, the symmetric group on N objects). The group W is generated
by R {wl, W2," WN-1}, where wi corresponds to the transposition (], j + 1). If Wj is
the group generated by J c R then BWjB is a parabolic subgroup of G. Deleting one
point from R, say Jn := R\{(n, n + 1)}, produces a maximal parabolic subgroup BWjnB,
the subgroup of G fixing the subspace spanned by the first n basis vectors. There is a
linear isomorphism between the functions on G bi-invariant under BWjnB (these form
the Hecke algebra) and the functions on W SN bi-invariant under Wj, Sn x SN-n
(see Curtis, Iwahori and Kilmoyer [5]). These two spaces are spanned by corresponding
families of q-Hahn and classical Hahn polynomials (see Dunkl [6] and [7]).
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The results on two variables mentioned above came from functions on SN which
are St x SN_t-invariant on one side, and Sa x St, x Sc-invariant on the other (a + b +
c =N). For a q-analogue we look at the subgroup H=BW.B of G with J=
R\{(a, a + 1), (a + b, a + b + 1)} J, f-) J+b (thus Wj So x St, x Sc). Then H is the set of
nonsingular matrices of the form

a b c

a Ii * *1b

c 0 *

In [8] the action of larger subgroups like Wj S x Sb+c was used to construct
orthogonal bases (by the splitting into inequivalent representations). The 4F3-functions
appeared in the connection coefficients between the bases coming from S x St,+c and
S,,+t, x Sc respectively. Actually a third basis was obtained, as well, for the subgroup
Sa+c x St, but this is not of the form Wj in the present set-up. Here there is a difference
between the q- and ordinary theories.

Thus the approach will be to analyze the H-invariant functions with respect to the
representations of BWjoB and BWj+B. The elements of these subgroups look like

and

* 0
respectively.

We will be guided by the sequence of development and calculation used in [8], so the
aim here is to present the actual results, with brief indications of the calculations. (Thus
theorems and formulas will be stated and proved here, but the reasons why their
existence or form was conjectured are drawn from [8] and will not be further
elaborated.)

We begin in 1 with some basic facts about q-calculations and other details. Then
in 2, we do the analysis on the groups mentioned above, set up the difference equation
satisfied by functions which are invariant and in irreducible submodules, and determine
two orthogonal bases for the space of solutions, expressed in q-Hahn polynomials. In
3 the transformation from one base to another is worked out, in terms of 4(3-

polynomials. In 4 the spaces of invariant functions from 3 are transferred to the
collection of M-dimensional subspaces of the underlying vector space as domain. This
produces two general families of q-Hahn polynomials in two variables, orthogonal for
the same weight function, and which are again related by the 4b3-polynomials. Finally
in 5 a limiting argument leads to two families of "little" q-Jacobi polynomials (the
term is from Andrews and Askey [1]); these are orthogonal on a countably infinite
compact set, and likewise the transformation from one base to another involves the 4b3.
Also in this section we show how some transformations for one-variable q-Jacobi
polynomials can be derived from two-variable relations.

1. Basic facts and notation. We list here some notation, sums, and transformations
important in q-calculations. Fix a number q > 1 (mostly it will be a power of a prime
number). The q-analogue of the shifted factorial is

(a;q-1),,:=(1-a)(1-aq-1)...(1-q 1-’) forn=l,2,...,

(a q-l)0 := 1.
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The symbol (a q)n := 1-I7--1 (1-aqi-1) may also appear. The two are related by

(q,; q-1)n (_l)nqan-(.) (q-a+n-l., q-’)n
(_ 1),qa,-(.)(q-O; q),.

For convenience we will write (a) for (a; q-1) throughout. Since q > 1, the symbol
(a):=lim,_ (a),, is also meaningful; in fact it is an analytic function in a. The
statement limq_.l (qa; q)n/(1 _q)n a(a + 1)" (a + n 1) shows the relation to
ordinary shifted factorials.

The basic hypergeometric series for parameters p-0, 1, 2,..., c1, ’’’, %/1,

/31, ,/3p is defined by

O1, O2 Op+I -1p+lCD)
ill,"" tip

q :=
=, (fl-: (;i2--_). x.

The series terminates if one of the ai equals qm, m --0, 1," The series is said to be
balanced if x q-1 and ala2" cep+lq -1=/lf12

The q-binomial coefficient is also useful; for k 0, 1, 2,..., a real number x, set

k q (qk)g
-1, q-l) will be needed in forward and backward form,Heine’s sum for 21bl(q’’; q

namely

(see Bailey [4, p. 67].
The q-binomial sum is

(-i)(c-i) =(a +b),C q

j(b-c+i) (a +b)C

(1.3) 160 (ce q-l, x)- (cex)
for Ixl < 1

(x)

(or if c =qm, m =0, 1, 2,..., any x), [4, p. 66].
There is a transformation for balanced 4b3-functions" for a positive integer n, and

real numbers c,/3, 3/, , e, 0 such that q"-laO 6e3,,

[q oz, , 0 -1 -1463 8, e, 3/,
q ’q

(1.4)

( q", ,/c, ///3,0 -1 -1)on ((/O)n(/O)n. 4(D3 n--1 q q
(6)n(e),, q 0/6, q -O/e, 3’

Bailey’s proof [4, p. 56] of the 4F3-version can be easily adapted to (1.4)" consider

the coefficient of z" in

(Og; ) (n-I/ n-l/ Ogi )q 6,q e
21 q-1 Z 261 n-1 q z

q /0

=2&1 ( y/ a,y/ fl. q 2oh1 ( q z)
’, 3’ Y / q,,-1/O"
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which equality results from [4, p. 68]

q ,z 205a q ,z
(z)

If X is a finite set, then L(X) denotes the space of complex functions on X with
inner product (f, g):= xxf(x)g(x) and norm I[fl] (f, f)l/2, (f, g L(X)). If a finite
group G acts on X (there is a map G X->X, (g,x)->gx with (glg2)x ga(g2x) and
ex x, e being the identity in G), then L(X) is a G-module; equivalently there is a
unitary representation of G on L(X) (also called a permutation representation), the
action being A(g)f(x)=f(g-lx), (fL(X), g G, x X), called left translation. A
submodule of L(X) is a linear subspace which is invariant under {A (g)" g G}. For real
numbers a, b define a ^ b := min (a, b), a v b := max (a, b).

2. The general linear group and a q-difference equation. Fix a prime power q and
let GF(q) be the field with q elements. For N- 1, 2,... let GF(q)N be the column
vector space of dimension N over GF(q), and let G- GL(N, q) denote the general
linear group of this space, that is, the group of nonsingular N N matrices over GF(q)
acting on the space of column vectors.

Let denote the collection of all linear subspaces of GF(q)
denote the dimension over GF(q). The group G acts on
D’ dim o) M}, M 0, 1, , N. Thus a collection {L(M)} of G-modules is obtained.
A basis for L() is constructed by using the incidence structure of
define 03 6 L(Y) by a3() 1 if o c , else 0. Then L(D.) N=0@Pr (algebraic direct
sum) where Pr := span{o3" dim w r}. Observe that A(g)o3 (gw)", (g G, (.o ). To
get irreducible submodules we define an operator d on L(f) such that d P,. Pr-a and d
commutes with A, namely d= {" r/c , dim r/= dim - 1} for , extended by
linearity.

Then V := P (3 ker d is irreducible for 0 <= r <= N/2 (a result of Steinberg [12], or
see [7]). It is our aim to find functions in V which are invariant under the parabolic
subgroup of GL(N, q) arising from the deletion of the generators w,, W,+b from the
Weyl group (recall the introduction).

Specifically, fix nonnegative integers a, b, c with a + b + c- N and fix
with ’1 C ’2, dim ’ a, dim (2 a + b, and let mab :-’- {g G" g(a , gsr2 "2}.
Further let Ha,b+c := {g e G" g(1 (1} and Ha+,c := {g G" gsr2 ’2}, the maximal
parabolic subgroups of G containing Hac, corresponding to Ja and Ja+ respectively.

We describe the obvious basis for the Hac-invariant functions in L(D), their
values, and the effect of d on the basis elements.

PROPOSITION 2.1. The Habc-invariantfunctions in Pr, 0 <= r <- Nhave the basis {gy"
(x, y) Dr} where g,. := 2 {03" dim o) r, dim (w (’1 rl) x, dim (w (-I r2) r- y} and
D, := {(x, y): x, y integers, O<-x <-a, 0 <- y <-c, r-b <=x + y <=r}.

PROPOSITION 2.2. For (x, y) D,

gxy()r (b/l) ( /12 )(;3)q(Ul-X)(r-x-y)+y(ul+u2-r+Y)X q r-x-y q q

where Ul dim ( 71 rl), u2 dim (c (’1 rz) ul, u3 dim sc- ul u2, (sc D). The value is
zero unless x <- Ul,. y <- u3, r- x y <- u. Further if dim r then gxy() 0 unless
x ux, y u3 in which case gxy()= 1.

Proof. For a given sc, count the number of subspaces w c c of dimension r, with
dim (w (-I rx) x, dim (w (q r2) r- y in the usual way (first form o) ra in sc fq r, then
extend to w (-I r, then to o9, see [7, Proposition 3.1]).
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In the following, gy with (x, y) Dr is defined to be the zero function.
PROPOSITION 2.3. dgxy (1/(q-1)) ((qa+b --r+y+l __qa--X)grx-l _[_(qa-x+l --1)

r-1 a+b-r+l y-1 r-1
gx-X,y -F q (q q gx,y-X ).

Proof. To find the coefficients, take a particular (r-1)-dimensional o associated
r--1with gv and count the ways it can bc enlarged to an r-dimensional space in v, x+,

or gc,y+l. Indeed adjoin a vector from ’2\(’l-b-(.O), ’1\(-0, or GF(q)\((2+) with
a+b a-r-x-y-1 N a+b+yq -q q -q or q -q possibilities and divide by the overcount

(from generating the same space in different ways) qr-y __qr-v-l,q x/l --q
r--1respectively. This produces the coefficients of gx in the expressions for dgx, dgx+l.v,

or dgx.y+l.
As in [8] we set up a correspondence between Hab.-invariant elements of Vr and a

space of functions on D,
PROPOSITION 2.4. Letfbe a function on D, then ,(.yDf(x, y) grv Vifand only

iff satisfies the q-difference equation

(q-X 1)f(x + 1, y)+qa-X(qb-r+l+x+y 1)f(x, y)
(2.1) a+b-r+l+(q -qY)q f(x, y + 1) =0

for O<- x <=a, O<= y <-_c, r-b- l <=x + y <=r-l, and f(a +1, y), f(x, c +1), f(x, r-b-
1- x) taken as zero.

Let Wr be the linear space of solutions of (2.1). From the correspondence [5] of
Hecke algebras of GL(N; q) modulo parabolic subgroups to those of the Weyl group
and from Proposition 2.3 of [8] we know that

direr Wr=r/a ^b ^c ^ (a +b-r)/ (b+c-r)^ (a +c-r)^ (a +b+c-2r)+ 1

if r<-_(a +b)^ (a +c)^ (b+c)^ (N/2), and Wr {0} otherwise.
As in [8] we look for a formula relating the values of f Wr to its boundary values

f(l’, r-j), 0v (r-c)<--j <--r ^ a. The following is obtained; it can be inductively verified

using the values r x y 0, 1, 2, , (r b) v 0, and by aid of the identity

(A-I) a_R (A-1)B q+q B 1

The formula is found by changing the SN-formula ((2.2) in [8]) to a q-type expression,
multiplying by a power of q (depending on x, y, j) found by solving a difference equation
in x and y.

PROPOSITION 2.5. Let f Wr, then

f(x, y)--- r
j=Ov(r-c) ] --X q (qb)r-x-y

(-- 1)r_X_yq(i__l)(i_x)+b(r_i_yl_ (r--y)

If b >-r, the values off(j, r-j) can be chosen arbitrarily.
The correspondence of Wr to functions on prompts us to look for a group-related

inner product for Wr which uses the values f(x, y) (f Wr) directly. The inner product
induced from L(r) is the desired one, since the {gcy} are an orthogonal basis for L(O,)
(see Proposition 2.2). Further ][gyl]2 is the number of o ’r with dim (w 1)--X,
dim (w 0 (2) r- y, namely

(2.2) m xy := (ax) ( b ] (c) q(a-x)(r-x-Y)+Y(a+b-r+Y)"
r--x--y) q y
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(2.3)

Hence we define an inner product and norm for Wr" for fl, f2 Wr,

By the group invariance we know there must be two orthogonal bases for Wr
corresponding to the orthogonal splitting of Vr into (inequivalent) irreducible sub-
modules for Ha.b+c or H,+b.c respectively (each such submodule contains at most one

Hab-invariant by the branching theorem, see [8, (2.3)].
From the results for Su we expect solutions to (2.1) expressed in terms of q-Hahn

polynomials. We collect some results (from [7]) for reference, in bases q-X and q. For
integers a, b, c, m <_-a ^ b ^ c ^ (a + b-c), a (form of) q-Hahn polynomial is

E,,(a, b, c, x; q-a) := (q ),q(7)
i=o /" q

(2.4)
(q -b+m-1 )i qi(a+b-m+l)(q,,)i(qC-X),,,_iq(X-i)(m-i)(q-)i

q(-)(qa).(q),3&2 (q q

orthogonality:

(ax)(b)q
=0v(c-b) q C X q

(a-x)(c-x)

a+b-m+l ,q - -1)q,q

(2.5) Era(a, b, c, x; q-a)E,,(a, b, c, x;

--tmn(q )m(qb)m(qm)m(qa+b-m+l)m(a +b-2m) q
c -m /q

(discovered by Andrews and Askey);

(2.6) special value" E,,,(a,b,c,c;q-a)=(-1)"q’m(qb),,(qC),,;

special degree"

m(a+c--1)

(2.7) E,.,,(a, b, m, x; q-’) (q")m(q"),,,q (7)

(q-b+m-1)x qX(a+b-m+a) for X O, 1, m,
(q)x

difference equation:

(2.8) (q’-x-1)E,,,(a,b,c+l,x+l;q-X)+(qO+b--q’*-X)E(a,b,c+l,x;q -1)
(qa+b-c -q)Em(a, b, c, x; q-a).

The functions E,,(a, b, c, x; q) are defined by replacing q-X by q. Further cal-
culations give the following (in base q-X symbols for convenience)"

E,,.,(a, b, c, x; q) (q),q-’(+)+(7)

,,(7) (q-b+-,)i
(2.9) Y’. (q’C)i(q )m-iqi(-x-m+i)

i=0 q (qa)i

(-1)’q-’(+b+c)+(7)Em(b, a, c, c-x q-l);
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(2.10)

(2.11)

(2.12)

orthogonality"

c a

special value:

special degree"

E,,(a, b, m, x; q) (qa)m(q’),q-m("+")+(7) (q-b+m-a),
(q,).

qx(b-’:+X)Em(a, b, c, x; q)E,(a, b, c, x; q)
X q

8mn(qa)m(qb)m(qm)m(qa+b-m+l )m

(a+b-2m) q-m(2a+b+c-m+2)"
c -in

Em(a, b, c, c; q)= (--1)"q-m{’*+b+-"+a)(q’).,(q).,

x=0, 1,2,...,m.

Keeping in mind the weight function and the SN case, we try for a solution of the
form f(x,y)=g(y)E,,(a,b,r-y, x; q-a). Using (2.8) we see that g must satisfy
g(y + 1)= ((1 --q"--b+r-a-Y)/(1 _qC-y))g(y), and (2.12) shows that g(y)= Er_,,,(c,
a + b- 2m, r-m, y; q) works. As in [8] one can show that nontrivial solutions are
possible exactly for 0 v (r-c)<-m <=a ^ b ^ r ^ (a + b-r). These will be denoted by
4,,(x, y):=E_,,(c,a +b-2m, r-m, y; q)E,,(a, b, r-y, x; q-a).

An aside remark: we have decided to use this mixed-base expression, although by
(2.9) it would be possible to express the E_,, in base q-a. However the present
expression parallels the SN-version as well as indicates the (a, c) symmetry more neatly.

The orthogonality relations for {br,,} (from (2.3), (2.5), (2.10)) are

(Ch.,,,6r,,) 8,,,,,(q").,(qr--’*),-,,*(q )m(q6)m

(2.13) (qa+b-m+l )m(qC)r_m(qa+b-2m)r_m(qa+b+c-m-r+l )r-m
m(2a+b+2c+3r-2m+l)-r(a+b+2c+2)q

Observe that the difference equation (2.1) and the weight my in (2.2) are
essentially invariant (multiplied by scalars) under the interchange of a with c, x with y,
and q with q-1. By applying this symmetry to bm we obtain the other orthogonal family
of solutions of (2.1),

,k(X, y):=Er_,(a,b+c-2k, r-k,x; q-a)E,(c, b, r-x, y; q),

with Ov(r-a)<-k<=b ^c ^rA(b+c-r).

The orthogonality formula for these is

(2.14)

--,(qb),(q)k(qb ),

(qa)r_k(qb+e-2k)r_k(qa+b+c-k-r+l)r_k
-k(b +2c +3r-2k 1)+r(a +r- 1)

"q

3. Expansions and connection coefficients. We will use orthogonality and Pro-
position 2.5 to develop a manageable expression for the expansion of an arbitrary
element of W in terms of {bm}. Then we will apply it to ffk and get the connection
coefficients in terms of balanced 4b3-series.
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Suppose f W and it is desired to express f=],c,,O,. The orthogonality
relations holding along lines of constant y show that there is a formula

a,,,=Y.x (ax) \
( b

/
q(a-x)(r-x-Y)f(x, y)E,,(a, b, r-y, x; q-l)

q r-x-y q

times an expression in m, y, a, b, c, r (requiring y _-< r-m). This is a double sum (one
more for En,) but can be reduced to a single sum.

THEOREM 3.1. Let f e Wr, then f EmOlm6rm with
r(a+b+c +-l)-m(a+c+2r-m)

am =(-1)
q

(qC)r_m(qm)m(qb)m(qa+b-m+l )m(qa+b-2m)r_.m(qr-m)r_m

f(], r-])
(qC)r-](q )/(q +b +l)i (__l)q-(a+b++()

j--Ov(r--c) (q

for Ov (r-c)<--m <--a ^ b ^ r ^ (a +b-r).

Proof. This is a straightforward q-adaptation of the proof of Theorem 4.1 in [8]. In
this case we arrive at the sum

y(_l)XEm(a,b,r-y,x’q-)
(q")x(qi-X)i-.,

The finite q- binomial sum (1.3)

leads to the identity

-xi-+(9".q

(q),
Y _l--X (qNx)u
=o(q ).

q-X(i-1)+() M

(-1) i-x di(qX)i- (-1)iq ()di
x=O (qX)x(q )i-x i=o

(arbitrary constants d, positive integer M), a finite q-difference formula for poly-
nomials in q. This applies to Em in its 3052 form (see (2.4)).

We apply this formula to f Or.
THOaM 3.2. For Ov (r-a)<=k <=b / c /x r /x (b +c--r),Ork ,ak,&r,, where

o,m =(-1) r+k+m
qA(qa)r-k(qr)m(qb)k(qa+b+c-r+l )m

(q’)m(q’+b-"-+ )(qa+b-2")r_,.(q’)m
a+b-m+l k b+c-k+l

.4q3(q ,q ,q ,q -1 -1)b, a+b+c- r+l q q
q,q q

and A (r k m) (a + b + c + 2r + 1/2) + (m2 + k 2 r2) + ak.

Proof. We apply Theorem 3.1 to f 0rk, using the values

@k(j, r--j)= (qa)r._k(qr-k)r_k(q-"-c+r+k- )i((q’)i)-’(qb):
(qr-i)(__l)kqi(a+b* c-r+l)+(2k -k(b+c+2r-k)+()

(from (2.7), (2.11)). This results in Cn, S times an expression not. involving j, where

m^(r-k, (qC)r_j(qm)j(qa+b-m+ )j(q-b- c+r+k- )i(qr-i)
S Y k (_ 1)Jq j(c-r)+(i2).

j=0v(r--c) (q-)i(q’)i
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Note that (qr-i)k (qr)k(qr-k)i/(qr)j. Further replace (qC)r_ by
q-iCc-r+l-()(--1)i(qC)r/(q-C+r-1)i, which is valid if c _->r; but if c <r, consider instead
c + e with 0 < e < 1/2 and take the limit of the expression as e 0. Then

a+b-m+l r-k -b-c+r+k-1

S (qC)r(q r) k 43 (q q q q-c+r-- --1--1)q,q
q ,q ,q

which is balanced. The problem with c < r, and the lack of symmetry in (a, c), (m, k) can
+b-m+1be overcome with the transformation (1.4). Put n m, 7 qr, 0 q’ to obtain

S (--1)mq -mb+(’)
(qC)r-m(qb)’n(qa+b+c-r+l)m(qr)k

(qa)m
a+b-m+l k b- c-k+l

b a+b+c-r+l q q
q ,q ,q

The restriction on c can now be ignored.
We have thus found an application for the balanced 443-polynomials of Askey and

Wilson [3]. Note that the 41J)3 in Theorem 3.2 can be considered as a polynomial of
+b-m+1 k b+c-k+ldegreekinq +qa or as a polynomial of degree m inq +q

COROLLARY 3.3. The values ofamcan be found in closedform (no sum) for k =0
ifa >= r, k r a if r > a, k r if b >- r, k b ifb < r. The values of the 44)3 in Theorem 3.2
are 1 ilk=O;

qm(r-,) (q,,)m(q,+,-r)m/((qr),,,(qb)m) if k r- a,

q,,(c+)(q,+b-r)m(qr-C-,)m/((qr),(q,,+b+c-r+a)m) if k b,

qm(b+c-r+a) (qa)m(q-C+r--1)m/((qb)m(qa+b+c-r+l )m) if k r.

Proof. In each of the latter three cases the 43 reduces to a balanced 3(2 which is
done by Jackson’s sum ([4, p. 68]; put c y in (1.4)). [

COROLLARY 3.4. For 0 v (r c) <- m <= a ^ b ^ r ^ (a + b r), dr, Y,[3,,,4,r,, where
B

mk (--1) r+m+k
q (qr)k(qb)’(qC)r-’(q’+b+c-r+l )"
(qk)k(qC)k(qb+C-t’+ )k(qb+C-2k)r_k

a+b-m+l k b+c-k+l

b a+b+c-r+l q q
q ,q ,q

and B (k + m r) (a + c + r + 1/2) + 1/2(r2 m 2 k 2) ak.
Proof. Clearly tmll0kll2- (m, ,k>- Okml]dp,.mll2. Use the norms from (2.13) and

(2.14). 71
The orthogonality of the 4b3-polynomials is implied by their being connection

coefficients for two different orthogonal bases for the same space.
PROPOSITION 3.5. 2ml](rm]]20kmOl.lm alllOrkl]2 with 0 v (r c) <- rn <-- a ^ b ^ r ^(a +b-r), and Ov (r-a)<-k, <=b c ^ r / (b +c-r).
Proof. Both sides have the value (6r, rl). [’]

4. General q-Hahn polynomials in two variables. Recall from 2 that Wr cor-
responds to a space of functions on fl, under the mapf--Y,yD,f(x, y)gy, (re Wr).
The values of gy(), : e f, depend on the integers ul, u2, u3 where u dim (sc sr),
ua dim ( sra)- u, u3 dim : -u ua (see Proposition 2.2).
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THEOREM 4.1. The functions Crm, trk in Wr correspond to the functions
crm(Ul, U2, Ua):=q(r-m)(u*+u2+u--r)Er-m(C,a +b-2m, Ul+U2+ua-m, ua;q)

Em(a, b, u + u2, Ul; q-X),
g(u, u2, Ua):=qk("l++-)E-(a,b+c-2k, Ul+U2+u3-k, ua; q-l)

Ek(C, b, U2 + U3, U3; q),

respectively.
Proof. From Proposition 2.2 we see that

(Ul, u, u)=

(Ul) ( U2 ) (7)q(Ua_x)(r_x_y)+y(u+uz_r+y).
x q r-x-y q

This sum can be done by the following projection formulas for the E-functions, which
are the q-analogues of Gasper’s formula (2.5) in [9]"

(4.1)

., (d- u) ( Ux) -.,.u-x) -1)q E,,(a,b,c,x;q
C--X q q

(proved by using (2.4), then

(qX)(qC-X),._qX-im- (d- u)CX

d-m(c m) Em(a,b,d,u;q-)
q

(u) q
q X q

(c-x)(u-x)

__(qU)j(qd_U)m_jq(m_i)(u_i) (bl--) (d-u-m +j) q
X-- q c m -x +j q

(u--x)(c--x--m+j)

which can be summed over by x by Heine’s sum (1.1));

C X q q

(a-u-c+x)E.(a, b, c, x; q)=q re(d--c) d-m) E,.(a,b,d,u;q)

(proved by usin.g (2.9) and proceeding similarly, summing over x by (1.2)).
Similarly g’rk(Ul, U2, U3) can be evaluated, summing over y first, using (4.2), then

over x using (4.1). 71
COROLLARY 4.2. rk ZmOlkm(rm and tr 2k[3mkrk.
Proof. These relations carry over linearly from Theorem 3.2 and Corollary 2.4. l
The functions and 4k can also be obtained as special cases of results in [7,

Thms. 4.19 and 5.6]. These express intertwining functions for a larger class of
subgroups and representations than studied here. The advantage of the present
development is that it is selfcontained, and less technical and involved than that of [7].

Each I)M is a homogeneous space for GL(N, q), corresponding to the subgroup
BWj,B (see the Introduction). The restriction of Vr to I)M is isomorphic to Vr if
r _<-M ^ (N-M), else zero (Schur’s lemma). We have produced two orthogonal bases
for the Hab-invariant functions in L(IM), namely the sets {d" 0--< r<-M ^ (N-M),Ov(r-a)<=m<-b ^c ^r^(b+c-r)} and {k’O<-r<=M^(N-M), Ov(r-c)<-k<-_
a ^ b ^ r ^ (a / b r)}. The orthogonality for different values of r is a result of the fact
that Vr is not equivalent to Vs if r s.
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To get actual orthogonal polynomials in two variables, we set U2 M- Ul --/’/3 then

4rm is a polynomial in q" and q-U3 of total degree r, and degree m in q-1 (the result of the
Gram-Schmidt process applied to 1, q-’3, q ux, q -2u3, q ux-u3, q2Ul, ). On the other
hand, rk is a polynomial in q"l and q- of total degree r, and egree k in q-; the

orthogonalization of 1, qua, q-,, q2U,, q,,-, q-2U3,..., yields 00o, 10, I11, I/]20, I/]21,
22,

The weights for L(fM) in terms of the coordinates (Ul, u3) are given by

(4.3) ( a ) ( b ) ( c ) q
,a_u )(M_u_u3)+u3(a+b_M+u3)

u q M- u- u3 q /’/3 q

the number of M-dimensional subspaces o satisfying dim (to (q ’) u, dim (to fq ’)

To extend the validity of the orthogonality and connection results, we note that if a,
b, c_->M then the indices r, m, k are constrained only by ONto, k<-r<=M. All
expressions dealt with are rational in q’*, qb, qC with singularities at most at 1, q, q
qM-. Thus the formulas in Corollary 4.2 are valid for any qO, q, q with none in the set
{1, q, qe,... qM-}, the summations extending over 0 < m < r, or 0 < k < r as appro-
priate. Also q can be any real number greater than 1.

5. q-Jacobi polynomials in two variables. In this section we find two families of
q-polynomials in two variables, both orthogonal with respect to a measure supported
by a countably infinite compact set. The transformation from one family to another
involves the 4b3-polynomials.

Ordinary Jacobi polynomials can be obtained as limits of Hahn polynomials. For
the q-version, fix a, b, m, x, q > 1 and observe

a+b--m+l

(q ,q -1 --1)lim q mMEm(a,b,M,M-x;q-1)=(-l)m(q’)m2l q ,q

a polynomial of degree m in q-X. Andrews and Askey [1] called these little q-Jacobi
polynomials and determined their orthogonality relations.

DEFINITION 5.1. For parameters a q, q2, q3,...), fl, m 0, 1, 2, the little
q-Jacobi polynomial of degree m in q-X, base q-X is

( )\
-1 -x--1p(q a, fllq-1):=2bl q aflq--I- q ,q

aq

These are orthogonal with respect to the weight ((q-1)x/(q-)x) (aq-) at
x 0, 1, 2, , which is positive and summable if either 0 < a < q, fl < q (infinite
support), or/3 qN+ some N 0, 1, 2, and a < 0 (finite support, the degree m <= N,
these are called q-Krawtchouk polynomials by Stanton [11], and p(q-X; a,
qN+,lq-1) ((qN)m/(aq-m)m)Km(q-X _l/(aqN+l), N; q) in his notation).

The orthogonality relation [1, (3.8)] is

(5.1)

Also

(5.)

(flq-)xxo ’--: aXq-Xp’(q-X; a, ]q-1)p,(q-X; ,,/31q-)

6.,
(c/3q-) (q-).(/3q-)(1 -c/3q-’-)
(aq-1)oo (aq-1)m(aflq-2)m(----:;’7:)

pro(l; a,/31q -1) (--1)mozmq-m-(’)(iq-1)m/(aq-1)m.

mq-mOl
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We restate the above limit

(5.3) lim q-mME,(a, b, M, M-x; q-l)= (_l),(q,)mPm(q-X; q
M--

The corresponding limit for E,(a, b, c, ; q) is

a+l b+l -1,q q ).

(5.4) lim Em(a,b,M,x;q)=q-,(,+b)+(7)(qb),,,pm(q-X;qb+l, qa+,[q-1),
M--

(convert Em to a multiple of Era(b, a, M, M-x; q-) by (2.9), then take limit).
The formula (5.1) can be obtained by taking the limit of the E,n orthogonality (2.5)

with the dominated convergence theorem for sums.
We now apply the same limiting process in the polynomials br,n and 4’rk from 4.

To do this we require q,,, qb, qC to avoid the values 1, q, q2, let ul M-x and
u3 y (the constraints ul, u3_->0 and Ul+U3<=M become 0_-< y <_-x_-<M). Also we
will switch to the Ok notation for q-Hahn polynomials to avoid base-q logarithms"
indeed

(5.5) Ok(qX; ce, fl, Nlq-) := 312 (qk, aflq-k-l,q -1 -1)ceq-1, qN q q

related to Ek by Ek(a, b, c, x; q-1)=q()(q’)k(qc), O,(qX; qa+l
PROPOSITION 5.2. For 0 <-- m, k <- r

b+l -1,q ,clq ).

lim q-rMcrm(M--x X--y, y)=(--1)m(qa)m(qa+b-2m)r-m

-r(a+b+c+r)+(.) +rn(a+b+c-2m+2r+l)+-(2,.q

r,,(x, y; q,+l, qb+l, qC+llq-)
and

lim q-rMrk(M--x x--y, y)=(--1)r(qa)r_k(qb)k

+1q-k(b+c+2r-2k+l)qlrk (X, y q q

where

(rrn (X, y Of, , 3,1q -) :- Pr-m (q-Y’, oq-2m-l, /Iq --1)

P,,, (qy-X. -,ce, /[q-1)q

b+l c+l,q Iq-),

and

"ffilrk(X, y Ce, /, TIq -1) := Pr_k(q k-x ;Ce, flTq -2k-1 Iq-)
-kxq (q)kOk(q -’" ,,/,xlq-a).

Proof. This is a straightforward calculation using (5.3), (5.4) and (5.5). 71
The functions r,, qrk are defined if c and /3 avoid the values q, q2 qr

Observe that both ,, qrk are polynomials in q-X, q-y of total degree r, and r,, is Of
degree m in q- while rk is of degree k in q-.
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We will find the weight function for orthogonality by taking the limit of (4.3)

by (a + b + c) for which {drm} and {rk} are orthogonal sets"divided
M q

for q > 1, 0_-< y_-<x,

(5.6) lim ( a ) ( b ) (c) q(a--M+x)(x--yl*y(a-#-M+Y)/(a+b+c)M- M-X q x-y q y q M q

(qb)x-y(qC)y ax+by (qa)
(q-l) q a+b+c)x-,(q-)y (q

These values sum to one if b and c are nonnegative integers, or if ]qa < 1 and [q+b] < 1.
To prove (5.6) note that

( a_ ) /(a+b+c)=(__l)XqMX-()(q-M+x-l)x(q)M_x/(q,*+b+C)M.M x q M q

DEFINITION 5.3. For numbers a,/3, /and integers x, y with 0_-< y <_-x let

(q-1)x_y(3,q-1)y
wv(x, Y):= (q-)_y(q-)

This is a positive weight function if 1) 0<a<q, 0<fl<q, <q; or 2) 0<a<q,
-q < fl < 0 y qC+a or 3) < O, fl qb+ c+y =q for nonnegative integers b, c.

We now have two families of orthogonal polynomials for this weight function. The
orthogonality relations are calculated from (5.1) and (2.5).

THZORZM 5.4. The family {rm(X, y; a, fl, y q-a)} is a cotplete set of orthogonal
polynomials for the weight w,v, resulting from the Gram-Schmidt process applied to 1,
q-r, q-X, q-2y, q-X-y, q-2X, and satisfies the relation

E2 W13v(X, Y)dPrm(X, Y; Ce, /, mlq-a)(x, y; c, , lq-)
0yx

8r,8.... (- 1)rq--3r-(;) +re(m+ l--r) (crfl’yq 3)oo(1 OZfi’gq

-2)(ceq-)(1 ce/yq --2

o{.rr_
(qm)m(qr--m)r_m(q--)m(Tq--)r ,,(Ceflq-"--)

(cq--1) (Ofiq--r--2) (cflq -2,. -2)

For wv in case 1), the family is infinite and 0 <= m <= r; for case 2), the family is infinite
and 0 v (r c) <- m <- r; for case 3), the family is finite and 0 v (r c) <= m <= b A r.

THEOREM 5.5. The family {rk(X, y; a, J, ’lq-)} is a complete set of orthogonal
polynomials for the weight wtv, resultingfrom the orthogonalization of 1, q- ", q- ", q-2x,
q---Y, q--aY, and satisfies

rk (q:)k(qr-k)r-k(Tq )k([3Tq--k-)k(t’Yq-2:-2)r
0

(q- k (OZq-1)r_k (O,]/q -r-2) k
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For wv in case 1), the family is infinite and 0 <-_ k <-_ r; for case 2), the family is infinite
and 0 <= k <= c ^ r; for case 3), the family is finite and 0 <- k <= b ^ c ^ r ^ (b + c r).

The connection coefficients for {r,} and {frk} in Corollary 4.2 can be transferred
to the sets {r,n} and {,k}. In Corollary 4.2 multiply both sides by q-M and take the
limit as M- using Proposition 5.2; then replace qa, qb, qC by aq-1, flq-1, yq-1
respectively, obtaining

(5.7) ,(x, y; ,/3, ,rlq-*) AkmCkm.(X, y; a, fl, 3,lq-),
m=0

(5.8) frm(X, y; O, /3, Tlq-1) BmkCkmXltrk(X, y; c,/,
k=O

where

--r--2)m
Akin (--1)kq -() (q)m(aflyq

--l)m(qm) (aflq--m

Bmk (--1)kfl -kq-r-m(r-m-1)-k(r-k-1)+()
(q)k(flq )(flq-)k(aq-) -r-2)k_,(.),q 1)r-m(Ol[’yq

(qk)k(ceq-X),n(Tq-)k(13Tq-k-)k([3,yq-2k-2)r_ -2m
k (Ceflq -2)r-

and

Ckm 463
/|qm, otq-m-l qk, [3Tq -k-1

q, flq-, afl,}/q -r-2\

Some transformations for q-Jacobi polynomials may be derived from (5.7) and
(5.8). We give a few examples:

1) Multiply both sides of (5.7) by (flq-)x_y(aq-)*-Y/(q-)x_y and sum over x y,
y + 1, y + 2,. obtaining Akoro (otq-E)oo/(otq-1)oo on the right side. The case k 0
yields

pr(q-Y aflq -1, T[q -1)

(5.9)
(aq-1)oo (flq-)x-y (aq-)x-,pr(q-, a, fl3’q-llq-),(aflq-2) x=, (q-1)x-y

r--0, 1,2,. ..
2) Multiply both sides of (5.8) by ((q-),_,,(,q-)y/(q-)x_y(q-)y) (Sq-)y-x and

sum over y- 0, 1,..., x; obtaining Bmoxlt,.o(.gq-2)x(,Sq-)X/(q-), on the right side.
The resulting expressions look better if we use the values p(1; a, fl[q-) from (5.2),
indeed"

p(q-X; a, flyq-lq-)
pr(1; o, ’rq-llq-)

(5 10)
(q-)*(13q-)x . ([3q-X)x-Y(3/q-’)Y
(Tq-2)x y=o --fx-----ii.

(flq-1)y-x Pr(q-Y; aflq -1, T[q -1)
pr(1; a,Sq-, ’[q-)
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for rn 0;

(5.11)

for rn =r.
Another possibility is to put y 0 in the expansion ,r ,A,,.C,m,,. (C’,, can

be summed, see Corollary 3.3), obtaining the expansion of q-,X(q.), as a series in
{pro(q-X; a,/3[q-1) 0_-<m _-<r}.

The transformations (5.9), (5.10), (5.11) are q-analogues of transformations of
Jacobi polynomials found by Askey and Fitch [2] (see also the survey by Gasper [10]).
Of course the same trick can be applied to the q-Hahn polynomials in Corollary 4.2,
resulting in the q-analogues of Gasper’s projection formulas (2.2), (2.3), (2.4), [9, p.
179] (the actual calculations will be left as exercises).

The author hopes that the reader has seen how some simple ideas from group
representation theory, such as restriction to subgroups, and orthogonality of
inequivalent representations, and some counting of subspaces of a finite vector space
can lead to far-reaching results on q-polynomials in two variables. These explain,
motivate, and suggest proofs of various transformation formulas of q-Hahn and
q-Jacobi polynomials, and the orthogonality of balanced 4b3-polynomials.

REFERENCES

[1] G. ANDREWS AND R. ASKEY, Enumeration of partitions: The role of Eulerian series and q-
orthogonal polynomials, Higher Combinatorics, M. Aigner, ed., Reidel, Dordrecht, Holland, 1977,
pp. 3-26.

[2] R. ASKEY AND J. FITCH, Integral representations forJacobipolynomials and some applications, J. Math.
Anal. Appl., 26 (1969), pp. 411-437.

[3] R. ASKEY AND J. WILSON, A set oforthogonal polynomials that generalize the Racah coefficients or 6-j
symbols, SIAM J. Math. Anal., 10 (1979), pp. 1008-1016.

[4] W. BAILEY, Generalized Hypergeometric Series, Cambridge University Press, London, 1935.
[5] C. CURTIS, N. IWAHORI AND R. KILMOYER, Hecke algebras and characters ofparabolic type offinite

groups with (B, N)-pairs, Inst. Hautes ltudes Sci. Publ. Math., 40 (1971), pp. 81-I16.
[6] C. DUNKL, An addition theorem forHahn polynomials: The spherical functions, SIAM J. Math. Anal., 9

(1978), pp. 627-637.
[7] , An addition theorem for some q-Hahn polynomials, Monatsh. Math., 85 (1977), pp. 5-37.
[8],A difference equation and Hahn polynomials in two variables, Pacific J. Math., to appear.
[9] G. GASPER, Projection formulas for orthogonal polynomials ofa discrete variable, J. Math. Anal. Appl.,

45 (1974), pp. 176-198.
[10], Positivity and special functions, Theory and Application of Special Functions, R. Askey, ed.,

Academic Press, New York, 1975, pp. 375-433.
[11] D. STANTON, Some q-Krawtchouk polynomials on Chevalley groups, to appear.
[12] R. STEINBERG, A geometric approach to the representations of the full linear group over a Galois field,

Trans. Amer. Math. Soc., 71 (1951), pp. 274-282.



SIAM J. ALG. DISC. METH.
Vol. 1, No. 2, June 1980

1980 Society for Industrial and Applied Mathematics

0196-5212/80/0102-0002 $01.00/0

RANDOM COLORINGS OF A LATTICE
OF SQUARES IN THE PLANE*

E. N. GILBERT

Abstract. Square cells, tesselating the plane in a lattice arrangement, will be colored black or white by a
random process. The coloring tries to imitate the appearance of cells with statistically independent colors,
with black and white equally likely. Here only a relatively small initial set of cells is colored independently; the
remaining colors are then determined by solving a linear recurrence equation. In this way one obtains
colorings which, for some value of n, have independent colors in every set of n cells. The value of n, which
depends on the recurrence equation used, can be deduced from divisibility properties of certain polynomials.

1. Introduction. A lattice of squares is a tesselation of the plane into unit square
cells. Each cell may be specified by its midpoint P-(:, /) with integer Cartesian
coordinates :, /. A coloring of a lattice of squares is obtained by painting each square
cell black or white. Or, with numbers 0 and 1 representing white and black a coloring is a
binary function a (P) a (sc, r/).

Here the colorings will be generated by random processes. The quantity of main
interest is the n-gram probability p(P,..., P, al,"" a), the joint probability that
a (Pk) a for k 1 to n. For instance if cells are colored independently at random with
black and white equally likely, then

(1) p(P,... ,Pn, a,..., a) 2

holds for every n and every choice of n distinct cells P,..., P and their colors
a,..., a. Other colorings, to be described, satisfy (1) for a fixed n and all
P1, , P, a , a. These are said to have the n-th order randomness property. Need
for these colorings arose in testing B. Julesz’s statistical theory of visual texture
discrimination (see [4], [5], [6], [7]). Each test required two colorings that had the same
n-gram probabilities for some small value of n, say 3 or 4, but which differed in some
other way that was easily noticed by eye. Rosenblatt and Slepian [8] produced
(one-dimensional) colorings of cells arranged in a straight line, again with randomness
properties designed for Julesz’s experiments.

The plane colorings with a nth order randomness property can also be regarded as
two-dimensional analogs of the pseudorandom sequences that often appear in coding
theory or cryptography [1], [2], [3]. In either case a small fraction of the cells is colored
independently at random (perhaps to serve as a key) and then a recurrence equation
extends the coloring to the rest of the cells.

One-dimensional linear pseudorandom sequences are necessarily periodic; hence
they cannot have nth order randomness with n -> 2, although they have a large period if
properly designed. The plane colorings will be aperiodic. The main problems will be to
determine the highest order of randomness possessed by a given recurrence and to find
recurrences that achieve nth order randomness without using a large number K of
terms (of course, K < n).

2. Floaters. The coloring function will be a solution of a linear recurrence

K

(2) E a((+k, r/+r/k)=b
k=l

which holds for all integers and r/. Equation (2) and all subsequent equations for
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coloring functions a (:, r/) are taken modulo 2. In (2), b 0 or 1. If b 0, the coloring is
called an even coloring; if b 1, it is an odd coloring. The points
k 1, , K determine K distinct squares, which may be interpreted as K windows in
a mask obscuring the plane. The terms of (2) are the values seen through the K windows
when the mask is translated bodily, the origin moving to (:, rt). Because the set of
windows 4 {F1, F2,’’’, Fk} moves to all locations of the plane to produce all the
equations of the recurrence system (2), 05 is called the floater of the coloring.

To produce a coloring, colors may first be prescribed in some set I and then
extended to a coloring function a(P) satisfying (2) throughout the plane. There are
many solutions of (2) if I is too small and none if I is too big. I is an initial set if every
coloring of I extends to a unique coloring of the plane.

For example if the floater is a 2 x 2 square, b {(0, 0), (0, 1), (1, 0), (1, 1)}, then the
row r/= 0 and column 0 together comprise one initial set L The unique solution of
(2) that extends a prescribed coloring of I is

a(sc, r/) a((, 0)+ a(0, r/)+ a(0, 0) + bsCn.
This example illustrates a special kind of initial set, called a standard column initial set,
that can be constructed for any floater 4 as follows.

Suppose that the floater 4 is W columns wide. Suppose that the leftmost column of
the floater is contained in HL consecutive rows. Likewise, let HR be the number of
consecutive rows required to contain the rightmost column. For the floater in Fig. 1,
W 4, HL 4, HR 3. Select W- 1 consecutive columns of the plane and make them
part of L Also assign to I the parts of any HL- 1 consecutive rows lying to the left of the
selected columns and any HR 1 consecutive rows to the right of the selected columns.
In Fig. 1 only these columns and half-rows are shown. With the floater in the starting

III

ROWS

FLOATER

HL4

W-4

W- COLUMNS

FIG. 1. A standard column initial set.

HR-’I
ROWS
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position drawn, only one square of the floater lies outside I; then (2) determines a (P)
for that square. By moving the floater up and down, an entire column may be colored
one square at a time. The floater may then be moved sideways to color other columns.

Clearly one could also construct an initial set in a similar way starting with some
complete rows and adding half-columns above and below these rows. That set will be
called a standard row initial set.

If an initial set I is given, then the colors a (PI), ", a (Pn) at any n given squares
can be determined from the colors c1," , cj of some finite number J of squares of I.
Because (2) is linear there will be a relationship

J

(3) a(Pg) Y mgjcj + dgb, 1, 2,. , n.
j=l

with (m0) a binary matrix (the term dgb represents the solution with I colored
completely white). Thus one may regard colors a (Pg) either as linear functions of colors
c on I or, with I colored at random, as random variables. If squares of I are colored
independently, with 0 and 1 equally likely, then 0 and 1 will also be equally likely at each
other point Pg of the plane. However, colors of squares ontside I need not be statistically
independent.

LEMMA 1. Let colors in an initial setIbe determined at random, independently, with
0 and 1 equally likely. Either the colors at n given squares are statistically independent or
they satisfy a linear relationship derivable from (2).

Proof. Let P1,""", Pn specify the n squares so that (1) is the condition that their
colors are statistically independent. Let r denote the rank of the matrix (mii).

If r < n, then the colors a (P) satisfy a linear relationship and (1) fails.
If r n, then the system (3) can be solved for n of the initial colors cl," , cj as

linear functions of the remaining J- n initial colors and the n colors a (Pi). Each of the
2 color combinations al,."", an then arises in 2:-n ways, each with probability 2-,
that correspond to color combinations of J-n squares of I. Then (1) holds.

Section 4 will give a test for independence that is more convenient than evaluating
the rank of (3).

3. Translation. A point O--(o, r/o) of the plane determines a translation that
transforms each point P (so, r/) to

(4) P’= P + O (: + o, r/+ r/o).

Translation leaves the system of (2) invariant; replacing P by P + O in (2) merely
produces another one of the equations belonging to the same system (2). That suggests
that a random coloring function a(P) satisfying (2) may be stationary, i.e.,

(5) P(P1 + I, ., Pn + i, al, ", an) P(P1, Pn, al, , an)

may hold for all n, all 2 color combinations al,. an, all points P1, ", Pn, and all
translations O. However, a(P) is generated from values in a fixed initial set I, not
translation invariant, and so stationarity is only obtained under special conditions.

THEOREM 1. A random coloring function a(P) satisfying (2) is stationary if its
values on an initial set I are independent and equally likely to be 0 or 1.

The proof will follow from two preliminary lemmas.
LEMMA 2. Let I + 0 denote the set ofpoints P + 0 obtained by translating all points

P of an initial set I. Then I + 0 is an initial set.
The proof follows simply from the fact that (2) is translation invariant.
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LEMMA 3. Ifcolors are statistically independent and O, 1 equally likely on one initial
set 11, they are statistically independent and 0, 1 equally likely on any other initial set 12.

Proof. The colors of any number k of squares belonging to 12 cannot satisfy a linear
dependence. Suppose the contrary, i.e., (2) implies such a dependence. It is possible to
color Iz in a way that violates the dependence. But that coloring certainly fails to extend
to a solution of (2). Then 12 was not an initial set, a contradiction. Since colors on 12 are
not linearly dependent, Lemma 1 shows that they are statistically independent.

To prove Theorem I consider any n squares P1, , Pn and a translation vector (2.
The result to be proved is (5). Solving (2) leads to a system (3) relating a(Pi) to colors
c.=a(T.), where TI,..’, Tj belong to an initial set I. Because the system (2) is
translation invariant, (3) remains true if all squares Pi, T. are translated. That leads to
another system

y

(6) a(Pi + O) mgjcj + db, 1, 2,. ., n
j=l

with c. a(T. + Q) and with the same parameters mi, di as in (3). The points T. + Q
belong to I + O, which Lemma 2 shows to be an initial set. Then Lemma 3 shows that
c,..., c are independent colors. Now the two probability distributions in (5) must
indeed be equal; for a(Pi) and a(Pi + Q) are determined from independent colors (ci or
c) by the same equations ((3) or (6)).

Theorem 1 and Lemma 3 sometimes provide quick proofs of the nth order
randomness property (1). For example, suppose the floater is a 2 x 2 square. Standard
column initial sets contain one column, one half-row to the right, and another half-row
to the left. Given any three points, some standard initial set includes all three points.
Then Lemma 3 shows that (1) holds for these points if colors on I are independent and
equally likely.

All the colors in any W- 1 consecutive columns are independent if the floater is W
columns wide, for the columns in question can be made part of a standard column initial
set. Likewise, anyH 1 consecutive rows can be made the rows of a standard row initial
set if the floater is H rows high. Then any H-1 consecutive rows have independent
colors. These H-1 rows need not be independent of the W-1 columns in general
unless HL HR H.

4. Generating functions. An algebraic test for nth order randomness can be
formulated in terms of generating functions. Associate to each set cr of squares (sc, rt), a
generating function

(7) G=x-y"

in which the sum extends over all squares of or. These expressions will be added and
multiplied formally by the usual rules for power series, the coefficients being treated as
integers modulo 2. If cr contains only a finite number of squares, then G contains
finitely many terms and will be called a polynomial. Because coordinates sc or r/may be
negative, a "polynomial" can contain negative powers of x or y.

The polynomial of main interest will be G6, the generating function of the floater b.
Also G, will denote the polynomial for a set {PI, P2, Pn} of squares with colors
a(P1),’’ ", a(Pn) to be tested for statistical independence. Under the conditions of
Lemma 1, a(P1),’", a(P,) must be tested for linear independence. Because the
system (2) is invariant under translation, any translation b + O of the floater is another
floater producing the same equations (2). Likewise a linear dependence between colors
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of squares of 0 implies a linear dependence between colors of squares of + O. Then it
will suffice to consider sets b and O lying in the positive quadrant, in which case Go and
G4’ contain no negative powers.

The product G1G2 of two generating functions is well determined by the usual
rules for multiplying series as long as one of G1 or G2 is a polynomial. For then each
coefficient of GIG2 is a sum of only finitely many terms. As with ordinary polynomials, a
polynomial D will be said to divide another polynomial G if there is a third polynomial
F for which G FD.

THEOREM 2. A linear dependence between colors a (P) in a set 0follows from (2) if
and only if Go divides

Proof. Define a new sum

(8) A E a (, r/)x-ey -".
,n

A is a generating function, of the form (7), for the set of black squares obtained after
rotating the coloring 180. The series A ordinarily does not converge. Nevertheless, as
is usual with generating functions, A may be manipulated formally to derive identities.

Multiply (2) by x-y-" and sum over -oo < <, -oo < r/< oo. The result is

(9) aGo=bU,

where U x ey’, containing a term for each square (so, r/).
If Go divides G4’, then G4’ GoR for some polynomial R. From (9) one obtains

(10) AG4" bUR.

From the way U was defined, the right-hand side of (10) is either 0 or bU, depending on
whether R contains an even or odd number of terms. The left-hand side, AG4", is a
generating function with coefficients that are linear combinations of certain colors a (P).
A linear dependence

(11) 2 a(P)=Oor b

follows by equating coefficients of xy in (10).
Conversely suppose a linear dependence, involving the sum (11), follows from (2).

Any derivation of this dependence must express the sum (11) as a sum of functions on
the left side of certain equations in the system (2). Let the equations in question be the
ones obtained by substituting Oa,. , OM for (, r) in (2), i.e.,

M K

(12) Y Y a(Om +F) Y a(Pi).
m=l k=l tO

For (12) to hold as an identity, each Pi must appear an odd number of times among the
terms Q, + Fk, and any other square must appear an even number of times. But that
condition is simply

(13) GoGo GtO,

where p {Q1,. , QM}, i.e., Go divides GtO.
COROLLARY. A linear dependence (11) cannot hold]:or an odd number n ofsquares

Pa, , P, if the floater 4) contains an even number K o[ squares.
Proof. Any dependence would imply a polynomial identity (13). Set x y 1. If n

is odd and K is even, then GtO 1 and Go 0, contradicting (13).
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5. Examples. Some examples follow to illustrate Theorem 2. It will be helpful to
translate the floater b and the set O down and to the left as far as possible in the positive
quadrant. Then G, and G, are always polynomials not divisible by x or y, and
containing no negative powers of x or y.

Example a. The polynomial G, l+x + y describes an L-shaped floater. To
verify the randomness property of order 2 one may show that G divides no G, of the
form xay b + xCy d. By factoring out powers of x and y from G,, one can reduce G, to one
of four forms 1 + x a, 1 + yb, 1 + xy, or x + y. The first two can be ruled out because
any product of G, and another polynomial Go contains terms in which both x and y
appear. G cannot divide 1 + xy or x + y because, substituting 0 for y, 1 + x does
not divide 1 or x a. Randomness of order 2 may also be proved by observing that any two
points P1, P2 lie in some standard initial set.

Example b. Suppose the floater b is a rectangle, a cells wide and/3 cells high with
c => 2 and/3 >= 2. Then

and

G6 =(1 +x +...+x"-l)(l+y +...+y

(14) (1 + x)(1 + y)G6 (1 + x)(1 + y).

If g, is the set {(0, 0), (c, 0), (0,/3), (c,/3)} then (14) shows G6 divides G,. The colors at
the four points of 4’ are linearly dependent. Conversely any three points of the plane
belong to some standard initial set and so a rectangular floater can generate a coloring
with 3rd order randomness.

Section 2 gave a simple solution of (2) in the special case of a 2x2 square
(or =/3 2). That solution can be derived by considering

G, (1 + x)(1 + y,o)

(1 + x +. + x-)(1 + y +. + yno-)G4,.

The linear dependence that follows from (10) is just the solution given in 2. The even
texture with this floater has a very regular appearance in spite of having 3rd order
randomness. The coloring resembles a checkerboard, but made from black and white
rectangles of random dimensions (see Julesz, Gilbert, and Victor [7]). The odd coloring
function (b 1) differs from an even one by an added term r/ which breaks up the
rectangles.

This example generalizes to any G, that is a product

G4, =f(x)f2(y).

Any polynomial f(x) of degree d divides a polynomial of the form 1 + x T for some
T1 < 2d. Then G6 divides a polynomial (1 + x T)(1 + y T). Although four colors have
now been shown linearly dependent, their cells may be far apart because the periods T,
T2 can grow exponentially with the degrees of fl and f2.

Example c. If G6 1 + x + x 2 + xy the floater has four squares arranged as a letter
T upside down. The same argument used in Example a shows that no two cells have
linearly dependent colors. Then the corollary shows that any three colors are linearly
independent.

Example d. With Ge, 1 + x + y + x 2 + xy, (1 + x)G4, 1 + y + x 3 -t- x2y. Then there
is a linear dependence between four colors. Any three cells have independent colors
because three cells always belong to some standard row initial set.
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Example e. A floater of five squares arranged as a plus sign has G
x + y + xy + xy 2 + x2y. Consider any identity GoG4, G,. The terms of highest degree in

G arise as products of terms of highest degree from Go and G. The same is true of the
terms of lowest degree. G0 contains highest degree terms that are multiple of xy:+
2x y xy(x + y) and also lower degree terms that are a multiple of x + y. Then G

contains at least four terms. Any three colors are independent.
Example f.

G4, 1 + x + y + X
2 t" 31

2 -1" X
3 "[- x2y + Xy

:z + y

and

(1 +x +y)G 1 +X4nt-y 4.
Thus this complicated floater of 9 cells has 3 linearly dependent colors.

With a bit more difficulty, one can show that a six cell floater, with polynomial
(x + y)(1 + x)(1 + y), generates colorings with randomness of order 5. For every n there
may exist floaters that produce randomness of order n, but that has not been proved.
Floaters with n -1 cells would be especially interesting. If such floaters exist
they cannot approximate simple regions like squares or ellipses, for (1 + x)G4,, (1 + y)G,
and (x + y)G4, would then be polynomials with relatively few terms, identifying cells
only near the boundary of the region.

6. Even and odd. If there is a dependence between n colors, it can still happen
that the even (b 0) and odd (b 1) colorings have the same n-gram probabilities, even
though (1) fails to hold. These colorings are still useful for texture discrimination
experiments.

If b 1 and the colors a(P1),’", a(P,) satisfy a linear dependence (11), the
right-hand side is 0 or 1 depending on whether the polynomial R in (10) (called Go in
(13)) has an even or odd number of terms. If the number of terms is even, then both even
and odd colorings satisfy the same dependence. The even and odd textures fail to have
the same n-gram probabilities only if (13) holds for some G, with <=n terms and for
some Go with an odd number of terms.

To decide whether the even and odd colorings have equal n-gram probabilities it
suffices to check that there are no identities (13) with Go having an odd number of
terms. If such an identity exists, consider the effect of substituting x =y 1. Go 1
because it has an odd number of terms; G and G, become the number K of cells in the
floater and the number n. Thus the only dependences to consider are those with n of the
same parity as K.

In Example b, any 3 colors were independent. If the rectangle contains an odd
number of cells, the even and odd colorings have the same 4-gram probabilities.

In Examples d and e, K 5 and any three cells have independent colors. Then the
even and odd colorings have the same 4-gram probabilities.

In Example f, there were three linearly dependent colors, found by using a
polynomial Go 1 + x + y with an odd number of terms. The even and odd colorings
have different trigram probabilities.
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SOME ERDS-KO-RADO THEOREMS FOR CHEVALLEY GROUPS*

DENNIS STANTONt

Abstract. For each infinite family of Chevalley groups over a finite field an Erd6s-Ko-Rado theorem is
given. The technique uses orthogonal polynomials to find upper bounds for the independence number of
specific graphs. In all but one case the bound is realizable.

Erd6s, Ko and Rado [5], [6, Thm. 5.3] proved the following theorem for subsets of
a set:

THEOREM. LetFbe a collection of k-subsets ofan n-set, k <= n/2. IrA, B Fimplies

lA Bl # O, then lFl <= (n ll). Equality occurs ifFconsists ofall k-subsets which contain

a fixed point.
Lovasz [9] has given an analytic proof of this theorem by computing the capacity of

an associated graph. In this paper, we use this technique to derive analogous theorems
for Chevalley groups.

First we give a modified version of Lovasz’s proof [9]. Let Gs, 1. s _-< k, be the
graph whose nodes are the k-subsets of an n-set. Two nodes A and B are joined by an
edge if IA CI B k s. An upper bound for the independence number of any regular
graph [9, Thm. 9] is --V/min/(/max--/min), where v number of nodes, and/rnax(min) is
the maximum (minimum) eigenvalue of the adjacency matrix of the graph. It is clear
that Gs is regular. It is also well-known [2, p. 48] that the eigenvalues of the adjacency
matrix for Gs are Hahn polynomials:

As(S)=|ki|n-kios(s;i \1 \
k-n-1,-k-l,k)

k /k /S S

s s -k,k-n

(See [3, p. 356] for a short exposition of these polynomials.) For the Erd6s-Ko-Rado
theorem, we put s k and evaluate the resulting 2F1 [1, p. 3] to obtain

Ai(k) (-1)i(n k -l)k-j
/’=0,1,...,k.

(n-k) _(n-k-l) (n) this yieldsSince k <= n/2, we have/max--
k

and Amin k 1
With v

k

anupperboundof(n-I)k 1
In fact Lovasz’s theorem shows that the capacity of this

n-1
graph is (k 1)"

Next we state and prove the Erd6s-Ko-Rado theorem for a Chevalley group of
type An-1 over GF(q). For k n/2 this theorem is due to Hsieh [7] (see also [6,
Thm. 5.7]).

* Received by the editors September 18, 1979.
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THEOREM. Let F be a collection of k-dimensional subspaces of an n-dimensional
vector space over GF(q), k <-_ n/2. If A, B F implies dim (A B) # O, then IFI

To prove this theorem, we define the analogous regular graph Gs. The eigenvalues
are q-Hahn polynomials [4, Thm. 3.7]

qS2Oj(q ;q
S

k-n-1 -k-1,q ,n;q)

q 32
q q

s s q-k, qk-n q; q f=0,1,’’ ",k.

As before, we put s k and evaluate the 2191 [1, p. 68] to obtain

Aj(k) (_l)i[n k f]k-y
q

It is easy to check that IAi+l(k)/Ai(k)[ _-< 1 if and only if qn-k-i + q-k+i->_2. However,
q_->2, /’+ l_-<k, and k <-_n/2 imply that this inequality always holds. Thus /max--

[n-k]k qk2, Amin=-[n-k-1]k_l qk2-k, andv=[n]k yieldabundf[ n-Ilk1
There is a variant of the Erd6s-Ko-Rado theorem related to the Weyl groups of

the other simple Lie algebras. We let H(N, 2), N _-> 2, be the binary Hamming scheme
whose elements are the N-tuples of 0’s and l’s. We consider collections F of N-tuples
such that if A, B F, then A and B agree in at least one entry. The theorem states that

IF 2N-1. Although this is trivial the q-analog will not be so simple. It is clear that the
bound 2N-1 can be attained by letting F consist of all N-tuples with one entry fixed.
However, for N odd we could also let F be the set of all N-tuples with an even number
of l’s. There are q-analogs of both cases. The bounds are not the same.

In passing, we mention that the Hamming scheme H(N, t) has been considered by
Livingston [8], who showed that for >= 3 the extremal F are exactly those with one,
entry constant. The bound u- could be obtained by the previous technique. The
eigenvalues are Krawtchouk polynomials [3, Prop. 1.13]

A,(s) (N)(t-1)SK,(s, (t-1)/t; N)
S

)s
j=0,1,...,N.

Putting s N, we have A.(N)= (-1)i(t 1) i, which clearly gives the desired bound.
Unfortunately the q-analog of H(N, t) for t_-> 3 is not known.

We concentrate on the q-analogs of H(N, 2). There are six [10] which are
2Aassociated with the Chevalley groups of types Br, Cu, DN, 2DN+I, 2N-, and 2A2N

over a finite field K. Let p IK I, so that p q for Bu, CN, Du, and 2DN+I; and p q2 for
2A2u_a and 2A2. Let V be the appropriate vector space over K for each type, and let B
be the corresponding bilinear form. We assume for each case that the dimension of a
maximal isotropic subspace of V is N. Then the q-analog of H(N, 2) is the collection Xu
of all maximal isotropic subspaces of V [10]. Furthermore IXN HiLl (1 -t-- cpi), where
c 1 for types Bu and Cu, c q-a for types Du and 2A2-1, and c q for types 2DN+I
and 2A2.
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For an ErdSs-Ko-Rado theorem consider collections F of maximal isotropic
subspaces such that if A, B F, dim (A f3 B)# 0. Let Gs be the graph with maximal
isotropic subspaces as nodes, and edges (A, B) if dim (Afl B)- N- s. This graph is
regular, and the eigenvalues are q-Krawtchouk polynomials [10, Thm. 5.4]

s+l)Ai(s)= p (p c p N" p)cSKj -1 -N-2

S

-N-1N p p-i,-c
P cS3&2 -N P; P

S 0, p

Evaluating at s N [1, p. 68], we obtain

(N+I’ +j(I--N--I) N-jAi(N) (-1)ip" c j=O, 1,...,N.

j=O, 1,...,N.

(5)

(4)

N--1

(3) IFI < l-I (1 + q2i+l) for type 2A2N,
i=1

N-1

(2) IFI <- H (1 +qi+l) for type 2DN+,,

that if A, B F, then dim (A (3 B) O. Then

N-1

(1) IF[_-< [[ (1 +qi)
i=1

for types BN and CN,

N-1

IF[ <- 1-I (1 + qi--1) ifN is even,
i=1

N-1

IFI FI (1 +q)
i=1

ifN is odd, for type DN,

N-1

IFI <-- 1-[ (1 + q2i-1)
i=1

ifN is even, and

N

[FI-< H (1+q2i-1)
i=1

2i-lN

ifN is odd, for type 2A2N_ 1.

Except for the two cases when N is odd, the bounds are attained by letting F be all
maximal isotropic subspaces containing a given vector. The odd case in (4) is realized by
taking the family F of maximal isotropic subspaces such that A, BF implies
N-dim (A fqB) is even [9, 5]. We do not have an extremal family F for (5) if N is odd.

For the examples in this paper we have found the capacity of the associated graphs.
This answers a question at the end of [9], namely, to find other examples for which
the upper bound gives information about the independence number. Other values
of s could be substituted to obtain upper bounds. For example, for subsets s k- 1

gives Ai(k-l)= (n-)(k)(k2+j(j_n 1))(_l)i/k(n-k). Also we could replace
k i J

[A (’1 B[ k s by IA f-1BI--< k s in the definition of the graph G. The eigenvalues are
then sums of Hahn polynomials, because the eigenspace for Ai(s) is an irreducible
representation for SN [3], which is independent of s.

It is easy to find Am,x and Amin for each case and thus find a bound on the independence
number.

THEOREM. LetFbe a collection ofN-dimensional maximal isotropic subspaces such
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A NEW LOWER BOUND FOR THE NUMBER OF SWITCHES
IN REARRANGEABLE NETWORKS*

NICHOLAS PIPPENGER?

Abstract. For the commonest model of rearrangeable networks with n inputs and n outputs, it is shown
that such a network must contain at least 6n log6 n + O(n) switches. Similar lower bounds for other models
are also presented.

1. Introduction. The lower bound referred to in the title will be established by
modeling a rearrangeable network as a directed graph in which vertices represent wires
and edges represent switches. A number of alternative models will be considered
later.

A n-networkN (G, A, B) comprises a directed graph G (V, E), with vertices V
and edges E, a set A of n distinguished vertices called inputs, and a set/3, disjoint from
A, of n distinguished vertices called outputs.

A request for N is an ordered pair (a, b) comprising an input a and an output b. An
assignment for N is a set of requests for N, no two having an input or output in common.
A k-assignment for N is an assignment containing exactly k requests.

A route in N is a directed path in G, starting at an input and ending at an output. A
state of N is a set of routes in N, no two having a vertex in common. The set of states ofN
will be denoted f. A k-state of N is a state of N containing exactly k routes. The set of
k-states of N will be denoted

An assignment is said to be realized by a state if, for every request (a, b) in the
assignment, there is a route from a to b in the state. An n-networkN is an n-connector if
each of the n! n-assignments for N is realized by some state of N.

An n-connector must satisfy the lower bound

(1) IE[ => 3 n log3 n + O(n)

(3/ln 3 2.730...); this follows from the inequality

[E 3 log3 [n
(attributed to R. L. Dobrushin by Bassalygo and Tsybakov [1]), from the obvious
inequality

(distinct assignments must be realized by distinct states), and from the estimate

log n! n log n + O(n)

(due to Stirling [7, p. 137]).
The purpose of this note is to derive the improved lower bound

(2) [El _-> 6n log6 n + O(n)

(6/ln 6 3.348 .); this will follow from the improved inequality

(3) [El => 6 log6

* Received by the editors October 3, 1979, and in revised form October 24, 1979.
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New York 10598.
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These lower bounds may be compared with the upper bound for n-connectors,

6n logs n + O(n)

(6/ln 3 5.461 see Pippenger and Valiant [5, Remark 2.2.6]).
The qualitative significance of these improvements may be seen by comparing

these bounds with the corresponding bounds for n-shifters (n-networks that need not
have states realizing all n! assignments, but only the n assignments corresponding to
cyclic permutations). The inequality (1) actually follows immediately from the even
sharper lower bound for n-shifters,

]El _-> 3n logs n

(see Pippenger and Valiant [5, Corollary 2.2.2]). This may be compared with the upper
bound for n-shffters,

[E -< 3n log3 n + O(n)

(see Pippenger and Valiant [5, Remark 2.2.5]). The results of this note thus show that
n-connectors require more edges than n-shifters, a plausible conclusion which was,
however, not deducible from previous results.

2. The new lower bound. One may assume, without loss of generality, that no edge
is directed into an input or directed out of an output, for no such edge can occur in an
n-state.

If there is any vertex v in V-(A U B) out of which no edge is directed, one may
omit v from V and omit each edge of the form (u, v) from E. If there is any vertex v in
V-(A U B) out of which exactly one edge (v, w) is directed, one may omit v from V
and replace each edge of the form (u, v) by the edge (u, w) in E. In either case one
obtains a network with at most as many edges and just as many n-states. Thus one may
assume, without loss of generality, that at least two edges are directed out of each vertex
in V-(A UB).

Let f: B A be an arbitrary bijection. Let G*--(V*, E*) be the directed graph
with vertices V* and edges E* obtained from N as follows. Let V* be obtained from V
by omitting the vertices in B. Let E* be obtained from E by replacing each edge of the
form (v, b) in V x B bythe edge (v, f(b)) in V x A, and by adding the edge (v, v) for each
vertex v in V- (A U B).

The edges of the form (v, v) added to E* are directed out of vertices v in
V- (A LIB), and E contains at least two edges directed out of each such vertex. Thus

(4) IE*I  IEI.
A set of closed directed paths in G* containing exactly one edge directed into each
vertex and one edge directed out of each vertex will be called a circulation in G*. The
set of circulations in G* will be denoted fl*. Each n-state of N corresponds to a
circulation in G* (by replacing edges of the form (v, b) by edges (v, f(b)) and adding
edges of the form (v, v) as necessary), and distinct n-states correspond to distinct
circulations. Thus

By virtue of these inequalities, it will suffice to show

(5) log6 If),*l
for an arbitrary directed graph G*.
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LetM be the (0, 1)-matrix with rows and columns indexed by V* and with (v, w)th
entry M.w equal to 1 or 0 according as (v, w) does or does not appear in E*. Let

wEV*

denote the sum of the entries in the vth row of M. Then

IE*I E L.
vEV*

On the other hand,

la*l per M,

where per M denotes the permanent of M, since both sides count the number of
permutations g of V* for which (v, g(v)) appears in E* for each v in V*. Thus it will
suffice to show

(6) Y L _-> 9 log6 per M
vV*

for an arbitrary (0, 1)-matrix M.
The inequality

Y (log (L, !))/L, >= log per M
vV*

for an arbitrary (0, 1)-matrix M was conjectured by Minc [3] and proved by Bregman
[2] (see Schrijver [6] for a particularly simple and elegant proof). Since the expression
(log (L !))/L2 assumes its maximum over integers L at L 3,

Z L ->_ (3Z/log (3 !)) Y. (log (L !))/L,
v V* v V*

_->9 2 (log6 (L!))/Lo
vE V*

_-> 9 log6 per M.

This proves (6), and thus establishes (5), (3) and (2) in turn.

3. Other new lower bounds. The argument of this note is easily extended to a
number of other models of rearrangeable networks. The most interesting of these is
obtained by replacing directed graphs and directed paths by undirected graphs and
undirected paths. A directed graph G (V, E) can be obtained from an undirected
graph G’ (V’, E’) by setting V V’ and replacing each undirected edge {v, w} in E’ by
a pair of directed edges (v, w) and (w, v), so that

In this way, a directed n-connector N (G, A, B) can be obtained from an undirected
n-connector N’ (G’, A’, B’) by setting A A’ and B B’. One may assume, without
loss of generality, that at least three undirected edges are incident with each vertex in
V’- (A’U B’), so that

(7)

Continuing with the argument of 2 leads to the lower bound

[E’] >_--n log6 n + O(n)
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(27/8 In 6 1.883...) for undirected n-connectors. This may be compared with the
previous bound

log4 n + O n

(5/2 In 4 1.803 ...) which applies even to undirected n-shifters (see Pippenger and
Valiant [5, Thm. 2.2.3]). No better upper bounds are known for undirected n-
connectors and n-shifters than for their directed counterparts.

Other, even easier, extensions are to consider "single-ended" or "undifferen-
tiated" n-connectors in which the n inputs and n outputs are replaced by a single
undifferentiated set of n distinguished vertices called "terminals" (this reduces the
leading terms of lower bounds by a factor of 2) and to bound log Ifl rather than merely
log IInl (this affects only the O(n) terms). These extensions yield improvements of the
results in Pippenger [4].

James Shearer, the referee for this paper, has pointed out some improvements to
the foregoing results. In the directed case, a vertex w in V (A U B) into which only two
edges (u, w) and (v, w) are directed and out of which only two edges (w, x) and (w, y) are
directed can be omitted, the edges being replaced by (u, x), (v, x), (u, y) and (v, y).
Repeating this transformation as long as possible yields a graph with just as many edges
and n-states but in which a total of at least five edges are directed into or out of each
vertex in V-(A U B). This allows (4) to be sharpened to

and results in a lower bound of

ILl-->n log6 n + O(n

(45/7 In 6= 3.587...). Similarly, in the undirected case, a vertex w in V-(A tAB)
incident with only three edges {w, x}, {w, y} and {w, z} can be omitted, the edges being
replaced by {x, y}, {y, z} and {z, x}. This yields a graph in which every vertex in
V- (A U B) is incident with at least four edges, allows (7) to be sharpened to

51IE*I_-<zIE[,
and results in a lower bound of

[E’I-->n log6 n + O(n

(18/5 In 6= 2.009’’ ").
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WEYL GROUPS, THE HARD LEFSCHETZ THEOREM, AND THE
SPERNER PROPERTY*

RICHARD P. STANLEY?

Abstract. Techniques from algebraic geometry, in particular the hard Lefschetz theorem, are used to
show that certain finite partially ordered sets Ox derived from a class of algebraic varieties X have the
k-Sperner property for all k. This in effect means that there is a simple description of the cardinality of the
largest subset of C)x containing no (k + 1)-element chain. We analyze, in some detail, the case when
X G/P, where G is a complex semisimple algebraic group and P is a parabolic subgroup. In this case, Qx is
defined in terms of the "Bruhat order" of the Weyl group of G. In particular, taking P to be a certain maximal
parabolic subgroup of G SO(2n + 1), we deduce the following conjecture of Erd6s and Moser: Let S be a
set of 2 + 1 distinct real numbers, and let T1, , Tk be subsets of S whose element sums are all equal. Then
k does not exceed the middle coefficient of the polynomial 2(1 + q)2(1 + q2)2... (1 + qe)2, and this bound is
best possible.

1. The Sperner property. Let P be a finite partially ordered set (or poser, for short),
and assume that every maximal chain of P has length n. We say that P is graded ofrank
n. Thus P has a unique rank function p:P- {0, 1,..., n} satisfying p(x)= 0 if x is a
minimal element of P, and p(y) p(x) + 1 if y covers x in P (i.e., if y > x and no z 6 P
satisfies y > z > x). If p (x) i, then we say that x has rank i. Define Pi {x P: p (x) i}
and set pi pi(P) card Pi. The polynomial F(P, q) po + plq +" + Pnq is called the
rank-generating function of P. We say that P is rank-symmetric if pi pn- for all i, and
that P is rank-unimodal if po <= pl <=" <= pi >= p+ >=" >= pn for some i.

An antichain (also called a Spernerfamily or clutter) is a subset A of P, such that.no
two distinct elements of A are comparable. The poset P is said to have the Sperner
property (or property $1) if the largest size of an antichain is equal to max {pi: 0 <= <- n}.
More generally, if k is a positive integer then P is said to have the k-Sperner property (or
property Sk) if the largest subset of P containing no (k + 1)-element chain has
cardinality max {PI +" "+ Pik 0 <= i <. < ik <= n}. If P has property S for all k =< n,
then following [21] we say that P has property S. For further information concerning the
Sperner property and related concepts, see for instance [15], [16], [17].

Using some results from algebraic geometry, we will give several new classes of
graded posets which have property S. These posets will all be rank-symmetric and
rank-unimodal. First we must consider a property of posets related to property S.
Suppose P is graded of rank n and is rank-symmetric. Again following [21], we say that
P has property T if for all 0 -< i-< [n/2], there exist p pairwise disjoint saturated chains

xi < xi+a <" < xn-i where xj P.. It is clear that P is then rank-unimodal.
LEMMA 1.1. Let P be a finite graded rank-symmetric poset of rank n. The following

three conditions are equivalent:
(i) P is rank-unimodal and has property S.
(ii) P has property T.
(iii) Let Vi be the complex vector space with basis Pi. Then for 0 <= < n, there exist

linear transformations : V V+a satisfying the following two properties:
(a) If 0 <= <= In/2], then the composite transformation qn-i-xqn-i-2

qi+lqi: Vi V-i is invertible.
(b) Let x Pi and qi(x) Yyp:., cyy. Then cy 0 unless x < y.
Proof. (i):(ii). This is a special case of [21, Thms. 2 and 3].
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(iii) =), (ii). (I am grateful to Joseph Kung for supplying the following argument,
which is considerably simpler than my original proof.) Assume (iii). Identify i with its
matrix with respect to the bases Pi and Pi+l. If is a matrix whose rows are indexed by a
set S and whose columns are indexed by T, and if S’ c S and T’ c T, then let [S’, T’]
denote the submatrix of with rows indexed by S’ and columns by T’. By the
Binet-Cauchy theorem (e.g., [1, 36]) we have

det (-i-1 i)= 2 (det i[(i, Oi+1])

(det i+111i+1, 1i+2])""" (det n--i--l[(n--i-l[(n--i]),

where the sum is over all sequences of subsets l[i ei, Oi+l ei+l,
0i+2 Pi+2, 0-- P-g-1, On-i Pn- such that Io /11-10// ] Io - -11-
pi. By (a), some term in the above sum is nonzero. Hence, the expansion of each factor
det Ck[Ok, Ok/] in this term contains a nonzero term. By (b), this nonzero term defines
a map r: Ok Ok/ such that x < o’(x) for all x Ok. Piecing together these two-
element chains over all k yields (ii).

(ii) =), (iii). The steps of the above argument can be reversed, provided we pick the
i’s as generically as possible, i.e., all the entries of the matrices 0, 1, , n-1 should
be chosen to be algebraically independent over Q, except for entries forced to equal 0 by
condition (b). This completes the proof.

2. Varieties with cellular decompositions. We now are in a position to invoke
algebraic geometry. Let X be a complex projective variety of complex dimension n.
Suppose that there are finitely many pairwise-disjoint subsets Ci of X, each isomorphic
as an algebraic variety to complex affine space of some dimension hi, such that (i) the
union of the Ci’s is X, and (ii) Ci Ci is a union of some of the Q’s. (Here Ci denotes the
closure of Ci either in the Hausdorff or Zariski topology--under the present circum-
stances the two closures coincide.) Following [4, p. 500], we then say that the Ci’s form a
cellular decomposition of X. The simplest and most familiar example is complex
projective space Pn itself. Recall that P may be regarded as the set of nonzero
(n + 1)-tuples x (x0, Xl, , x) Cn/l, modulo the equivalence relation x
/x (, C*). The set of elements of of the form (0, ..., O, 1, xn-i/,’", x)
forms a subvariety isomorphic to C i. Hence we have the cellular decomposition
p=CUC-U ...UC.

If X is any complex projective variety and Y is a closed subvariety, then e.g., by [4]
or [18, Chap. 5, 4], Y represents an element (cocycle) [Y] of the cohomology group
H*(X, C). If X is irreducible of (complex) dimension n, and Y is irreducible of
dimension m, then in fact Y] H:Z(n-m)(x, C). If X is irreducible of dimension n and
has a cellular decomposition {Ci}, it follows that the closures Ci represent cohomology
classes [i] H2(n-")(X, C) where C Cm. (For this fact, we don’t need condition (ii) in
our definition of cellular decomposition.) The following fundamental result concerning
varieties with a cellular decomposition appears in [4, p. 501], [22, 6] in the case when
X is nonsingular. The extension to singular varieties follows from [14]. (Again,
condition (ii) is not actually necessary.)

THEOREM 2.1. LetX be a complex projective variety of complex dimension n, and
suppose thatXhas a cellular deomposition {Ci}. Then the cohomology classes [Ci] form a
basis (over C) for H*(X, C). In particular, H2"+I(X, C) 0 for all m 7/, while ifX is
irreducible then H2("-m(X, C) has a basis consisting of those classes [i] for which
Ci.Cm.

Now given a cellular decomposition {Ci} of X, define a partial ordering 0x=
0x(C, C:,. .) on the Ci’s by setting Ci >= C in 0x if Ci c i. If X is irreducible of
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dimension n, then it can be shown, using standard techniques from algebraic geometry,
that ox is graded of rank n, with the rank function given by p(C)= n-dim C. If,
moreover, X is nonsingular, then Poincar6 duality implies that QX is rank-symmetric.
Theorem 2.1 then implies that we may identify the vector space V of Lemma 1.1 (iii)
with H2i (X, C) by identifying C oX with [(] H2i (X, C).

We now wish to define linear transformations qi" V- V/ (or equivalently,
qi" H2i (X, C) --> H2(i+)(X, C)) satisfying conditions (a) and (b) of Lemma 1.1 (iii). This
will enable us to conclude that QX has property S. Let Y be a hyperplane section of X,
i.e., the intersection of X (regarded as being imbedded in some projective space
with a hyperplane of Ps. If X is irreducible, then Y is a closed subvariety of X of
dimension n 1 which represents a cohomology class Y] H(X, C). The cup product
operation on cohomology then yields a linear transformation pg’H(X, C)-
n2(i+l)(x, C) defined as multiplication by Y]. In other words, (.pi(K) Y]" K. We now
verify that when X is nonsingular and irreducible (so QX is graded and rank-
symmetric), then these linear transformations i satisfy conditions (a) and (b) of Lemma
1.1 (iii). First we dispose of condition (b). I am grateful to Steve Kleiman for providing a
proof of this result.

LEMMA 2.2. LetXbe a complex profective variety with a cellular decomposition {Ci},
and let Y be a hyperplane section (or in fact any closed subvariety) ofX. If [Y]. [Ci]=
Y crj[Cj] in H*(X, C), then aj 0 unless Ci c Ci.

Proof. Let A(W) denote the Chow group of the variety W, i.e., the group of cycles
modulo rational equivalence. If W is nonsingular and has a cellular decomposition {Di},
then it is mentioned in [22, 6] that the cycles Di form a basis for A(W), and that the
corresponding map A(W)H*(W, 7/) is an isomorphism of groups. It follows from
[14] that this result continues to hold when W is singular. Now returning to our
hypotheses, the C.’s contained in Ci form a cellular decomposition of Ci. Hence a
hyperplane section of Ci is rationally equivalent to a linear combination of the C that
are contained in Ci. A priori, the rational equivalence is on Ci, but it may be considered
as a rational equivalence on X. Hence ce 0 unless Cj Ci because the [Ci] are linearly
independent in H*(X, C).

Lemma 2.2 shows that condition (b) of Lemma 1.1 (iii) holds for QX (assumingX is

nonsingular and irreducible, so we know QX is graded and rank-symmetric). Condition
(a) is implied by the following basic result, known as the "hard Lefschetz theorem"
(although the first rigorous proof was given by Hodge). See [34] for a brief history and
survey of this theorem, and for its extension to characteristic p. Other references include
[24, p. 187], [29], [10, Corollary, p. 75], [30, p. 44], [19, Chap. 0, 7].

LEMMA 2.3 (the hard Lefschetz theorem). Let X be a nonsingular irreducible
complex proective variety of complex dimension n. Let Ybe a hyperplane section ofX. I"
0 <-- <= n, then the linear transformation H (X, C) -H2n-i (X, C) given by multiplication
by y]n-i is an isomorphism.

Putting Lemmas 1.1, 2.2, and 2.3 together, we obtain the main result of this paper.
THEOREM 2.4. Let X be a nonsingular irreducible complex projective variety of

complex dimension n with a cellular decomposition {Ci}. Then QX is graded of rank n,
rank-symmetric, rank-unimodal, and has property S.

For future use, we record the following simple result. The proof is evident.
PROPOSITION 2.5. Let X and Y be complex profective varieties, with cellular

decompositions {Ci} and {Di} respectively. Then the product variety X x Yhas a cellular
decomposition with cells Ci x Di, and QXY QX X Q Y.

It follows from Theorem 2.4 and Proposition 2.5 that if P QX and P’= QY for
nonsingular irreducible complex projective varieties X and Y, each having a cellular
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decomposition, then P x P’ has property S. More generally, Canfield [7] and indepen-
dently Proctor, Saks, and Sturtevant [36] have shown that the product P x P’ of any two
graded, rank-symmetric, rank-unimodal posets P and P’, each with property S, also has
property S. (An even more general result has subsequently been proved by Saks
[37].) For our purposes, however, it suffices to consider only Proposition 2.5.

3. Weyl groups. It remains to find interesting examples of varieties X with cellular
decompositions and to describe the resulting posets ox. The best known examples of
such varieties are the following. Let G be a complex semisimple algebraic group, and let
P be a parabolic subgroup of G (i.e., a closed subgroup which contains a maximal
solvable subgroup B of G. B is known as a Borel subgroup.) Then the coset space G/P
has the structure of a non-singular irreducible complex projective variety, and the
Bruhat decomposition of G affords a cellular decomposition {Ci} of G/P. The cells Ci
are known as generalized Schubert cells. See [5, 3] for further details.

When X G/P, a description of the poset ox can be given in terms of the Weyl
groups W of G, and W of P [5, 3], [11] as follows. Every Weyl group W is a finite
Coxeter group, i.e., W is a finite group with a finite set S {sl,..., sin} of generators
such that for all 1 <- k <= m, 1 <= < j <= m and certain integers nii >= 2, W is defined by the
relations s 1 and (sisj) n’i 1. The pair (W, S) is called a Coxeter system.

A parabolic subgroup of W (with respect to $) is any subgroup WI generated by a
subset J of S. Thus W6 {1} and Ws W. The length g(w) of an element w W is the
smallest integer q -> 0 for which w is a product of q elements of S. Define a partial order,
called the Bruhat order, on W as follows. We say w-< w’ if there exist conjugates
tl,’’’, tj of the elements of S such that w’=wtlt2...t and vF(wtlt2.., ti+l)>
(Wtxt2"" ti) for all 0_-<i <f. The following properties (among others) of the Bruhat
order of a finite Coxeter group W are known"

1. The Bruhat order makes W into a graded poset (which we still call W).
2. The function is the rank function of W, and the rank-generating function of W

is given by

(1) F(W,q)= 1--[ (l+q+q2+’" .+qe,)
i=1

for certain positive integers ei known as the exponents of W. One may regard (1) as the
definition of the exponents. For other equivalent definitions, see, e.g., [6, Chap. 5, 6.2]
or I-8, Chap. 10]. Note that (1) implies the well-known fact that WI 1-[ (e + 1), and that
W has rank el +. + era.

3. If J c S, then each coset wW of Wj in W contains a unique element wj of
minimal length. For any v Wj we have F(wjv)= ((wj)+ F(v).

4. Let WJ be the set of minimal length coset representatives wl. Then WJ is a
graded subposet of W such that the rank function of WJ is the restriction of the rank
function of W.

5. (Wj, J) is itself a finite Coxeter system, say with exponents f, , ft. Then WJ

has the rank-generating function

(2) F(WJ, q)
F(W, q) _Hi=I (1 + q + q2 +... + qei)
F(WI, q) I-[;= (1 + q +q +... + qf)"

For proofs of these results and further information on Coxeter groups, see e.g., [6],
[8], [11]. For a connection between the posets WJ and combinatorics, different from the
one given here, see [23].

Now we return to the varieties X G/P, where G is a complex semisimple
algebraic group and P a parabolic subgroup of G. It is known [6, p. 29], [5, 3] that the
parabolic subgroups of G containing a given Borel subgroup B are in one-to-one
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correspondence with the parabolic subgroups Wj of the Weyl group W of G (with
respect to a fixed set S of Coxeter generators of W). Moreover, the poset 0x

corresponding to the cellular decomposition of X G/P obtained from the Bruhat
decomposition of G is isomorphic to the partial order on WJ defined above. Hence
from Theorem 2.4 we conclude:

THEOREM 3.1. Let W, S) be a Coxeter systemfor which Wis a Weyl group. LetJ c S
and let W be the poset defined above. Then W is rank-symmetric, rank-unimodal, and
has property S.

A Coxeter system (W, $) is irreducible if one cannot write S as a nontrivial disjoint
union T U T’ such that W Wr Wr,. If (W, S) is reducible, say W Wr x Wr,, then
we also have W Wr x Wr, as posets, and similarly for W. Thus by Proposition 2.5
nothing is lost by considering only irreducible Coxeter systems. Now all finite irreduci-
ble Coxeter systems are known (e.g., [6, p. 193]). There are the infinite families of type
An (n => 1), Bn (n => 2), and Dn (n => 4), together with seven "exceptional" systems E6, E7,
E8, F4, G2, H3, H4 and the dihedral groups I2(p) of order 2p for p 5 or p ->_ 7. (I2(3)
coincides with A2, I2(4) with B2, and I2(6) with G2.) For all of these systems (W, S), W is
a Weyl group except for H3, H4, I2(p), p 5 or p >-_ 7. It is easy to check that Theorem
3.1 remains valid for the dihedral groups I2(p), and for H3. Presumably the remaining
case H4 can also be checked directly, so in fact one could determine those finite Coxeter
systems (probably all of them) for which Theorem 3.1 remains valid.

4. Type A,. We now want to describe the posets W in greater detail, for the types
A,, Bn, Dn. First consider An-1. Then W is the symmetric group n of all permutations
of {1, 2,. , n}. The exponents are 1, 2,. , n 1, and as Coxeter generators we may
take the "adjacent transpositions" si (i, + 1), 1 =< _<- n 1. Regard a permutation
rr n as a linear array ala2"" a,,, where r(i)= ai. Then a direct translation of the
definition of the Bruhat order yields the following: r _-< r in W if r can be obtained
from r by a sequence of operations which interchange and f in a permutation
axa2 an provided appears to the left of f and <]. We abbreviate this operation as

(3) < j------j > i.

Thus the notation "i < j" in (3) means that and ] appear in the given order (i.e., to the
left of j) and <]. For instance, 213 312 (obtained by 2 < 3 3>2) and 24153 <

35241 (obtained, e.g., by 2<33<2, 1<22>1,4<55>4). The rank g(r) of
"tr ala2" an W is equal to the number i(r) of inversions of r, i.e., the number of
pairs (i,/’) for which < ] and ai > aj. Thus 12 n is the unique permutation of rank 0
and n 21 is the unique permutation of highest rank (). It is well-known (e.g., [9,
6.4]) that

Z qi(=)=(l+q)(l+q+q2) (l+q+...+q,-1),

which of course agrees with (1). Figure 1 depicts the Bruhat order of 3.
321

512 231

213

125
FIG.
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Now let J S={s1, Sn-} where si =(i, i+ 1). If we let (a, b) denote the
group of all permutations of {a,a+l,...,b}, then it is clear that WI=
@(1, Cl) x (Cl + 1, c2) x. x (c/_a + 1, n) for some integers 1 <_- Cl < c2 <" < c._ <
n, where / n -]J[. If rr ala2 an W, then the coset rrWj consists of all c!(c2-
Cl)!’" (n-c/_1)! permutations obtained from rr by permuting among themselves
the elements within the sets Xl {1, 2, ..., cl}, N2 {Cl-1-1, ..., C2},""", N/--
{c._+ 1, , n}. The coset representative rrj rWj with the least number of
inversions is that element of rrWj for which the elements of the above sets Ni appear in
their natural order. Hence WJ consists of those n!/c!(c2-ca)!... (n-c/-1)! permu-
tations for which the elements of each of the sets N appear in their natural order; or, as
it is sometimes called, the set of shuffles of NI, X/. The rank-generating function of
WJ is given by

(4) F(WJ, q)
(n)!

(c)!(c2-c)!’’" (n-c/_)!

where (k)!=(1-q)(1-q2) (1-qk). The right-hand side of (4) is known as a

q-multinomial coefficient and is commonly denoted [ n . Figure 2
k Cl, C2--Cl, F/--Cj-1 _l

illustrates the poset Wj
in the case n 4, J {(12)}.

4312

3412

4123 3142

3124 1342

1324./
1243

1234
FIG. 2

If we take Wj to be a maximal parabolic subgroup above, i.e., [J[-- n 2, then the
poset WJ has an interesting alternative description. Suppose J S -{(n k, n k + 1)},
so Nl={1,2,’",n-k} and Nz={n-k+l,’",n}. If r=alaz...an6W and
1 <- _-< k, then set

(5) dg(r) card {/: appears to the right of n + 1 and / < n + 1}.

Clearly ((r) /= i(r). The mapping r -* (l(r), , k(r)) is a bijection between
WJ and all integer sequences 0 -<_ ( -<_. -<_ -<_ n k. Moreover, r -< r’ in WJ if and
only if (i--< g for 1 <_-i _-< k. Hence, WI is isomorphic to the poser of all partitions of
integers into at most k parts, with largest part at most n- k, i.e., a partition whose
Ferrers diagram (e.g., [9, 2.4]) fits into a k x (n- k) rectangle. These partitions are
ordered by inclusion of their Ferrers diagrams. Since the union and intersection of
Ferrers diagrams is again a Ferrers diagram, it follows that the poset WJ is actually a
distributive lattice, which we will denote by L(k, n -k). Figure 3 depicts L(2, 3).
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FIG. 3

In terms of the characterization [3, Thm. 3, p. 46] of a finite distributive lattice L as
the lattice 2e of semi-ideals (also called "order ideals" or "decreasing subsets") of a
poset P, we have L(k,n-k)=2’n-’), where denotes an /-element chain. The
rank-generating function of this lattice is the q-binomial coefficient []=
(n)!/(k)!(n-k)!. It is by no means a priori obvious that W is rank-unimodal; this was
first shown essentially by Sylvester in 1878 (see [40] for historical details) and no
combinatorial proof is known. I am grateful to Tony Iarrobino for originally calling
to my attention that the hard Lefschetz theorem implies the unimodality of the
coefficients of []. It was my attempt to understand this fact which eventually led to the
present paper.

By applying Theorem 3.1 to the lattice L(k, m), we can deduce a "multiset
analogue" to a conjecture of ErdiSs and Moser [13, (12)]. (Regarding their actual
conjecture, see Corollary 5.3 below.) I am grateful to Ranee Gupta for her comments
on this result.

COROLLARY 4.1. Fix positive integers k, m, andj. LetA {ao, al, , a,,} be a set

ofm + 1 distinct real numbers. LetB, , Bbe subsets ofA with exactly k elements with
repeated elements allowed. (One may think orbs as being an m + 1 -tuple (Ceo, , c,,) of
nonnegative integers such that ci k, where ci is the number of repetitions of ai.) Let
Bs denote the sum o1 the elements orB, i.e., Bs Y aiai. Suppose that them are at most

j distinct numbers among B, , Y’. Br. Then r is less than or equal to the sum o] the ]

middle coecients o]’ the polynomial[m" + k]" Moreover, this value of r is achieved by
k _"

takingA {0, 1, , m} andB, , B to have element sums consisting o[ the ] middle
elements o]’the set {0, 1,. , km}. (If kin -] is even, then there are two equivalent choices
of the "/" middle coefficients" and "i middle elements.")

Proof. Regarding B=(o," .,a,,) associate with B the sequence A=
(, , ) L(k, m) defined by setting exactly c of the ’s equal to i. It is easy to see
that the subset { a,. , } of L(k, m) contains no (j + 1)-element chain provided there
are only /" distinct numbers among B,..., B. The proof now follows from

Theorem 3 1 and the fact that the rank-generating function of L(k, m)is"lk +m/. k "
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As a variation of the preceding corollary, we have
COROLLARY 4.2. Fix positive integers k, m, andi. LetA’ {al, , a,} be a set ofm

distinct nonzero real numbers. LetB1, , B, be subsets ofA’ with at most k elements with
repeated elements allowed. Suppose that there are at most distinct numbers among, B1, , B,. Then r is less than or equal to the sum of the i middle coefficients of the

polynomial[m+k]k
Moroever, this value ofr is achieved by taking A’ {1, , m} and

B1,"’, B, to have element sums consisting of the ] middle elements of the set
{0, 1,... ,kin).

Proof. Apply Corollary 4.1 to the set A A’ {0}. lq

Remark. The cellular decomposition of G/P in the case W(G) n and W(P)
k n-k can be described quite concretely. The group G is given by SL(n, C), which
acts linearly on n-dimensional complex projective space p,-1. Let V be a (k-1)-
dimensional subspace (or (k 1)-plane) of p-l, and let P be the subgroup of G leaving
V invariant. (Then P is a maximal parabolic subgroup of G.) The coset bP transforms V
into the subspace b V, and this sets up a one-to-one correspondence between X G/P
and the (k- 1)-planes in p-l. Hence X is the Grassmann manifold G(k- 1, n 1) of
all (k-1)-planes in p,-1. Regard the elements of n-1 as (equivalence classes of)
n-tuples (xl, , x,) C -{0}. A (k 1)-plane V in p,-1 has a unique ordered basis

w1, , wk for which the matrix is in row-reduced echelon form. Choose integers

0 <_- al --< a-<_. <_- a _<- n k, and suppose we specify that for each i, the first 1 in w
occurs in coordinate a+i. The set of all such V forms a subset C(al,"’, a) of
G(k 1, n 1) isomorphic to C(n--’ ; indeed, there are n k a coordinates
in w which can be specified arbitrarily, and the remaining coordinates are pre-
determined. By considering all sequences 0 _-< a -<. _-< ak N n k, we obtain a cellular
decomposition of G(k-1, n-l). Thus the cells C(al,..’, a) are in one-to-one
correspondence with the elements (al, , a) of L(k, n k). For instance, when k 2
and n 4 the cells correspond to the following row-reduced echelon matrices:

0 1 * * 0 0 1 0 0 0

C(O, O) C(O, 1) C(O, 2)

[0 1 0 :] [0 1 * 01] [ 0 1 ]0 0 1 0 0 0 0 0

C(1, 1) C(1, 2) C(2, 2)

A little thought shows that C(al,’.., ak)f(bl, ., bk) if and only if ai <=bi for
l<-i<=k. Thus we see directly that oX_L(k,n_k). The closure of the cell
C(al, , a) is called a Schubert variety, and its cohomology class is called a Schubert
cycle, which we shall denote by fi(al,..., ak). (A more common notation is
f(a,...,a,) where ai=n-k+i-l-a-i+l.) The Schubert cycle to=

I’t(O, 0,. , O, 1) Ha(X, C) turns out to be the class of a hyperplane section. Accord-
ing to a special case of Pieri’s formula in the Schubert calculus, the product of
fi(a, , ak) with to in H*(X, C) is equal to the sum of all (bl,’", bk) such that
bi >- ai and bi 1 + Y. ai. In other words, to 12(al, , a) I(bl, , b), where
the sum is over all sequences (bl," , bk) covering (al," , ak) in L(k, n k). Thus we
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have a direct verification of Lemma 2.2. For further information on these matters, see,
for example, [26], [27], [41].

5. Type B,. We next turn our attention to type B,. In this case W is the group of all
n x n signed permutation matrices (i.e., matrices with entries 0, +1 with one nonzero
entry in every row and column). W has order 2nn! and exponents 1, 3, 5, , 2n 1.
Identify the matrix (mii) W with the ordered pair (-, e), where r 6 n is given by
mi,-(i)-- +1 and e (61, ", en) {+1} by ei-- mi,(i). We then have the multiplication
rule (r, e)(r’, e’) (r’, B), where Bi e,(i)e/.We sometimes will abbreviate a group
element such as (24513, (-1, 1, -1, -1, 1)) by 2 4 5 1 3, and thus regard W as
consisting of all "barred permutations" of {1, 2, , n}. For the Coxeter generators of
W we take the set S {sl, , sn}, where si is the adjacent transposition (i, + 1), 1 <_-
i_<-n-1, and sn 1 2 3...n. A little thought shows that r_-<o in W if o" can be
obtained from r by a sequence of the following seven types of operations on barred
permutations:

a)
b) <f ;j> i,
c) <i j> i,
d) </" /’>i,
e) i>] ,i<i,
f) i>]-----+]< i,
g) i>i ,/" < i.

For instance, Fig. 4 illustrates W when n 2.

I 2T

T2 21

2

FIG. 4

If (r, e) W, then one can check that

(6) ((rr) i(rr)+ E (2di + 1),

where i(r) is the number of inversions of r, f ranges over all integers for which e. -1,
and d. is the number of k’s appearing in - ala2 an to the left of a. for which k < ai.
For instance, (3 1 5 4 2) 11, since i(r) 5, dl= 0, d4 2. It is easy to give a direct
combinatorial proof that

Z qe(-= 1--I (l+q+q2+’" .+q2i-),
"rrW i=1

agreeing with (1).
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Now let J c S. Let @(a, b) denote the group of all signed permutations of
{a, a + 1,..., b}. Then Wj has the form

(7) Wj @(1, cl) x @(c1 -}- 1, c2) x (c2 q- 1, c3) x. x @(cj-1 q- 1, n),

where O<=ca<c2<’’’<Cj_l<n. The case Cl--0 corresponds to Sne!J. If Cl=0
then j=n-IJI; otherwise j=n-IJl+l. Set N1={1,2,..., Cl}, N2
{ca+l,"’,c2},’",Ni={Ci-l+l,’",n}. One can check that Wj

consists of all
(ala2" an, e) W satisfying"

(i) ei l if ai 6 N1.
(ii) If ar, as Ni with r < s and E:r s 1, then ar <

(iii) If a, as 6 Ni with r < s and er es -1, then
(iv) If a,., as Ni and er 1, es =-1, then ar > as.
For instance, if Wj @(1, 2) x @(3, 7) x @(8, 9), then a typical element of WJ is

5 4 1 8 6 2 7 9 3. The letters 1, 2 are unbarred and appear in increasing order.
Similarly 3, 4 are barred and decrease, 5, 6, 7 are unbarred and increase, 8 is barred and
"decreases," and 9 is unbarred and "increases."

213

FIG. 5

Figure 5 illustrates WJ when n 3 and J {S 1, $3}. We see that, unlike the situation
for An, WJ need not be a distributive lattice (or even just a lattice) when J is a maximal
subset of $. There is one case, however, in which WJ is a distributive lattice, viz.,
J {Sl, s2, , sn-1}, so Wj @(1, n). In this case we will denote WJ by M(n). To see
that M(n) is indeed a distributive lattice, observe that for every sequence e

(e ," , en) { + 1}, there is a unique r for which (rr, e M(n). Identify e with the
subset of { 1, 2, , n} consisting of those integers for which 1. Then the par-
tial order on M(n) is given by {al," , a} <- {bl," , b} if al <" < a, bl <" < b,
j =< k, and a_ -<_ be_ for 0 -<_ -< j 1. It is then easily seen that M(n) is a distributive
lattice. The poset P for which M(n) 2e is given by P 2x"-. Figure 6 illustrates M
(4).
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FIG. 6

Lindstr6m [30] conjectured that M(n) has property S1, while in fact we now know
that M(n) has property S and is rank-unimodal. (I am grateful to Larry Harper for
calling my attention to LindstriSm’s conjecture.) The rank-generating function of M(n)
is (1 + q)(1 + q) (1 + qn). The unimodality of the coefficients of this polynomial was
first explicitly proved by Hughes [25], based on a result of Dynkin (see [40] for further
information). Presumably, however, this result could also be proved analytically using
the methods of 12]. Lindstr6m [30], [31 shows that the structure of M(n) is related to a
conjecture [13, (12)] of Erd6s and Moser (see also [12], [38], [42]). In fact, Corollary 5.3
below provides a more general result. I am grateful to Ranee Gupta for pointing out an
error in my original treatment of the Erd6s-Moser conjecture.

COROLLARY 5.1. LetA be a set ofdistinct real numbers. Assume that , elements ofA
are negative, are equal to 0 (so 0 or 1), and r are positive. LetB1, , Br be subsets
ofA whose element sums take on at most k distinct values. Then r does not exceed the sum
of the k middle coefficients of the polynomial

G,,c.(q) 2c(1 +q)(1 +q2)... (1 +q"). (1 +q)(1 +q2)... (1 +q)

(there being two equivalent choices of the k middle coefficients when (’+ 1)2

2
-k is even). Moreover, this value of r is achieved by taking A=

{- 1, -2,. , -,} U {1, 2,. ., rr} U Z, where Z 49 or {0} depending on whether ( 0
or 1.
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Proof. Since 0 can be adjoined to a set without affecting its element sum we may
assume sr 0. Let M(u)* denote the order-dual of M(u).(The elements of M(,) and
M(u)* coincide, but C <= C’ in M(,)* if and only if C -> C’ in M(,).) Regard elements of
the product M(v)* M(Tr) as consisting of pairs (C, D), where C is a subset of
{1, 2,..., u}, and D is a subset of {1, 2,..., r}. Suppose that the elements of A are
a, <" < al < 0 <1 <" < -n" and that Bs {oli1, Oilh, [].l," ]m}" Associate
with Bs the set (Cs, Ds) ({il, ", ih}, {/’1, ",/’,,}) M(u)* x M(Tr). It is easy to see
that the subset {(C1, D1), , (Cr, Dr)} of M(u)* x M(vr) contains no (k + 1)-element
chain provided there are most k distinct element sums of B1,’", Br. Now it is not
difficult to see that M(u)* M(u). (For instance, given the set T {il," , ih} M(u)
with 1 <= il <’" < ih <= u, define T* to be the set of nonzero parts of the partition h
which is conjugate (in the sense of [9, p. 100]) to the partition whose parts are
u ih, u 1 ih-, ", U h + 1 il, u h, u h 1, , 1. Then the mapping T - T*
is an isomorphism M(,) M(u)*. See also 7 for a more general result.) The proof now
follows from Theorem 3.1 and Proposition 2.5 (or from Theorem 3.1 alone applied to
the appropriate reducible Weyl group) and the fact that the rank-generating function of
M(u)* x M(’) is Go,(q). 71

We now want to consider the situation where , + sr + 7r is fixed, but ,, sr, and r can
vary. First we need"

LEMMA 5.2. Let G(q) be a polynomial of degree d with symmetric unimodal
coefficients. Fix positive integers j and k. Then the sum of the middle k coeffi-
cients of G(q)(1 +q/+l) does not exceed the sum of the middle k coefficients of
G(q)(1 + q).

Proof. Let G(q)=a(O)+a(1)q+...+a(d)q a. For simplicity of notation we
assume d 2d’,/" 2/", k 2k’. The other cases are done similarly. The middle k
coefficients of G(q)(1 + qi) are

a(d’ +j’-k’ + i)+a(d’-j’-k’ + i),

The middle k coefficients of G(q)(1 + qj+l) are

O<=i<=k-1.

o(d’ +f’-k’ + + 1)+a(d’-f’-k’ + i), O<=i<=k-1.

(Here we set a (t) 0 if < 0.) If f applied to a polynomial denotes the sum of its middle
k coefficients, then

fG(q)(1 + qi)-fG(q)(1 + qi+X) a(d’ +j’- k’)-a(d’ +j’ + k’).

Since ce(i)=a(d-i) and a(O)<-a(1)<=...<-a(d’), it follows that a(d’+j’-k’) >-

a(d’+j’+ k’), completing the proof. [3
COROLLARY 5.3. Let A be a set of n distinct real numbers, and let Ba,..., Br

be subsets ofA whose element sums take on at most k distinct values. Let u [(n 1)/2]
and 7r In/2]. Then r does not exceed the sum of the k middle coefficients of the
polynomial

2(1+q)(l+q2)... (1 +q). (l+q)(1 +q2)... (1 +q=).

Moreover, this value of r is achieved by choosing A {-,, -p + 1, , 7r}.
Proof. For fixed n u + sr + rr, it follows from Lemma 5.2 that the sum of the middle

k coefficients of Gc,(q) is maximized by choosing sr 1, u [(n 1)/2], 7r In/2]. The
proof follows from Corollary 5.1.

The actual conjecture [13, (12)] of Erd6s and Moser is equivalent to the case k 1,
and n odd, of Corollary 5.3. A purely combinatorial derivation of the Erd6s-Moser
conjecture from the fact that M(n) has property S appears in [35].
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6. Type D,. If (W, S) is a Coxeter system of type D,, then W is the subgroup of the
group W’ of type B, consisting of all (Tr, e) such that 1-[i=1 eg +1. W has order
and exponents 1, 3, 5, , 2n 5, 2n 3, n 1. We may take S {Sl, , s,} where
si (i, + 1) if 1-<_ i-<_ n- 1 (as in type Bn) and s, 2 1 3 4... n. We then have the
following seven transformation rules for obtaining w’ from w when w <-_ w’ in W:

a) i<i -f> ,
b) i<j----.j>i,
c) <j-----,i> i,
d) <y-----j>i,
e) i>j .>j< i,
f) i>j ,f<i,
g) i>i

Note that rules b-g coincide with those for B,, and that rule a for D, is obtained by
applying rule b and rule a twice for Bn. It follows that if r _-< o" in W then r -<_ cr in W’.
The converse, however, is false. For instance, 21<21 in W’ but 21 and 21 are
incomparable in W. Figure 7 depicts W when n 2.

FIO. 7

If (zr, e) W, then

g(Tr) i(r) + 2 Y di,

where i(r) and dj have the same meaning as in (6). For instance, g(3 1 5 4 2) 9 for
Ds, while g(3 1 5 4 2)= 11 for B5.

Now let J S. In so far as describing the poset WJ is concerned, we may assume
that if s =2134.’.n J then also sa=213""n J, since interchanging sa and s,
induces an automorphism of the Coxeter system (W, S). Thus if we let (a, b) denote
the group of all signed permutations of {a, a + 1,. , b} with an even number of -l’s,
then Wj has the form

Wj @(1, ca) x (ca + 1, ca) x. x (cj-a + 1, n),

where O<=Cl<C2<’’’<Ci-I<t’t and C11. The case c1=0 corresponds to snJ.
Defining N1 {1, 2,. , Cl}, N2 {ca + 1,. , c2}," , Ni {ci-a + 1,. , n}, one can
check that Wj

consists of all (ala2" an, e)6 W satisfying:
(i) el =lifaiNlandag>l.

(ii)-(iv) Same as for type B,.
(v) 1 precedes every other element of N1 (even if 1 is barred).

For instance, Fig. 8 depicts WJ when n=3 and J={12}, i.e., Wj=
@(1, 2) x (3, 3), so N1 b, N2 {1, 2}, N3 {3}. Note that this poset is isomorphic to
that of Fig. 2; this is no accident since Coxeter systems of types A3 and D3 are
isomorphic. (Recall that to obtain nonisomorphic systems, one may take A for n _-> 1,
B, for n >_-2, and D, for n >-_ 4.)
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312 312

132 213

123

FIG. 8

As in the case of B,, WJ need not be a distributive lattice when J is maximal. For
instance, take n 4 and J {Sl, s3, s4} S {(23)}, so Wj @(1, 2) x (3, 4). Then the
rank-generating function of WJ is given by

F(W, q)= 1 +q + 3q2+ 3q 3 +4q4 +4q + 3q6+ 3q7 + q8 + q9,
and it is easy to check that there does not exist a distributive lattice with this
rank-generating function. As in the situation for B,, there is one special case for which
W is a distributive lattice. Take J {Sl, s2, , s,-1}, so Wj (1, n). If we regard
M(n) (as defined in the previous section) as consisting of all subsets of {1, 2,. , n},
then WJ turns out to be the subposet of M(n) consisting of all sets of even cardinality.
But it is easily seen that this subposet is isomorphic to M(n- 1), so nothing new is
obtained.

7. Final comments. In view of the examples L(m, n) and M(n), it is natural to ask
under what circumstances is WJ a distributive lattice. I am grateful to Robert Proctor
for supplying the following answer to this question. The Coxeter generators S of an
irreducible Weyl group W correspond to the fundamental representations Ai(1 _-< <-n)
of a certain complex simple Lie algebra . By direct computation facilitated by
representation theory, Proctor has shown that (except for the representations A and 2

of G2) WJ is distributive if and only if the irreducible representation of g with highest
weight Yi/i is miniscule, as defined in [6, p. 226]. These representations have special
significance in other contexts; see [39] and more generally [28]. It turns out that for all
the distributive WJ’s except L(m, n) and M(n), it is easy to check Property S directly.

Proctor has also shown that if W is a Weyl group with largest element v (in the
Bruhat order) and if WJ (for any J c S) has largest element y, then the bijection from
WJ to WJ given by w - vwy-lv- is an anti-automorphism of WJ. Thus WJ is self-dual
whenever W is a Weyl group. We do not know whether the more general posets 0x of
Theorem 2.4 need always be self-dual.

We conclude with an open problem. Let P be a finite graded rank-symmetric poset
of rank n, with rank function p. P is called a symmetric chain order (e.g., [17, 3], [20],
[21]) if it can be partitioned into pairwise disjoint saturated chains xi < xi+a <" < x,-i

such that p (xi) =/i It is easy to see that a symmetric chain order satisfies Property T and
hence is rank-unimodal. Easy examples show that a rank-symmetric poset satisfying
Property T need not be a symmetric chain order.
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Our open problem is the following: Are all the posets QX of Theorem 2.4 (or at
least the special cases WJ of Theorem 3.1) symmetric chain orders? Since any poset QX
given by Theorem 2.4 has property T, there are pairwise disjoint chains connecting all
of O/x to oXi+l when < n/2, and all of Ox to O1 when > n/2. Piecing together these
chains yields a partition of 0x into saturated chains all of which pass through the
middle rank (when n is even) or middle two ranks (when n is odd). However, it is by no
means clear whether these chains may be chosen to be symmetric about the middle.

Emden Gansner has pointed out to me that for type An, there is a rank-preserving,
order-preserving bijection 1 x 2 x. x n -> W n, where 1 x 2 x. x n
{(bl, , bn): 0 <_- bi < i}. Namely, q(bl, b,) is that permutation ,r aaa2. an, such that b is the number of elements/" appearing in 7r to the right of and satisfying
] < i. Since any product of chains is a symmetric chain order (e.g., [17, pp. 30-31]), it
follows that n (with the Bruhat order) is also a symmetric chain order. A similar
argument for types Bn and Dn produces rank-preserving order-preservin bijections
2 x 4 x. x 2n-> @n and 2 x 4 x. x 2(n- 1) x n-> {n. Hence @n and n are also
symmetric chain orders. However, we do not know for instance whether L(m, n) and
M(n) are always symmetric chain orders. Lindstr6m [32] has shown that L(3, n) is a
symmetric chain order, and D. West [44] has shown that L(4, n) is a symmetric chain
order. Littlewood [33, pp. 193-203] claims to prove that L(m, n) is indeed a symmetric
chain order for all m and n. However, his proof is invalid. Specifically, it relies on the
"method of chains" of Aitken [45], and this method is not correct as stated by Aitken.
For the reader’s benefit we will discuss the nature of Aitken’s error in more detail. Let
P {X1, Xnt be a finite poset, and let (a) be the n x n matrix defined by a 0
unless x < x in P; otherwise the ai’s are independent indeterminates over . Remove
a chain C1 of maximum cardinality c from P, then remove a chain C2 of maximum
cardinality c2 from P-C, etc. Aitken essentially claims first that the numbers
Cl, c2,. , are independent of the choice of chains C, C2,..., and second that the
numbers cl, c2, are the sizes of the Jordan blocks of . The first claim is clearly false.
However, Littlewood’s proof would still be valid if there were some way of choosing
C, C2, so that the second claim is true. Even this weaker result is false. Let P be the
poset of Fig. 9. We have no choice but to take c 4, c. 1, c3 1. However, the Jordan
block sizes of are 4 and 2. A corrected version of Aitken’s result appears in [37]. If this
corrected result is used in conjunction with Littlewood’s method, it yields the result that
L(m, n) has property T. Thus we have an alternative proof, avoiding the hard Lefschetz
theorem (though actually Littlewood’s method essentially proves the hard Lefschetz
theorem for the Grassmann variety), that L(m, n) has property T.

A further property of posets which implies the Sperner property is the LYM
property [17, 4]. However, Griggs has observed that L(4, 3) fails to satisfy the LYM
property.

FIG. 9
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Note added in proof. A proof that L(3, m) and L(4, m) have symmetric chain
decompositions was first given by W. Riess, Zwei Optimierungsprobleme auf
Ordnungen, Arbeitsberichte des Institute fiir Mathematische Maschinen und Daten-
verarbeitung (Informatik) 11, Number 5, Erlangen, April 1978.
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THE GROWTH OF POWERS OF A NONNEGATIVE MATRIX*

SHMUEL FRIEDLANDS" AND HANS SCHNEIDER’

Abstract. Let A be a nonnegative n n matrix. In this paper we study the growth of the powers A",
m 1, 2, 3,. when p(A)= 1. These powers occur naturally in the iteration process

X
(re+l) AX(m) x () O,

which is important in applications and numerical techniques. Roughly speaking, we analyze the asymptotic
behavior of each entry of A’. We apply our main result to determine necessary and sufficient conditions for
the convergence to the spectral radius of A of certain ratios naturally associated with the iteration above.

1. Introduction. Let A be a nonnegative n n matrix. In the iteration process

(1.1) X
(re+l) Ax (’), x (0)_>_ 0,

which is important in applications and numerical techniques, the powers A% m 1,
2,... occur naturally. In this paper, we study the growth of these powers. In the
literature there are several studies of the growth of A when the elementary divisors
belonging to the spectral radius p (A) of A are linear. For example, see Gantmacher [7,
Chap. 13, 5-7] Varga [19, pp. 32-34] when A is irreducible, and Meyer-Plemmons
10] when lim,_o A exists. We deal here with the general nonnegative case, when the
elementary divisors belonging to p(A) may have degrees greater than 1. At the cost of
ignoring nilpotent A, where the problem is trivial, we assume that p(A)> O.

For a complex n n matrix A, with p(A)= 1, there is a least integer k for which
rn-’A is bounded, m 1, 2,. .. However, even in the simple case of an imprimi-
rive, irreducible nonnegative A, lim_llrn-A m[[ and, a fortiori lim_ rn-’A’", do not
in general exist. To obtain precise results for general nonnegative A with p(A)= 1,
it is thus necessary to introduce some smoothing. For example, in [14] Rothblum
considered Cesaro means of powers of A. In this paper we study the growth of

(1.2) B(")=A"(I+ .+Aq-1), rn 1, 2, ,
where q is a certain positive integer.

After some preliminaries in 2, we use elementary analytic methods in 3 to prove
a theorem on the growth of B ("). As corollary, we obtain a known theorem on the index
of the eigenvalue 1 of A, cf. Schaefer 17, Chap. 1, Thm. 2.7]. We also give a local form
of the theorem; that is, we show that for 1 _-< i,/’_-< n there exist integers k k(i, j) and

(m)q q(i, j) > 0 such that the element bii of the matrix given by (1.2) satisfies

(1.3) lim m-’bl") >0.

The analytic results of 3 motivate the investigations in the rest of the paper.
The main thrust of the paper is the use of the graph structure of the matrix A to

decrease the integer q(i, ]) and to determine the integer k(i, ]) in (1.3). The requisite
graph theoretic concepts are developed in 4, and in 5 we state our main result,
Theorem (5.10). As a corollary, we obtain a striking theorem on the index of 1 due to

* Received by the editors June 14, 1979, and in revised form December 4, 1979.
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Wisconsin 53706. This research was supported in part by the United States Army under Contract
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Rothblum [13]. Our results are related to those of U. G. Rothblum [14], [15], and in
some instances, would also follow from his. But where Rothblum considers Aq’, m
1, 2,..., we consider B (’) and this allows us to choose a smaller integer q. Our
definitions of q(i, ]) involves the greatest common divisor (g.c.d.) of certain periods
where one might expect the least common multiple (1.c.m.). Consider the example

0 1 0 0 1

10 0 0 0 000 0 1
0 0 0
0 1 0

(m)Then, by direct computation, for 1 -<_ i, j-< 2, lim,_, bii 1, where B(")

Am(I+A). Thus k(i,j)=O, and we may choose q(i,/’)=2 if 1<-i,j<_-2. Similarly
(" =-if 1<i<2,3<j<6 andsok(i,j)=O,q(i,j)=3if3<-i,j<-5. Yetlim,_,oom-laii .....

we have k(i, j)= 1, q(i, j)= 1.. We might add that it may be possible that our choice of
q(i, j) can be improved in the general case where we use an 1.c.m. of certain g.c.d.’s.

In 6, we apply our results to the iteration process (1.1) for any nonnegative matrix
A satisfying O (A) > 0. For x _-> 0, x 0 denote

(1.4i) r(x) sup {Ix" Ixx <= Ax},

(1.4ii) R (x) inf {Ix" txx >= Ax }.

In Theorem 6.8, we find necessary and sufficient conditions for r(A"x) and R (A rex) to
converge to the spectral radius of A. We show that whether or not this happens depends
only on what is in general a small part of the vector x. In 7, we show that a theorem due
to D. H. Carlson [3] on the existence of nonnegative solutions y for (I-A)y x, x >_-0,
p(A)- 1 is a consequence of our main results and we extend the theorem.

2. Preliminaries.
Notations. Let q (1), q (2), , be a sequence of nonnegative numbers and k ->_ 0 be

an integer.

(2.1) (i) q (rn)-- O(m k) will denote that p(rn)/m ’, m 1, 2, is bounded.
(ii) q(rn) o(rn ) will denote that lim,,_, q(rn)/m k O.
(iii) q(rn) rn

g
will denote that lim,_,oo o(rn)/m exists and is positive.

(iv) The above notations will also be used for k 1, -oe. In case that k 1
q(m)= O(m’), q(rn)=o(rn’), q(m)rn k will each indicate that there
exists p, 0<p<l, such that q(m)p-"=O(1). In case that k =-oe the
above notations will mean that q(rn)= 0 for all sufficiently large m. (Thus
q(m) rn implies q(rn) m-1.)

(v) The notation A(rn)rn will be used for a sequence of nonnegative
matrices A(1), A(2), to indicate the relation holds for each element.

Combinatorial result. Let r-> 0 and > 0 be integers. Then

(2.2) FT= 2 1P’1p2""" I p’,
plA-...d-pt---r

where the summation is taken over all nonnegative integers pl," , pt whose sum is r.
That is, F is the number of collections of r objects chosen from distinct objects, with
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repetitions allowed. It is well-known that

(r+t-1)(2.3) r,
r

A simple way to prove this equality is by considering the coefficient of X of both sides of
the identity

which is derived from (1-x)-t=(1-x)-1... (l-x)-1. For a purely combinatorial
proof see for example Brualdi [2, p. 37]. For 0 the above formula implies F 1 for
all r -> 0.
We shall also need some results on the convergence of series.
LEMMA 2.4. Given integers k >- 1, q > O, and let bp >- 0, p 0, 1, 2, be a sequence

such that

(2.5) lim p
p--cx3

where q > O. Then

-(k-1)(bp +" + bp+q_) v,

(2.6) lim m -k b, =---v
moO p=l kq"

Proof. Elementary. Alternatively, check that Cm,p--m-kkpk- satisfies the
assumptions of Hardy [8, Thm. 2, p. 43]. ?l

LEMMA 2.7. Suppose (2.5) holds. If limm-,oo am u then

UV
(2.8) lim m-k avb,_,=.

meo p-----1 kq

Proof. According to Hardy [8, Thm. 16, p. 64]

(2.9) lim Ep=l a,b_,
p=

since
(k-)b b +" + bin+q-1 2vm

0<=b, p b v(2kq)-m k’

and the last expression tends to 0. If we apply (2.6) to (2.9) we obtain (2.8).

3. Analytic approach. By , resp. C, we denote the real, resp. complex field, and by
+ the nonnegative numbers. The set of real, resp. complex, nonnegative r x n matrices
will be denoted by E", resp. C", ". We also write A > 0 for A e "+ (A is nonnegative)
and A > 0 when A is positive (a > 0, 1, , r, j 1, , n).

Let A e C"". By spec A we denote the set of eigenvalues of A. Suppose that
spec A {A 1, , Ar}, where the A are pairwise distinct. It is known (cf. Gantmacher
[7, Chap. 5, 3]) that there exist nonnegative integers p,. ., p and unique matrices
Z C", fl 0, , p, a 1, , r which are linearly independent such that for
each polynomial f(),

(3.1) /(A)=
a=l B=O
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The Z are polynomials in A, p + 1 is the size of a largest Jordan-block belonging to
ha. The columns of Z(’) are eigenvectors of A corresponding to the eigenvalue ha, the
rank of Z is equal to the number of Jordan blocks of size p + 1 corresponding to
(The simplest way to obtain (3.1) is by assuming that A is in Jordan form.) As usual we
define

index (h)=p + 1.

That is, p + 1 is the multiplicity of h in the minimal polynomial of A. We shall also use
a localized index. For 1 i, n we put

()indexi(h) 1 + max{" zi 0, 0, , p},
() 0, fl 0, p. If A 6 C and m is any integer we shallwhere indexi(h) 0 if z gi

denote the elements of A by aii 1 i, m.
Let A E". We assume throughout the normalization p(A) 1. It is well-known

(see Frobenius [6], Gantmacher [7, Chap. 13], Berman-Plemmons [1, Chap. 2]) that if
is an eigenvalue of A and [hi= 1, then h is a root of 1. Hence, there is a positive integer q
such that h" 1, for all h 6 spec A, [hi 1. The smallest such integer q will be called the
period of A. If q 1, A will be called aperiodic. For an irreducible and aperiodic matrix
A 0, the Frobenius theorem and the formula (3.1) imply

lim A Z(> 0,
m

where h 1, see for example Berman-Plemmons [1, Chap. 2, Thm. 4.1]. Theorem 3.4
extends the above equality in a local way. Part (i) of the theorem is an extension of the
known inequality apparently due to Schaefer [16, Thm. 2.4, p. 264],

(3.2) index (h index (1) if]hi= 1,

for nonnegative matrices; see also Schaefer [17, Chap. 1, Thm. 2.7], Berman-Plem-
mons [1, Chap. 1, Thm. 3.2]. This result and part (i) of Theorem 3.4 could easily be
deduced from the classical Pringsheim theorem on analytic functions; e.g., see Titch-
marsh [18, p. 214]. The use of the Pringsheim theorem in analyzing the spectral
properties of nonnegative matrices can be traced back to Ostrowski 11] (see also Karlin
[9] and Schaefer 16, Appendix] for the infinite dimensional case). See Friedland [5] for
a detailed analysis of the Pringsheim theorem for rational functions which has certain
analogs to the Frobenius theorem. For sake of completeness we bring a short and
elementary independent proof of Theorem 3.4. To do so we need an easy lemma which
probably is known.

LEMMA 3.3. Let, z, 1, , r be complex numbers, where the are pairwise
distinct. If lim(2]= hz)exists, then z =0 if [h] 1, h 1.

Proof. Since lim h exists for ]h< 1 or h 1, without loss of generality we
may assume that ]h] 1, h # 1, a 1,..., r. Put z =(z,..., Zr)’ C and u=
(u, u+_)t, where u ==a hz. Let A=diag{h, h} C and let V=

-1(v)l C be the Vandermond matrix given by v h a, 1,..., r. Then

u(= VAz.
The assumption of the lemma implies that limu() exists. Since V is nonsingular,
lim Az limV-u and so z 0.
TOM 3.4. Let A where p (A) 1. Let 1 i, n.
(i) If spec A, [h 1, then indexgi (h) index//(1).
(ii) Let q be a positive integer such that 1 ifh spec A, ]h] 1 and indexi(h)
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indexq(1). Put k + 1 index0.(1) and let

B(’)=A’(I+. +Aq-1).
(m) k (m) k)Then b q m In particular, a q # o(m ilk >0.

Proof. (i) Let {, 1,’" ", At} be the eigenvalues with 1, [= 1, c 1,..., r, where the
are pairwise distinct. Let

d+l =max{indexq {As}" a 1,..., r}.
(cd)If d -1 then there is nothing to prove. So assume that d -> 0. Suppose that z z q #

(ad) 0 for c s + 1, r. It follows immedi-0forc-l,...,swherel-<_s<=randz0.
ately from (3.1) that

a ii m A + o(m

(m) d).Hence, by Lemma (3.3), aii # o(m
Let q be a positive integer such that , q 1, c 1, s. Define

q,,(r)=rm(l+r+... + ,rq-1).

If we take the dth derivative of q,,(r), we obtain

q (d)m (r) rndqm_d(r) + o(m d)

for any fixed r, Irll, and also q,_d(,)=0 for I,[= 1, , 1, l_<--ce_--<s. Put
B(m)= qgm(A). By (3.1) and the equality above we have

(r )(m) E (.Dm-db ij m d (ao)Zo + o(m d)

(m) d). (m)Now suppose that indexq(1)<d + 1. Then (3.5) implies that bii =o(m But bq
a (’)ii + + a (m+q-1)q => a (’)ii > 0, and this is a contradiction. Thus d k and this proves
(i).

(m) (m)(ii) Suppose that 1 1. If k -1, by an argument like that above, aq bij
km Let k => 0. By (3.5) and the preceding argument we obtain

(m) k kbq =m qzl+o(m ),
kwhere Zl z q > 0. This proves (ii). 71

We now state a global version of Theorem 3.4 (ii) which follows immediately from
Theorem 3.4.

THEOREM 3.6. Let A Nn where p(A)= 1. Let q be a positive integer such that
q 1 if, spec A, I1 1 and index () index (1) k + 1. Let

B(m)=Am(I+. +Aq-1).

Then

(3.7) lim m-B(m)= F,

where F >= 0 and F hs not identically zero.
It should be noted that the assumption that A is nonnegative was used crucially in

the proof of Theorems 3.4 and 3.6. For example, let A -I; then there are no k, q for
which the limit of (3.7) exists and is nonzero. Also, the assumption that p (A) 1 is used
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in an essential way. Let

A =[4
Then limm-, o (A)-2"A2" (I +A) and limm-, o(A)-(2m+a)A2m+l(I +A) exist, but are
distinct. It follows that no k, q exist for which lim,,_,oo o(A)-"’m-’B(m exists and is
nonzero.

Our subsequent work discusses the nature of k, q and F.

4. Graph theoretical concepts. Let A

_
and let o(A)> 0. We may assume,

without loss of generality, that after simultaneous permutations of rows and columns, A
is in the Frobenius [6] normal form which can be found in many references, e.g.,
Gantmacher [7, Vol. II, p. 75]. Thus

11

(4.1) a
A12
A22

Alu

A
where the diagonal blocks A,, a 1, , u are irreducible and all subdiagonal blocks
are 0. (The 1 x 1 matrix 0 is considered to be irreducible.)

Let A be in Frobenius normal form (4.1). Then the (reduced) graph G(A) of A is a
subset of (u)x(u), where (u)={1,...,u} and G(A)={(,fl)(u)x(u):AO}.
(Observe that many authors would call G(A) the arcset of the graph ((u), G(A)), butwe
have no need to mention the vertex set (u) explicitly.)

If (ce,/3)6 G(A), we call (c,/3) an arc of G(A). If (a,/3) is an arc of G(A), then
-</3; also (a, a) G(A), 1 <=a <= u, unlessA is the 1 1 matrix 0. Thus we define a

(simple) path from to in G(A) to be a sequence r (ao, , a), where either s >= 1,
l<=ce =ao<"" "<ces=9 <-uand(i-l, oi) G(A),i 1,... ,s, ors =Oanda Co =/3
and (ce, a) G(A). The support of 7r is the set suppr {ao," , as}

___
{1,. , u}. We

always assume that the ai, 0, , s, have been listed in strictly ascending order.
If 1 _-<a-< u, then we call c a singular vertex (of G(A)) if o(A)= p(A). (This

terminology is consistent with that of Richman-Schneider [12].) Let 1 <- a -</3 -< u. For
any path 7r from a to/3 in G(A), let k(cr) + 1 be the number of singular y in the support
of or. (Thus note each distinct 3/is counted only once in k(Tr) + 1.) Let a.o < ah <. <
a., where k k(Tr), be all singular vertices in supp r. We set

(4.2) k(a,/3) max {k(r): 7r is a path from a to/3 in G(A)}.

If there is no path from a to/3 in G(A) we put k(a,/3) -oo. We shall call k(a,/3) the
singular distance from a to/3. If (i, i) is a position inA and (j, j) a position in Aoo then
we shall also call k[i, j] k(a, ) the singular distance from to j (note our use of square
brackets).

A path 7r from a to/3 will be called a maximal path if the number of singular
vertices in the support of r is k(a,/3) + 1. Let 1-< a,/3-< u. Let (a,/3) be the set of
maximal paths from a to/3. For each 7r (a,/3) let q(cr) be the g.c.d, of periods of
with y supp r and singular (viz. p(Avv) p(A)).

Then we define

(4.3) q(a,/3) 1.c.m. {q(Tr): 7r (c,/3)}.

We shall call q(a,/3) the local period of (a,/3). If k(c,/3) < 0 then q(a,/3) 1. Also if
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(i, i) is a position in As,, and (f,/’) is a position in At then we shall put q(ce, fl) q[i, f],
the local period of (i,/’).

5. The main results. Let A n, where p(A)= 1, be in Frobenius normal form
(4.1). It follows from the Perron-Frobenius theory for nonnegative matrices, e.g.,
Gantmacher [7, Chap. 13] that there is a diagonal matrix X with positive diagonal
elements so that, upon replacing A by X-lAX,
(5 1) A p(A,)A’

where A: is a stochastic matrix,

(5.2) IIm[[ , 1 < fl ,
where 1 > and > max {p(A)" p(A)< 1, a 1,..., ,} if such a exist. Here
is the/-operator norm,

Ilzll=max [ Izil. i= 1,..., r for Z e
1=1

The diagonal matrix X can be constructed as follows. Let u be a positive vector
satisfying Au =p(A)u. Denote by X a diagonal matrix, whose diagonal
entries are the elements of u. Then X is of the form diag {X, eX,. , e-X} for
some small enough positive e. In our subsequent proofs we may assume that A has been
normalized as above.

Let be a path in G(A). Denote by s + 1 the cardinality of supp . That is

(5.3i) supp ={fl0,. ", }, 1 fl0<fl2<. <fl .
We define the path matrix A() by

Aii() A,,, 0,. , s,

(5.3ii) A.+() A,,+, O,. , s 1,

Ai() O, i, ] O, , s otherwise,

(5.3iii) A() (A()).
Thus A() is in Frobenius normal form and has s + 1 irreducible diagonal blocks
A() A,,, 0,... s. To avoid ambiguity, we write A() for the (i, ]) blockii
component of A(), i, ] 0,. , s.

We now prove a sequence of lemmas for the path matrix A() of a given path.
LEMMA 5.4. LetA where p(A) 1. Let 1 a, and be a path in G(A)

from a to . Put k k(), where k() + 1 is the number ofsingular vertices in supp
A() is the path matrix given by (5.3), then IIm()o11 O(m

Proof. We note that

(5 5) A()-o Ag(r)Aol(r)A](r)"" A-)(r)A(r).
PO+’’" +Ps

So

IIA (’r’r) o711 os E IlAoo()ll""
PO+’" "+Ps

Suppose first that rr does not contain singular vertices, i.e., k =-1. Then

llA(’rr)oT]l<o E a- ’" " =o1 s+l
Po+" "+Ps
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where F is given by (2.3). As Fs-s-< m we immediately deduce

lim r-mA (rr)os(m) 0

Suppose now that k _-> 0. Then

for any , cr < r < 1.

Hence

O-qk+l. o.qs)

)Os ]1oo <Fg+l 2 ls_kO"
v=O

The last series converges by the ratio test and Fkm+-S<--m k. This establishes the
lemma.
LEMMA 5.6. Let the assumptions ofLemma 5.4 hold. Assume furthermore that k >- O,

i.e., the support of zr contains singular vertices. Then, for sufficiently large m,

2(s+l)(n--1)

(5.7) Y A (,rr) (m+i) > am k
Os

]=0

where G is a positive matrix.

Proof. Let

Bii(r) I + Aii(’rr) +" + Aii(Tr)(n-l) i=l,. ..,s.

Since Aii(Tr) is irreducible, and its dimension does not exceed n, we have Bii(er)> O,
Wielandt [20], Berman-Plemmons [1, Chap. 2, Thm. 1.3]. Clearly (5.5) implies, for
t=2(s+l)(n-1),

E A(’n’)(o"]+i)>=n -(s+x) E
=0 po+"’+ps

Boo(’n’)Aoo(",r)PBoo(’n’)Ao. (’n’)B (’n’)AIB (’n’)

As_,s(rr)Bs(rr)APs(,.,.r)Bs,(,n-).

For i,/" 0, , s, let E0 be the matrix all of whose entries equal 1 and whose dimension
is that of Aii(zr). Clearly Boo(zr)>-CoEoo, Bss(Zr)>-_csEss where Co, Cs>O. Since
Ai.i+l(zr) # O, we have

Bu(’rr)Ai,i+(rr)Bi+,i+l(rr) >= ciEi,i+l,

where ca > 0, 1,. , s- 1, and hence, for some c > 0,

(5 8) A(7r)(m+]) >Os =c E EooAoo(’a’)PEo, Es-l,sAss(rr)PsEss.
po+" "+Ps

In the inequality (5.8) we may restrict the sum on the right-hand side by letting Pi 0 if
p(A,(er)) < 1. So let To <" < yk be the subscripts of Aii which are singular vertices
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and put A. Av,v,(r). Since EiiEik >--Eik, it follows that

A(,rr)(m*i)> pk-
Os c E_l,oAoo(’rr)PEol A kkEk,k + l,

j=0 po+..’+pk

where c’>0 and the Ei,i+l, =-1,..., k are matrices all of whose entries are 1. But
Au(r) is a stochastic matrix, 0, , k, whence AiiOr)PEi,i/ Ei,i/, O, , k. It
follows that

/=0

where G > 0. The lemma now follows from (2.3) since F-S_>-1/2m k for sufficiently large
m.

LEMMA 5.9. Let the assumptions ofLemma 5.4 hold, and suppose that k k(r) >-O.
Let q q(r) be the g.c.d, of periods of Av, for singular y supp r. Let

B(cr)(’)= A(r)m (I +A(r) +" +A(r)"-a).
(i) If (i, j) is any position in A(r)os then, in A(r), indexii (1) k + 1.
(ii) b() (m)

i m

Proof. (i) Let k* + 1 indexi (1) in A (r). By Theorem 3.4 there is a positive integer
q* such that for

B*(r)(m)= A()’ (I +A (’z’) +’" +A(r)*-a),
we have b,(r)(m) *i" m But k* > k contradicts Lemma 5.4. Since the sum in (5.7) can

(m+j)be ma]orized by a sum of terms of the form B*(r)os ] 0,..’, 2(s + 1)(n-l), it
follows that k* < k contradicts Lemma 5.6. Hence k* k.

(ii) Now suppose that A spec A(r), IA[= 1 and indexi (A) indexi (1)= k + 1 in
A(r). Then

indexii (A) <- index (A) <= mult (A),

where mult (A) is the algebraic multiplicity of A in A0r). But, by the Perron-Frobenius
theorem for irreducible matrices,

mult ()-<_ mult (1)= k + 1.

Hence mult ()= k + 1 and, by Perron-Frobenius, is an eigenvalue of every Avv for
which y is singular. It follows that Aq= 1, where q q(r). Hence the conditions of
Theorem 3.4 (ii) are satisfied and the lemma follows.

We state our main result.
THEOREM 5.10. Let A be nonzero n x n matrix normalized by the condition

p(A) 1. Assume 1 <-i, ] <-n. Let k k[i, j] be the singular distance from to ] and
q =q[i, ]] be the local period of (i,j). Put Bm=A’n(I+A +" .+A-). Then bl-km

Proof. As usual, we assume that A is in the Frobenius form (4.1). Suppose that (i, ])
is a position in A. Denote by 1-I(c,/3) the set of all paths connecting c to/3. Then we
obviously have

(m) (m)A A(r)0(=).
erI(,/)

So

t E B(cr) 0s(r).
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Assume first that k k(r) -o; then, clearly, ’(’) a(-,) 0. If k -1 >- k(zr) then
Lemma 5.4 implies that each A(r)(o’0,)= m -1. --(m) m-1 (m) (m)

io ... and againA Bt.
Assume now that k =>0. If k > k(Tr), Lemma 5.4 implies that B(Tr "t")osC=) O(mk).

However, if k k (r), then according to Lemma 5.9 lim,_,oo m-kB (zr)o(") Fo (zr) > 0
as q(r) divides q(a, ) =q[i,/’]. By the definition of k(a, ) there exists zr II(a,/3)
such that k(zr) k(a, ). So limk-,oo m -kB(")so Fo > O. [q

COROLLARY 5.11. Under the conditions of Theorem 5.1 O,

p=l

Proof. For k _-> 0, the result is immediate by Lemma 2.4. If k 1, then by Theorem
5.10 the nonnegative series above converges. The assumption k =-1 implies that at

P)= 0, 1 2,. and the resultleast one term is positive. Finally if k =-, ai p
follows. [q

Comparing Theorems 3.4 and 5.10 we first deduce a local version of Rothblum’s
equality and then the equality itself.

THEOREM 5.12. Let A

_
where o(A) 1. Assume that 1 <- i, ] <= n; then

indexii (1)= k[i,/’]+ 1.

COROLLARY 5.13 (Rothblum [13]). LetA 7-" where p(A) 1. Then index (1)
maxl=<i,i=<, indexii (1) maxl=<i,i_<, k[i, ] + 1.

6. Convergent iterative methods for the spectral radius of a nonnegative matrix.
Let A 6 _" and assume that p (A) > 0. Let r(x) and R (x) be defined as in (1.4). Clearly
0 <= r(x) <= R (x) <= + o. It is obvious that

r(x <-_ r(Ax <- R (Ax <- R (x ).

So the sequence r(A"x), m 0, 1,... is an increasing sequence bounded above by
R (x), and the sequence R (A"x), m 0, 1, is a decreasing sequence bounded below
by r(x).

In [4], Collatz observed that, for A 7_ and x > 0,

(6.1) r(x) <- p(A) <= R (x),

and when A is irreducible, this inequality is valid for all x 0, x 0; see Wielandt [20],
Varga [19, p. 32]. Thus the question arises when, for A => 0 and x _-> 0, x 0,

(6.2) lim r(A’x) p (A) lim R (A"x).

Wielandt’s [20] characterization of p(A) for irreducible A easily implies that (6.2)
holds for primitive A and all x E_, x->0, x 0 (cf. Varga [19, p. 34]). This result
follows from the fact that

lim p(A)-A Z > 0

whenA is primitive, where Z uv t, v >0, Au =p(A)u, v >0, vtA =p(A)v t, vtu 1. If
A is irreducible but imprimitive then (6.2) does not hold unless x is orthogonal on all
eigenvectors of A corresponding to , such that IA P (A) and A # p (A). We shall show
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that this condition can be put in equivalent forms. If A is irreducible and of period q,
then by simultaneous permutations of rows and columns we now put A into the form

(6.3)

0 A12 0 0
0 A23 0

0 0 Aq-1,
q 0 0 0

where the diagonal blocks 0 are square (see Frobenius [6], Gantmacher [7, Vol II, p.
62], Berman-Plemmons [1, Chap. 2, Thm. 2.20]).

LEMMA 6.4. LetA be an irreducible nonnegative matrix ofperiod q inform (6.3), and
suppose that p(A)= 1. Let vtA= v , Au u, where v >0, u >0, vtu 1, Aty 0)y,
j 1, , q 1, w e2i/q Let 0 x R" be partitioned conformally with A, X

(x (1), ", Xq) ). Then the following are equivalent
(i) limm. A’x (v’x)u,
(ii) lim,_, A’x exists,

(iii) xty O, /" 1,. , q- 1,
(iv) V (1)X(1)
(v) lim,_ R (A"x) lim,_ r(A"x) 1,

where v t= (v(1), v)) has been partitioned conformally with A.
Proof. We first derive a formula for A"x, m 1, 2,. . Let 0) be a primitive qth

root of unity. It is well-known that the eigenvalues of A on the unit circle are h 0)

a 1,..., q and that each h is a simple zero of the characteristic polynomial. It
follows, in the notation of 3, that p 0, a 1,. ., q and that

where

Z(,) DO-luvtVl-O a=l,...,q,
(l-a)y =D v, a=l,...,q,

11

0)/22 0
D=

0 ".
"0) q- lqq

and I is an identity matrix of the same order of A, a l,. , q.
Hence by (3. i),

q--I

A 0) uvtD +o(1)
=0

and so

q-1

(6.5) Amx E 0)’a(Du) + o(1),
=0

where

(6.6) a vtD-"x x y a O, q -1.

Let

CO I)/3+I)X(B+I) /3 =0,... ,q-1.



196 SHMUEL FRIEDLAND AND HANS SCHNEIDER

Then it follows immediately from (6.6) that

(6.7) q-1

a, w-’/3c/3, a=0,...,q-1.
/3=0

We now prove the equivalence of our five conditions. We show (i)::), (ii)=), (iii)=),
(iv) =), (i) and (i) ::), (v) =), (iv).

(i) ::), (ii). Trivial.
(ii) ::), (iii). Since lim,,_o A’x exists, lim,,_,oo vtD-’A"x also exists, a

0,..., q-1. But vtu >0, and hence as =xty=0, ce 1,..., q-1 by Lemma 3.3.
(iii):ff(iv). Consider the identity (6.7). Since the Vandermonde matrix

q-1/2(-,/3), a,/3=0,...,q-1 is unitary the assumption as=xy=0,a=
1,..., q- 1 implies that Co cl cq-1, which proves (iv).

(iv)z:), (i). If (iv) holds, then Co Cl c-1 and (6.7) implies al aq-1 0.
This establishes (i) in view of (6.5) and (6.6).

(i) :ff (v). Trivial, since v tx > 0 and u > 0.
(v) ::), (i). Let m ql + r, 0 _-< r <- q 1. Then (6.5) implies

lim Aqt+x y(r), r 0, , q 1

for some (r)__> O, (r) # O. Also

Ar(O) (r), r 0," , q 1, Aq() (o).

As A" is a direct sum of q irreducible and primitive matrices the assumption x >= 0, x # 0
implies that lim/_, (A’)Ix 3(0) # 0. Obviously x()-> 0.

Now (v) implies that
o (1) o (o)x <x =Ax <.---..,,

whence x (1) x () and thus X
(r)

X
(0) for r 1, , q 1. So lim.,_. A’x x() and (i)

follows. 71
In what follows, we give necessary and sufficient conditions on a reducible matrixA

to satisfy (6.2). To do so we need a few more graph theoretical concepts.
Let G be a graph on (v) {1,. ., v}. Let J be a nonvoid subset of (v). Then a J is

called a final state with respect to J if for any B # a and (a,/) G, BgJ. Denoting by
(J) the set of all final states with respect to J. If J (v), then a is called a final state, i.e.,
(ce,/3) G implies that/3 a. Define

d (/3, J) max {k (fl, a)’c e (J)}.

If J (u), then write d(B) instead of d(/3, (u)). Let A_->0 be a reducible matrix. We
assume that A is in the Frobenius form (4.1).

As in 4, denote by G(A) the (reduced) graph of A. Let x _-> 0, x # 0. Partition x
conformably with A given by (4.1). That is x t= (Xl, , x()). The support of x is the
set supp x {a 1, , a}

_
{1, , u} such that x( # 0 if and only if supp x. We shall

always assume that a, 1,..., s have been listed in strictly ascending order.
THEOREM 6.8. LetA _, p(A) > O. Assume thatA is in the Frobeniusform (4.1).

Moreover, ifAu is imprimitive then Au is the Frobeniusform (6.3). Let x >- O, x # O. Then
(6.2) holds if and only if any final state a with respect to the support of x satisfies

(i) ce is a singular vertex (i.e., p(A)= p(A)),
(ii) eitherA is primitive, orA and x() satisfy the condition (iv) ofLemma 6.4.
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Proof. Without loss of generality we may assume that p (A) 1. Next we note that

(6.9) (Amx) E A(")
/3 supp x

Suppose that a e (supp x). Then

(A"x) A"x(,).
By the definition of R (x) and r(x) we have

r(A"x)A’x <=A+x <= R (A’x)Ax.
So

r(A’x)A <A’+x(,, < R (A )AaX().aaX(,

Hence, sinceA is irreducible, by (6.1),

r(A’x <- r(Ax) <= p (A,,, <= R(Ax) <= R (A"x ).

Assume now that (6.2) holds. Then for any final state a with respect to supp x, we must
have

lira r(Ax)= lim R(Ax)=p(A)= 1.

So a is a singular vertex. If A is imprimitive, then the condition (v) of Lemma 6.4
holds. Hence,A andx satisfy (iv) of Lemma 6.4. This proves one direction of our
theorem.

Assume now that if a (supp x) then p(A) 1; and ifAis not primitive then
As,, and x( satisfy the condition (iv) of Lemma 6.4.

Let 1-<fl-<u. Let d=d(fl, J). By our assumption, d-l. If d =-oo, then
(A’x) =0, tn 1, 2,.... If d>=0, then

-d -d At(m)rn (Ax) rn .,
j, x, + o(1),

where K {a" k (fl, a) d}. Clearly K
_
(supp x). Thus, to show

(6.10) lim m-a(A’x)o >0,
m-oo

it is enough to prove

(6 11) m-eA(m,"
t, " >0

for a (supp x), k (, a) d. To prove (6.11), let D be the matrix obtained from A by
settingD 0 and D, A, in all other cases, 1 T, 8 v. We then have

m-aA(m)a m O -p)-p
aaXa"

p=0

Since in D, the singular distance from B to a is d-1, we have, by Corollary 5.11,

n(-p) Ua > 0,lim m-d E
m p=0

and by Lemma (6.4)

lim A,x v > O.
p--oo
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It easily follows from Lemma 2.7 that

-d--(m) 1
lim m .at U v > O

Thus, for each/3, 1 <_-/3 <_- ,, either (A’x) O, m 1, 2, or (6.10) is satisfied. From
this (6.2) follows immediately.

COROLLARY 6.12. Let A Y, p(A) >0. Assume that A is the Frobenius form
(4.1). Let J be an nonempty set of (t,). Then]or any x >-0 whose support is the set J, (6.2)
holds if and only if ]:or all final states a with respect to J, p(A)= p(A) and A is
primitive.

COROLLARY 6.1. Let A ", p(A) > O. Assume that A is in the Frobenius form
(4.1). Then for any x >-0, x 0, (6.2) holds if and only if for each a, a 1,. ., ,,
p(A) p(A) and As,, is primitive.

7, Nonnegative solutions of (I A)y = x. As an application of our results we give a
simple proof of a theorem concerning nonnegative solutions y of (I A)y x for given
x _-> 0. For 1 -< a,/3 =< u we shall say that/3 has access to a in G(A) if there is a path from
/3 to a in G(A), viz., k (/3, a) 1.

THrORrM 7.1. Let A _" with p (A 1, and suppose that A is in the Frobenius
normal form (4.1). Let x . Then the following are equivalent:

(i) there is a y such that (I-A)y x;
(ii) no singular vertex has access in G(A) to any a supp x;

(iii) lim,,,_,o (I +. +A")x exists;
(iv) lim,,_,o Amx= O.

Further, if (iii) holds and y limm-,oo (I +A +" +A")x, then (I-A)y =x and

(7.2) Yt 0 if does not have access to any a supp x,

(7.3) y > 0 if fl has access to some a supp x.

Proof. Let S(") I +A +. + Am. If 1 =</3 <_-- r’, then

(7.4) (S(’)x)t S(’’

supp

and, by Corollary 5.11, for k k (/3, a) >_- 1,

-(t,+x)(,,) Ut, > 0"(7.5i) lim m ot

while for k (/3,

(7.5ii) S(o U O, m 1, 2, 3,....

We shall prove (i) :ff (ii) = (iii) = (i), (iii) :ff (iv) =), (ii).
(i):ff (ii). Suppose that (I-A)y x, where y _->0. Then

S(m)x (I-Am+)y <= y.

Let/3 be a singular vertex. If fl has access to a, then k k (/3, a) -> 0 and, by (7.4)
and (7.5),

Yt >--(S()x)t >=1/2m(k+aUt,X,
for large m. Hence x 0 and ag supp x.

(ii) : (iii). Suppose (ii) holds and let 1 <-/3 <_- a.
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If a supp x, then k k(/3, c)=-1, or k =-. Hence, lim,,_S x Uox
exists for a supp x. So, by (7.5), lim S()x exists.

S x, y(iii)(i). Let y=lim x. Clearly y0. Since AS’x St+)x
satisfies (I- A)y x. This proves (i).

(iii) (iv). Trivial.
(iv) (ii). Suppose that (iv) holds but that (ii) is false. Then there exists a singular B

and an a supp x such that k(B, a)0. Let q q(B, a) be the local period and let
B()=A(I+ .+Aq-1). Then limB()x=O. But by Theorem 5.10 for all
sufficiently large m,

(m) > k(B(x)Bx =cm x,

where c > 0, and x 0. This is a contradiction, and the implication is proved.
To complete the proof of the theorem observe that, for y lim S()x,

y E Ux
supp

in view of (ii) and (7.5). Since U > 0, if B has access to and U 0 otherwise, we
immediately obtain (7.2) and (7.3).

The equivalence of conditions (i) and (ii) in Theorem 7.1 is due to D. H. Carlson
[3]. We remark that Carlson also showed that if a nonnegative solution y of (I- A)y x
exists, then the solution satisfying (7.2) and (7.3) is unique. It should be observed that
the assumption that A is in Frobenius normal form is not needed for conditions (i), (iii)
and (iv) of Theorem 7.1, which may easily be proved equivalent directly. Conditions (iii)
and (iv) are equivalent for general A "" and x ". We observe that for

[1 1] [10]A=
0 1

x=

there is a y e " such that (I- A)y x; yet the equivalent conditions (ii), (iii) and (iv)
do not hold. Clearly, no y satisfying (I-A)y x can be nonnegative.
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DISCOUNTED STOCHASTIC RATIO GAMES*

V. AGGARWAL*, R. CHANDRASEKARAN* AND K. P. K. NAIR"

Abstract. In a recent work, the authors considered a finite state Markov ratio decision process in which
the objective was to maximize the ratio of total discounted rewards. In this paper, discounted Markov ratio
decision processes are generalized to discounted stochastic ratio games. These may also be viewed as
generalizations of ratio games to a stochastic context where the payoff is the ratio of the two total discounted
rewards. We show that in the discounted stochastic ratio game the players have stationary optimal strategies
with a unique value. The solution may depend on the initial probability distribution. We also provide a
convergent algorithm.

1. Introduction. In a recent work [1], we considered a finite state discounted
Markov ratio decision process in which the objective was to maximize the ratio of total
discounted rewards over an infinite horizon. We have shown that in this process, an
optimal policy exists and the value is unique. The optimal policy is stationary and pure;
but the solution may depend on the initial probability distribution. We also gave an
algorithm for computing the solution.

In this paper, finite state discounted Markov ratio decision processes (abbreviated
as DMRDP) are generalized to discounted stochastic ratio games (abbreviated as
DSRG). The mechanics of motion of this game is similar to that of the stochastic game
of Shapley [7]; but the payoff function, being a ratio, is different. Thus, in each state
each of the two players has a finite number of alternative actions. The players’ actions
and the state jointly determine two rewards and probabilities of transition to the next
state. Thus, there are two sequences of rewards. These sequences are discounted so that
each discounted sequence sums to a finite quantity. In DSRG, the payoff function is the
ratio of these two finite quantities.

We show that the players have stationary optimal strategies and the game has a
unique value. In general, these are dependent on the probability distribution over the
initial state. We also give a convergent algorithm for computing the solution.

The discounted stochastic ratio games may also be viewed as generalizations of two
other interesting models. These, respectively, are the generalizations of ratio game [6]
to a stochastic context, where the payoff is defined as the ratio of the two total
discounted rewards, and Markov renewal process [5] to Markov renewal games. Of
course, in the latter case one has to replace discounting by the assumption that the game
is stopping. Here the two sequences, respectively, are one of rewards and the other of
durations of stay in the states before the next transition. Thus the payoff is the ratio of
the total expected reward to the total expected time to termination, that is, the average
reward before termination.

An interesting application of the model may be possible in economic equilibrium
theory. Von Neumann [8] developed a model of general economic equilibrium theory
considering a static situation in which there are certain goods, and technologies for
producing the goods. An optimal choice of goods and technologies are obtained by
solving a ratio game. The results of the present work may be helpful in developing a
dynamic economic equilibrium model considering a finite state space in which the
ecenomy makes probabilistic transitions.
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In this paper the DSRG is developed as a generalization of DMRDP, and therefore
the analysis depends heavily on the results in [1]. Therefore, the relevant results from
[1] are summarized in the next section.

2. Summary of results from DMRDP. In [1] we have considered a Markov ratio
decision process in which the objective was to maximize the ratio of the total discounted
rewards. The process is observed periodically at time points n 0, 1, 2, , and at each
time it will be in any state i, 1, 2, , N of the set $. However, in state there is a
finite set Ci of Ki alternatives of actions numbered 1, 2,. , k, , Ki. If action k Ci
is taken while in state i, the system generates two finite rewards a and b where b > 0
for all k Ci, and the system moves to state j in the next step with probability p .. The
rewards occurring in future periods are discounted by a factor/3, 0 <=/3 < 1, per period.
In this process a stationary strategy is an N-tuple of probability vectors x so that

X’-(Xl, X2, ,Xi, ,XN),

where

(1) Xi-- (X 2 k /Ki, Xi, Xi X i),

and

x/ 1, isS.
kC

Here x is the probability of using action k Ci given that the process is in state i. A
stationary strategy is pure if for each xi, x f. 1 for exactly one/ Ci and x ki 0 for all
k k Ci. We have shown that in the DMRDP one has a stationary and pure optimal
strategy with a unique value, and these may depend on a, the probability distribution
over the initial state. Further, given c the DMRDP has a linear programming
formulation. Given a and a maximization objective for the DMRDP, the dual program
in the variables r and s (s, $2, Si, SN) is as follows:

Min r subjectto

N

(2) OliS O,
i=1

N

ai bir+ kPi]Sj Si 0
]=1

for all k Ci and S,

where r and si(i 1, 2, , N) are unrestricted.
THFORFM 1. For a given , if (L g) is optimal in (2), then it is the unique solution to"

N

(3) Max(a-bir+ PiiSi--Si)=O, i= 1,2,.." ,N,
kC /=1

and

N

(4) Y. olis O.
i=1

Proofi Theorem 6.1 of [1] shows that (?, g) satisfies (3) and (4). Therefore, what
remains to be shown is the uniqueness of the solution to (3)-(4). Now suppose there are
two solutions (Lg) and (f,g) attained, respectively, at kS6Ci and /
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C(i 1, 2,..’, N). Then,
N

(5) ai-bi?+ pijg/-gi=0, 1,2,...,N,
i=1

N

(6) Olig 0,
i=1

N

(7) a b +/3 Y’. p 0si si 0, 1, 2, , N,
/’=1

and

N

(8) E Olii O.
i=1

Also we have

N

(9) ai -bi?+B pgi-gi <=O, i= 1,2,...,N,

N

(10) a-bi)+fl piCgi-g <-0, i= 1, 2,..., N,
j=l

and

N

(11) E Oli(i i) 0"

Setting As g- Y and Ar - , subtraction of (5) from (10) gives

(12)

where

(I P) As <- Arb,

/5={p} and /=(bf-,i=l,2,...,N).
Similarly, if (9) is subtracted from (7) we get

(13) (I fl/) As >-- --Ar/.

Since b > 0 for all and k, clearly g, t7 >> 0 where >> denotes strict inequality for each
component. Further, (I-/3if) is invertible with (I-/3fi)-= Y=0 (/3ff) >= I. Therefore,
if Ar > 0, from (12) we have As << 0. On the other hand, if Ar < 0, from (13) we obtain
As >> 0. But both these results violate (11), and therefore Ar 0. Setting Ar 0 in (12)
and (13), respectively, we see that As =< 0 and As-> 0. Therefore As 0, and thus the
solution to the system of relations (3) and (4) is unique. We remark here that this
property was, indeed, used in [1] for validating the algorithm; however, it has not been
established there.

Now we consider another DMRDP in the same state space S in which the objective
is one of minimizing the ratio of two total discounted rewards. This will be helpful later
in the paper. In this process let D be a finite set of L alternatives of actions numbered
1, 2, , l, Li, available in state $. If action D is taken while in state the two
rewards obtained are a and b , b > 0 for all D, and the system moves to state/" at the
next step with probability pq. A stationary strategy in this process is an N-tuple of
probability vectors y so that

Y (Y l, Y2,""", Yi,’’’, YN),
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where

(14) y, (y, y/2,..., yi,"" ", y ),

and

i=1, i6s.
lDi

For this decision process,
($1, $2," Si," SN) is as follows"

Max r subject to
N

E OiSi O,
(15)

N

ai-bir+fl ’. PijSj --si>O,
j=l

the dual program in the variables r and s=

for all Di and S,

where r and si (i 1, 2,... N) are unrestricted. Now Theorem 2 below is readily
obtained by analogous considerations.

TraEOREM 2. For given , if (, _s) is optimal in (15), then it is the unique solution to"

N

(16) Min(a -si)=0, i=1 2,...N,i-bir+i3 piisi
lDi j=l

and

N

(17) OgiS O.
i=1

3. Description of DSRG. A finite state stochastic ratio game is a generalization of
the finite state discounted Markov ratio decision process to a game context. There are
two players in this generalized process, and a finite set of states S. At each time point
the game is found in one of the states S. While in state i, Players I and II, respectively,
have the sets Ci and Di of alternatives of actions described in 2 above. If the players
respectively choose actions k 6 Ci and Di while in state i, there are two finite rewards

kla t and b/l, b l > 0, and the game moves to state/" at the next step with probability p q.

Since the DSRG is assumed to be a nonterminating one,
N

(18) pij =1, i6S, k6Ci, 16Di,
/’=1

kt>0 i,jS, kCi, lDi.(19) P0

Both the rewards a/k and b/ occurring in future periods are discounted by a factor/3,
0 -< fl < 1, per period. Let the reward matrices in state be denoted by Ai and Bi so that
Ai {a i]k Ci, Di} and Bi {b illk Ci, De}.

Now, given that the game starts in a specified state the evolution of DSRG may be
represented by

(20) {in, kn, ln}, n 0, 1, 2,. ,
where in is the state occupied at step or period n, and kn Cin and In Di. are the moves
chosen by the players respectively. Let the choices of moves kn Cin and In Din be,
respectively, denoted by probability vectors An and En defined over the sets Ci. and Din.
Clearly, in each of these vectors a single element would be 1 and the rest zeros. The
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payoff function in the DSRG is defined as

(21) rio 2 nAnAin,n)/(n)/( . nAnBi,,n).
=0 =0

In the DSRG for each player a pure strategy is defined as a sequence of moves, one
in each period n 0, 1, 2,..., and a mixed strategy, in general, is a probability
distribution over the set of all pure strategies. A behavioral strategy is a special type of
mixed strategy and it is characterized by the property that the player makes an

independent randomization at each move, rather than the entire sequence of moves by
a single randomization. A stationary strategy is a behavioral strategy but the
randomizations in the states are independent of the step or time period n. A strategy is
optimal for Player I if and only if it guarantees at least the minimax value of the payoff
function whatever be the strategy followed by Player II. Similarly, an optimal strategy
for Player II may be defined.

Since the DSRG is a game of perfect recall we note from the work of Aumann [2]
that, without loss of generality, the players can be restricted to behavioral strategies.
Given a, it will be shown that the DSRG has a minimax solution and the players have
stationary optimal strategies.

4. Existence of minimax solution. Let T and U, respectively, be the sets of all
behavioral strategies for Players I and II. The set of all stationary strategies for the
players are denoted by X and Y respectively. Clearly X T and Y c U. A stationary
strategy x X for Player I is a N-tuple of probability vectors having the same
representation as specified by (1) above. Similarly, y Y for Player II, is as shown above
in (14).

THEOREM 3. Given an initial probability vector, the DSRG has a minimax solution
with a unique value and the players have stationary optimal strategies.

Proof. Given an initial probability vector a, let r(t, u) be the payoff function if the
players follow strategies T and u U respectively. Now suppose Player II is fixed at
a stationary strategy y Y and Player I knows this information. Here Player I faces a
DMRDP [1] in which the objective is one of maximization and the input data are

kla/=a(y)/a 2 aiYi,
lOi

(22) b/ b(y)/k A 2 bitYi, and
lDi

k k A klPij=P(Y)i PijYi.
lDi

The optimal value of this problem is

(23) f(y) Max r(t, y).
tr

Since in the DMRDP [1] one has a stationary optimal strategy

(24) f(y) Max r(x, y),
xX

and ?(y) can be computed by solving linear program (2) with the input data given by (22)
above. The unique optimal solution to this program will be denoted by (f(y), g(y)).
Clearly Y is compact and the input data depend continuously on yti. Hence from
Hoffman and Karp [4], it follows that f(y) is a continuous function of y and it assumes a
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minimum at least at one y Y. Thus

(25) ?* & Min Max r(x, y) Min ?(y)
yY xX yY

is well defined. A similar consideration with Player I leads to

(26) _r* _a Max Min r(x, y) Max _r(x),
xX y Y xX

where ((x), _s(x)) is the unique solution to (15) with the appropriate input data. Now
from (25) and (26) we have

(27) _r* Max_r(x) -< Min ?(y) f*.
xX y6Y

LEMMA 1. If ?(y*)= F*, then (F(y*), g(y*)) satisfies
kl />0, i=1 2,’’" N, Vy6 Y,(28) Max E (ail--bilr+[3 piisi--si)Yi

kCi lDi

and

N

(29) Z cisi O,
i=1

where for y y* the inequality in (28) is an equality for all i. Similarly, if (x*) =_r*, then
(_r(x*), _s(x*)) satisfies

N
kl __Si)Xki <0, i= 1 2,’" N, Vx X,(30) Min . (akil--bkilr+ E PiiS

lOi kCi j=l

and
N

(31) Z OgiSi O,
i=l

where for x x* the inequality in (30) is an equality for all i.

Proof. We only prove the first part of the lemma, as the second part follows from
similar arguments. From Theorem 1 it follows that for y y* (28) and (29) are satisfied
as equalities by (?(y*), g(y*)) uniquely. Therefore it remains to be shown that for each
y # y* (28) holds for all i. This we prove by contradiction. Suppose for 3 # y* (28) is
violated at least for one when ?(y*) and g(y*), respectively, are substituted for r and s.
Let 37i i for for which (28) is violated and 7 y otherwise. Then from Theorem 1,
it is clear that (?(y*), g(y*)) is feasible (but not optimal) in (2) with the input data
corresponding to the case where Player II is fixed at 37. Therefore f(y*)> ?(37) and this
reveals the contradiction ?(y*)> ?*.

Let {xlx X and _r(x) =_r*} and " {yly Y and ?(y) ?*} so that Lemma 1
holds for each x X and y Y. For each y Y, define G(y) to be a set of N two-person
zero sum games such that the ith game in the set has its payoff matrix

(32) Oi(Y) {fl(y)]k G, Di}, 1, 2,..., N

where

N

til(y)= ail--bi IF* + E PijSj(y)--gi(y).
j=l
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Similarly for each x . let _G(x) be a set of N two-person zero sum games with payoff
matrices.

(33) Q i(x) {q(x)[k Ci, Di}, i: 1, 2,. N

where
N

q_t(x) a/kt bk* +/3 Y. kt
P i] S_](X S_iIX ).

/=1

LEMMA 2. Any stationary strategy y* Yis optimal for PlayerHin the corresponding
set (y*), that is, y? is optimal in the i-th game whose payoff nzatrix is Oi(y*)(i
1, 2, , N). Similarly, any x* ) is optimalfor Playerl in the corresponding set Q(x*).
Furthermore, the value of each game in the sets G(y*) and Q(x*) is zero.

Proof. From (28) we immediately have

(34) OMinMax[Oi(y*)yi]=MinMaxxO(y*)y
y Y kC y Y xaX

(35) Max xi0(y*)y Max [0g(y*)y] 0,
xX kCi

and these establish the required results for the games in G(y*). A similar argument
shows the corresponding results for the games in the set Q(x*).

LEMMA 3. Given x* Xand y* Y, then ?(y*) (x*) or equivalently, * *, and
furthermore, g(y*) (x*).

Proof. By Lemma 2, each game in the set G(y*) has the value zero. Therefore,
there exists X optimal for Player I in the set so that

(36) iO(y*)y 0, 1, 2,..., N, Vy Y.

Similarly there exists Y optimal for Player II in the set Q(x*) yielding

(37) xiQi(x*)i O, 1, 2,..., N, x X.

Thus from (36) and (37) we have

(38) ,[0,(y*) Q,(x*)]p, 0, 1, 2, , N.

Substituting for (y*) and q(x*) from (32) and (33) respectively, and setting
Ar*= (*-*) and As* (g(y*-y(x*)), from (38) we obtain

(I-Pas* -ar*,(39)

where

= 2 rkl,.,k,.,l
xiYi.riixyi and bi Y b kt’k’t

lDi kCi lDi kCi

We note that/;>>0 and (1-/3/5)-1 =>L Therefore, As* <= -(1- 3ff’)-l Ar*l. Fu’rther we
have that a As* 0. So

(40) 0 a As* <_-- -Ar*a (I p)-i/.
It is easy to verify that a (I -/3/6)-1/> 0; so from (40) we have Ar* _<-- 0. Since * -> r*, we
conclude ?* =_r*. As a consequence of Lemma 2 we have

(41) x*0(y*)y* <_-0, 1, 2,.. -, N

and

(42) * *xQ_i(x )y>0, i= 1, 2,... N.
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Applying the same analysis as on (36) and (37) on (41) and (42) we obtain

(43) (I 3P*)As* -Ar*b*,

where P* and b* are defined appropriately. Since Ar* 0, (39) and (43), respectively,
show that As* <- 0 and As* >= 0. Therefore As* 0 and this completes the proof of the
lemma.

In Lemma 3 we have shown also that As* 0. It may be noted that this result is not
needed for proving Theorem 3, but is useful in the characterization of the solution given
later.

Now ?* --_r* r(x*, y*). Using this in Lemma 1 and recalling (24) and (26) we can
see that

(44) r(x, y*) <_- r(x*, y*) <- r(x*, y), Vx X, Vy Y.

Because of the stationarity property in the DMRDP [1] used in arriving at (24) from
(23), it is clear that

(45) r(t, y*) <- r(x*, y*) <_- r(x*, u), Vt T, Vu U.

Relation (45) shows that x* and y* are optimal for Players I and II, respectively, in the
DSRG among all the behavioral strategies T and U. The dependency of the solution on
c follows from the fact that in the DMRDP 1], which may be viewed as a special case of
the DSRG in which one of the players is fixed at a stationary strategy, the solution in
general is dependent on c. This completes the proof of Theorem 3.

From Lemma 3 we have ?* _r* and let this be denoted by r*. Further it follows that
for all x X, _s(x) g(y*) and for all y Y, g(y) _s(x*). Therefore, all g(y) and _s(x) for
y I7" and x J are identical and we denote this by s*. Using these in (32) and (33) we
see that for all y Y and x X, O(Y) and O(x) are identical and let this be denoted by
Oi. Thus the sets of games ((y) and G_(x) for all y and x " are the same denoted
by G. The ith game denoted by Gi(i 1, 2, , N) in the set G has as its payoff matrix
Oi--{qtlk Ci, Di} where

N
kl(46) q a b r* + t p s s

/=1

Using these results in Lemma 1 we readily obtain a characterization of the minimax
solution to the DSRG. Now consider the (N + 1) equations as follows"

N
kl(47) Value G=Value [ail-bitr*+ piisi -s/*]=0, i-- 1,2,... ,N

/’=1

and

N

(48) E c,s/* 0.
i=1

Relations (47) state that the two-person zero-sum game Gi(i 1, 2,..., N), whose
payoff matrix Oi has as its element in the (k, l) position that which is given within the
brackets, has value zero. It follows from Lemma 1 and the results of Lemma 3 that the
above (N + 1) equations characterize the minimax solution to the DSRG. The value is
r* and the stationary optimal strategies (x*, y*) are composed of the optimal strategies
(x*, y*) in the game Gi(i 1, 2,... N). The above characterization leads to a con-
vergent algorithm for computing the solution, and this is presented in the next section.
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5. Algorithm and convergence proof.
ALGORITHM.
Step 1. Fixing Player II at stationary strategy y(O), find the unique solution (r(),

s) (i 1, 2,..., N)) of the system

N
kl_(O) I0)(49) Max (akil--bilr(O)+fl piisi --S )y =0, i=l,2,’’’,N,

kCi lDi /=1

and
N

(0)(50) E OiS O,
i=1

using the algorithm to solve a Markov ratio decision process [1].
Step 2. Solve the N two-person zero-sum games whose element in the (k, l)

position of the payoff matrix of ith game is

N
kt (o) (o)(51) [ai-bkirt)+B , PijSj --Si

(1) andto obtain the optimal strategies x y and the unique value of g(X)i for
(1) (N1) (1)1, 2,..., N. Set x (1)= (Xl1) X(21) Xi x and Y (y]x), y(21),...

yl
(1)Step 3. If g -0 for all i, then the solution of the DSRG is gotten as x*= x

Y* Y (1), and r* r().
If gl1 # 0 at least for one state, then go to Step 1 with the stationary strategy

obtained in Step 2 above.
Convergence Proof. Firstly, we show that the sequence r(m(rn-0, 1,2,...)

generated by the algorithm is a monotonically decreasing one bounded from below by
the unique value r*.

Case (i)" gl1) 0 for all i. In this case x (1), y(1) and r() form the solution of the
DSRG since the characterization given by (47) and (48) are satisfied.

Case (ii)" gl) 0 at least for one state.
In this case, clearly gl1) -< 0 for all since (49) and (50) assure that the maximal

payoff to Player I in each game is zero when Player II uses y(O). Therefore, gl1) < 0 at
least for one i. Now it remains to be shown that if Player II is fixed at y(X), the maximal
solution of the resulting Markov ratio decision process has the property that r(1) < r().
For this purpose consider the dual linear programming formulation of the problem
where Player II is fixed at y(1).

Min r subject to

N
kS (1)(52) Y’, (ail--bkilr+fl pqsi--si)Yi <=0, keCi, i=l,2,"’,N;

lDi ]=1

N

aisi O, r, si(i 1, 2, , N) unrestricted.
i=1

Now recalling the unique solution to this program as characterized by Theorem 1, we
see that the solution (r(), s ()) is feasible in the above program but not optimal.

(1) < 0 for all and nonoptimality from the factFeasibility follows from the fact that g
that gl) < 0 for at least one i. Therefore the optimal value r(1) of the above program
must be strictly less than r(). Thus

(53) r(1) < r().



210 V. AGGARWAL, R. CHANDRASEKARAN, AND K. P. K. NAIR

Further, (r("*), s("))(m 0, 1, 2, .) are all in compact set. Now following arguments
similar to those given by Hoffman and Karp [4] we see that the sequence r("*) indeed
converges to r*. It is of interest to note that a similar proof will hold if the algorithm is
started fixing Player I instead of Player II. But in this case, the sequence r(m will be a
monotonically increasing one bounded from above by r*.

It is of interest to note that the algorithm is also capable of revealing approximate
solutions in the following sense. The stationary strategy y’ revealed at the ruth
iteration is capable of limiting the payoff to Player I to r("’. Similarly, if the algorithm is
applied fixing Player I instead of Player II, one can see that x (m) will ensure a payoff of at
least r("*) to Player I. Finally, we observe that the algorithm is structurally identical to
the policy improvement algorithm given by Denardo [3] in the context of stochastic
games of Shapley [7]. He shows how the contraction property applies to stochastic
games and uses it in proving the convergence of his algorithm. We were not able to show
the contraction property directly for our model. We therefore could not apply
Denardo’s proof of convergence.

Acknowledgment. The authors are grateful to Uri Rothblum for his comments and
suggestions on earlier versions of this paper.
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DILWORTH NUMBERS, INCIDENCE MAPS
AND PRODUCT PARTIAL ORDERS*

MICHAEL SAKS

Abstract. The Dilworth numbers of a finite partially ordered set P, {dk(P)lk >= 0}, are the maximum sizes
of the union of k antichains. We give a characterization of the Dilworth numbers in terms of the dimensions of
the kernels of certain linear maps on the complex vector space generated by the elements of P. This is applied
to prove bounds on the Dilworth numbers of product partial orders in terms of those of its factors and to prove
sufficient conditions for the product of two partial orders to have the Sperner property.

1. Introduction. A fundamental set of quantities associated with a finite partially
ordered set P are the Dilworth numbers dk (P), defined for each integer k >= 0 to be the
size of the largest k-family (union of k antichains) of P. Greene and Kleitman [1] and
Greene [2] investigated these numbers in detail and proved several striking results
about them. In this paper, we consider additional properties of the Dilworth numbers.
In particular, we establish a connection between them and a class of linear maps
associated with the poset. This enables us to prove theorems which relate the Dilworth
numbers of a direct product order to those of its factors. This result is applied to
strengthen a theorem due to Proctor, Saks and Sturtevant [7], which gives a sufficient
condition for the product of two orders to have the Sperner property.

The use of linear algebra to study the Dilworth numbers was suggested by some
recent work of Stanley [9], who used properties of linear maps to characterize partial
orders with the Sperner property. The maps studied here are members of the incidence
algebra of the poset, described by Rota [10], which has been studied extensively in
connection with various enumeration problems.

2. Preliminary definitions and results. Let (P, -<_) be a finite partially ordered set.
For k >- 0, a k-family of P is a subset of P containing no chain of cardinality greater than
k; equivalently, it is a union of k (possibly empty) antichains. If {Ca, C2, , C,} is
any partition of P into chains, then since every k-family intersects each chain at most
k times, we have dk(P)<2Ei= min (ICil, k). A chain partition cg is said to be k-saturated
if this holds as an equality. The following theorem was first proved by Greene and
Kleitman.

THEOREM 2.1 [1]. For any poset P and positive integer k there exists a k-saturated
partition of P.

For any sequence fo, f,"" let Afi=fi--fi__l and 6fi Afi--Afi+l. Greene and
Kleitman also proved"

LrMMA 2.2 1]. For any poser P, adk (P) >= 0 for all k >= 1.
If P and are posets their directproductP is the set of pairs (p, q) where p e P

and q e , with the order relation given by (pl, ql) ->- (p2, q2) if p => p2 and ql => q2. Let
T denote the totally ordered set tx -< t2 =<’"-< t. The following simple lemma was
noted in [8]:

LEMMA 2.3. &,(P)= dl(P x T,).
Let P denote the vector space over C.gene.rated freely by the elements of P. An

incidence map on P is a linear map ’P-P which sends each a 6P to a linear
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combination of elements less than or equal to a. Let N(P) be the set of nilpotent
incidence maps (cI) k 0 for some finite k), then N(P) consists of those maps which send
each_.._a 6 P to a sum of elements strictly less than a. For a product poset P x O, we have
P x O P (R) 0, and N(P x O) is generated by maps (I) (R)" where and - are incidence
maps on/3 and 0 and at least one is nilpotent.

For any space let I denote the identity map. If I/is a subspace of " and
: -, , the restriction of to I/is denoted 1 fie’. Let D,() equal the dimension of
the kernel of cI) ’.

3. Main results.
THEOREM 3.1. LetP be a poset and ripeN(P). Then for all k >=0,

d(P) <=D(dp).

THEOREM 3.2. For any poset P there exists dp N(P) such that

d(P) D() for all k >= O.

THEOREM 3.3. For any posets P and O,

(i) dl(P x O) <- E Adi(P) Adi(O) and

(ii) dl(PX O) < E rdi(P) di(O).
i1

THEOREM 3.4. For any posets P and 0 and k >- 1,

dk(P x O) < E E 8di(P) 8d(O) dx(Ti x T. x T,).
i> ]1

In order to prove these results we will need some results from linear algebra. The
first lemma reviews the properties of the Jordan form of nilpotent maps. It is presented
without proof; the reader is referred to any book on linear algebra (for example, [6]).

LEMMA 3.5 (Jordan Decompos,ition, for nilpotent maps). Let V be a finite dimen-
sional vector space over C and dp. V- V be a nilpotent map. Then"

(i) There exists a decomposition fi= of r into -invariant subspaces such
thatDl(])= 1 foreach l <-_j<-n.

(ii) The collection {dim } is the same for all such decompositions of r.
(iii) Each has a basis vii, vi2, v (where ri =dim Q/) such that (Vil)= 0

and (v) (vi-1) for i> 1.
LEMMA 3.6. Let (i= Qi be a Jordan decomposition of with respect to a nilpotent

map dp. Then

(i) Dk(cP)= min (k, dim Qi) and
i=1

(ii) AD()= I{Qi" dim i ->- k}l.

Proof. By Lemma 3.5(iii), each time P acts on V it reduces the dimension by 1 until
Q is annihilated, so D(cPl IT’i) min (k, dim Qi). Since each IT’i is P-invariant, D()
ylD.(dplQ)=Y=kmin(k, dim 17"i), proving (i). Now, by definition
Dk(IVi)-D-I(IVi). By the previous observation this equals 1 if dim Vi >= k and 0
otherwise, hence (ii) follows.

The key lemma in the. pro.ofs of Theorems 3.1 and 3.3 is the following:
LEMMA 3.7. Let " V V and O" ’> if" be nilpotent maps. Define

" Ire’by , (cI)(R)Iff,) + (If,(R)6). Then
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Proof. First consider the case in which the Jordan decompositions of I7" and I
with respe.ct to and each consist of a single block; we show that DI(A)=
min (dim V, dim lg/). Let m =dim I7", n =dim Ig/ and, without loss of generality,
assume m <_-n. Let v 1,’", v, and wl,..., w, be Jordan bases of I7" and W, and set

@ 1/. (For not in the range 1 to m and/" not in the range 1 to n, we set
Vi Wj 0.) We can write ,+n-1

’r=l Ur where Ur is the space, generated by
{vi @ wi" +j= r+ 1}. For a general element x =ici(vi @ Wr+-i) Of Ur we have"

l(i ci(vi@wr+l-i)) =E Ci(Vi@Wr-i) q-E

"-E (Ci-+’Ci+l)(Vi@Wr-i)

which is an element of r-1, SO Im ( rr)__ [.)rr_ 1. Thus the images of ,lr are disjoint
for each r and we have D1() YrD(, r). We now show that, for r > m, ker (, ) is
trivial and, for each r in the range 1 to m, ker (AlOr) is generated by the element
Ur =n=l (--1)ivi@Wr+l_i. Therefore DI(A) m as claimed.

For r > m, suppose that x i ci(vi (R) Wr+l-i) is in ker (, ) with x # 0. Let s be the
largest index such that Cs # O. Since r > m >_- s > 0, Vs (R) Wr-s is a nonzero vector and by
(3.1) the coefficient of Vs(R)Wr-s in ,(x) is Cs +Cs+l =cs
ker

For r<-m, it is easy to verify that uker (’lr). For any x in the kernel, (3.1)
implies that ci =cl if is odd and ci =-Cl if is even, so x ----Clblr and DI(A fQr) 1.
Hence DI(A min (dim 17", dim

For the general case, let @ V and @ W be Jordan decompositions of V and W
with respect to and 4’. Since each V is -invariant and each IV/is 0-invariant, it
follows that each V/(R) IV/is/-invariant. Thus Da(,)= YiFD(alVi(R) W,.). The result
proved above applie.s to each term in the sum so we have DI(,)=
Yi2imin(dim IT’i, dim W.). Define f(i,j,k)=l if dim _->k and dim l._->k, and
f(i, j, k)= 0 otherwise. Then

2Emin (dim I7"/, dim
k

E l{ riT]’i dim 1 _-> k }l I{ I." dim G --> k}],
k

which equals AD() AD(O) by Lemma 3.6(ii).
Proofof Theorem 3.1. We first prove the inequality for k 1. Let A be an antichain

of maximum cardinality, .let I {x Pla A such that x <= a}, and J I fq Ac. Then
Im (]/)

_
] and so"

(3.2) Ul((I)) _---D(lig) ->-III- IJI IAI dl(P),

which proves the theorem for k 1. To prove the theorem for any k, we define the map
r N(T) by ’, (tl) 0 and (ti) t-i if > 1. The following sequence of relations now
yields the desired result"

d(P) d(Px rt,) <=Dl(dP@Ik +Io(R)r) D(O).

The first equality is Lemma 2.3. the inequality is (3.2) applied to P x T and the map
(R)I + I@r which is in N(P x T). The final equality is obtained from Lemma 3.7, by
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noting ADi(’rk 1 if j k and 0 otherwise, so that

DI((R)I + I(2)zk) Y’, ADi() ADi(rk) Dk(),

as required.
Proof of Theorem 3.2. For each 1 _-< k N[P[ let be a k-saturated partition of P

into chains. Define maps ,vg:P- P by

0 if a is minimal in its chain in k,
(aXg a’ where a’ is covered by a in its chain in

Note that the kernel of X is the space generated by the k smallest elements in each
chain so, since % is k-saturated,

(3.3) DkOk) min (k, ICI)= dk(P).
Ceqgk

Now let tl, t2," , tlPi be complex numbers which are algebraically independent
over the rationals and set =YI/Pf ti,vi. We now show that Dk()<--dk(P) for all k;
Theorem 3.1 guarantees that mk() --> dk(P), so is the desired map.

By (3.3), it now suffices to show that, for all k, the rank ofk is greater than or equal
to the rank of X, which we do by showing that a minor of k is singular only if the
corresponding minor of X is also. By algebraic independence a minor of k is singular
only if its determinant, considered as a polynomial in the t, is identically zero. This
implies that the corresponding minor in X, whose determinant is obtained by evaluat-
ing the polynomial at t 1 and ti 0 for k, is also singular.

Proofof Theorem 3.3. Let " fi and 0:0 0 be maps satisfying Theorem 3.2.
Since d(P)= Dg() and d(O)=D() for all k, we have

Z Adk(P) Aa(o) E ADg() AD(O).
k k

By Lemma 3.7, this equals D(Io+IpO), which, by Theorem 3.1, is greater
than or equal to d(Px Q), since Io+IpON(Px Q). This proves (i).

To prove (ii), we note the identities

E d,(P) d(O) E Ad(P)d(O)-E Ad(P)d_(O)
k k k

E (d(P)-d+(P))d(O)
k

k

Proof of Theorem 3.4. The proo o this theorem involves simple manipulation of
sums using Theorem 3.3 and Lemmas 2.2 and 2.3.

dk(P x Q) d(P x Q x T)

<-_ , 6di(P)di(O x Tg)

Y. 8dj(P)dl(O x (T x T.))

<-_ Y’, 6di(P) E 6d,(O)di(T, x T.)

by Lemma 2.3,

by Theorem 3.3(ii),

by Lemma 2.3,

E Y. 6dj(P) 6d(O)d(Ti x T x Tk) by Lemma 2.3

by Theorem 3.3(ii),

since 6di(P) ->_ 0 V (Lemma 2.2),
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4. Sperner product orders. A ranking of a poset P is a partition of P into sets
P0, P1," ", P such that for each every element of Pi is covered only by elements in
Pi+l. The set P is called the ith rank of P. A ranked poset P is said to be Sperner if the
rank of largest size is an antichain of maximum size, k-Sperner if the union of the k
largest ranks is a maximum k-family, and strongly Sperner if it is k-Sperner for.all k >- 1.

If P and O are ranked, there is an induced ranking on P x O:

(P x 0) U P x 0;-

where P and Qj-i are taken to be empty if they are not defined. P and Q are said to be
compatible if there exists an integer such that for all and j, IPi]<]Pj] only if
IQ,-,I The integer (which need not be unique) is called the compatibility index.
If P and Q are compatible with index t, then (P x Q)t is the union over of the product of
the ith largest rank in P and the ith largest rank in Q.

THEOREM 4.1. Let P and Q be ranked posets which are strongly Sperner and
compatible. Then P x Q is Sperner.

Proof. In a strongly Sperner poset P, di(P) is the size of the largest ranks, so
Adi(P) is the size of the ith largest rank. If is the compatibility index of P and Q, then
(P x Q)t has cardinality Yi Ad(P)Ad(Q). By Theorem 3.3, no antichain is larger. F-]

In [7], examples were presented to show that if either order is not strongly Sperner
or if they are not compatible, then P x Q need not be Sperner.
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THE COMPLEXITY OF COLORING CIRCULAR ARCS AND CHORDS*

M. R. GAREY, D. S. JOHNSON,? G. L. MILLERS AND C. H. PAPADIMITRIOU$

Abstract. The word problem for products of symmetric groups, the circular arc graph coloring problem,
and the circle graph coloring problem, as well as several related problems, are proved to be NP-complete. For
any fixed number K of colors, the problem of determining whether a given circular arc graph is K-colorable is
shown to be solvable in polynomial time.

1. Introduction. The NP-completeness of many standard graph-theoretic prob-
lems for general graphs [4] has motivated the study of various special classes of graphs
for which these problems might be less difficult. A variety of results, both positive (i.e.,
polynomial time algorithms) and negative (i.e., proofs of NP-completeness), have been
obtained for such classes as planar graphs, comparability graphs, interval graphs,
chordal graphs, circular arc graphs, and circle graphs (see [4]). However, a number of
significant questions have remained open. In this paper we address two of these open
questions, namely the questions of how difficult it is to color circular arc graphs and
circle graphs.

A graph G is called a circular arc graph if its vertices can be placed in one-to-one
correspondence with a family F of arcs of a circle in such a way that two vertices of G are
joined by an edge if and only if the corresponding two arcs in F intersect one another.
For example, the graph in Fig. 1 (a) is a circular arc graph because it has the circular arc
model shown in Fig. l(b). Circular arc graphs were first discussed in [8] as a natural

Vl V5

V3

5

(a) (b)

FIG. 1. A circular arc graph and its circular arc model.

generalization of interval graphs (defined analogously, but using intervals on a line
instead of arcs of a circle), and they have since been studied extensively [6], [10], [11],
[12], [13]. Tucker [13] has recently given a polynomial time algorithm for recognizing
circular arc graphs. Gavril [6] has shown that the problems of finding a maximum
independent set, a maximum clique, and a minimum covering by cliques, all of which
are NP-complete for general graphs, can be solved in polynomial time for circular arc

graphs.

* Received by the editors November 19, 1979.
Bell Laboratories, Murray Hill, New Jersey 07974.
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139.
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A graph G is called a circle graph if its vertices can be placed in one-to-one
correspondence with a family of chords of a circle in such a way that two vertices are
joined by an edge G if and only if the corresponding chords intersect. Fig. 2 shows a
circle graph and its chord model. Although no polynomial time recognition algorithm is

2

3

5

(a) (b)

FIG. 2. A circle graph and its chord model.

known for circle graphs, [5] shows that, if the graph is described by giving its chord
model, then both the maximum independent set problem and the maximum clique
problem can be solved in polynomial time.

We shall study the coloring problems for these two classes in the following form"
Given a family F of circular arcs (chords) and a positive integer K, can the arcs (chords)
in F be colored with K or fewer colors so that no two intersecting arcs (chords) have the
same color?

A number of partial results about the arc coloring problem (coloring circular arc
graphs) can be found in [12], which also notes the potential applicability of circular arc
coloring to the following register allocation problem. Consider a loop in a computer
program, and regard the flow of control ai’ound the loop as being described by a circle.
For each assignment of a value to a variable within the loop, the lifetime of that
assignment consists of the portion of the loop that begins where the assignment is made
and that ends where that value is used for the last time. Each such lifetime thus
corresponds to an arc of the circle. Furthermore, a K-coloring of this set of arcs can be
regarded as assigning one of K registers to each lifetime, in such a way that, if the value
corresponding to that lifetime is stored in the associated register, then no value will ever
have to be recomputed or stored elsewhere. The minimum value of K for which the
circular arc graph can be colored therefore gives the minimum number of registers
needed for doing this.

The chord coloring problem is discussed in [2], where it is shown to model a
problem of realizing a given permutation using a minimum number of parallel stacks.

In this paper we provide strong evidence that neither of these coloring problems
can be solved in polynomial time, by showing that they are both NP-complete. (Readers
unfamiliar with the central notions and terminology pertaining to the theory of
NP-completeness can consult [1] or [4].) We begin by concentrating on the circular arc
coloring problem. In 2 we show that this problem is equivalent to the word problem
for products of symmetric groups and use this equivalence to derive an

The equivalence, at least in one direction, was apparently known to Tucker [12].
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O(n K!. K. log K) algorithm for coloring n circular arcs with K colors (whenever
possible). This implies that there is a sense in which circular arc coloring is easier than
general graph coloring. The algorithm will run in polynomial time for any fixed value of
K, whereas for general graphs the coloring problem is NP-complete for every fixed
value of K > 2 [3]. However, if K is not fixed, the circular arc coloring problem loses its
advantage and becomes, like the general problem, NP-complete. We prove this in 3
by showing that the word problem for products of symmetric groups is itself NP-
complete. In 4 the NP-completeness of the chord coloring problem is derived by a
direct transformation from the circular arc coloring problem. Finally, in 5, we discuss
the implications of our results and some of the remaining open problems and directions
for further research.

2. Circular arc coloring as a permutation problem. In this section, we formalize the
circular arc coloring problem (in a manner suitable for computation), introduce the
word problem for products of symmetric groups, and prove that these two problems are
equivalent with respect to polynomial time solvability. We then use this equivalence to
give an O(n. K!. K. log K) algorithm for coloring n circular arcs with K colors
whenever such a coloring is possible.

We formalize the circular arc coloring problem as follows: A family F of circular
arcs is a set {A1, A2," ",An}, where each Ai is an ordered pair (ai, bi) of positive
integers, with ai bi. Let m denote the largest integer among all the ai’s and bi’s. Then
we can regard the circle as being divided into m parts by m equally spaced points,
numbered clockwise as 1, 2, ., m, and each Az (ai, bi) can be regarded as represent-
ing the circular arc from point ai to point bi, again in the clockwise direction. Notice that
we might have either ai < bi or bi < ai for any Ai.

The span sp(Ai) of an arc Ai (ai, bi) is the set {ai -Jr- 1, a + 2,. ., bi} if ai < bi or
{ai + 1,..., m, 1, 2,..., bi} if bz <ai. We say that two arcs Ai and A intersect if
sp(Ai) f"l sp(Aj) is not empty. Notice that two arcs do not intersect if they share only
common endpoints. The circular arc graph corresponding to the family F is the graph
G (F, E), where {Ai, Aj} E if and only if Ai and A. intersect.

Notice that, since we are only interested in the intersection pattern among arcs in F,
there is no loss in generality in assuming that all the integers appearing in the pairs
(ai, bi) are bounded above by 2n, where n is the numbers of arcs in F. (If not, we can
simply sort the ai’s and bz’s and replace each by its rank in the sorted sequence.)
Henceforth we shall restrict our attention to families F satisfying this property. The arc
coloring problem can now be defined as follows:

ARC COLORING. Given a family F of circular arcs and a positive integer K, can
F be partitioned into K classes so that no two arcs in the same class intersect? (Or,
equivalently, can the circular arc graph G (F, E) be colored with K colors?)

To define the word problem for products of symmetric groups, let S: denote the
symmetric group of all permutations on {1, 2,..., K} (i.e., the set of all one-to-one
functions from {1, 2,...,K} onto itself). For X_{1, 2,... ,K}, let Sx denote the
subgroup of S/ consisting of exactly those permutations that leave all elements outside
of X fixed. If P1 and P2 are subsets of SK, then their product PI" P2 is the set of all
permutations r S: that can be written as r rl "/T2 (with rl r2 interpreted as first
applying rl and then applying r2), where rl P1 and q7"2 E P2. The word problem for
products of symmetric groups (WPPSG) is defined as follows:

WPPSG. Given K, subsets X1, X2," ", Xm c__ {1, 2,..., K}, and a permutation
r S:, does r belong to the set P Sx," Sx2" Sx"" Sx,, i.e., can r be written as
7"/" 71" 7"/"2 "/’/’3 7"/’m where 71" Sxi for 1 --<_ -< m ?
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The main result of this section is then given by the following theorem"
THEORF.M 1. WPPSG is polynomially equivalent to ARC COLORING.
Proof. We describe the two transformations. First, given an instance

K, Xa, X2, ", X,,, r of WPPSG, we shall show how to construct in polynomial time a
family F of circular arcs such that F is K-colorable if and only if r P.

Without loss of generality, we may assume that each integer {1, 2,..., K}
occurs in at least one set Si; for if occurs in no such set, then either r(i) and the
answer is trivially "no" for this instance, or r(i) and we can simply delete from the
instance (decreasing all integers larger than by 1) to obtain an equivalent instance. The
family F will be formed using the points 1, 2, ., K + m. For each {1, 2, ., K}, it
contains a set Fi of arcs determined by the sets X. that contain and a single arc Ci that
depends on zr-l(i). Each F is constructed as follows: Let/i[1], Ii[2], ., li[k(i)] denote
the indices of the sets X. that contain i, listed in increasing order. Then Fi consists of the
k (i) arcs

Ail=(i,K+li[1]),

ni2 (K + li[1], K +/i[2]),

Ai3 (K +/i[2], K +/i[3]),

Ai,(i) (K + li[k(i)- 1], K + li[k(i)]).

Notice that the spans of the arcs in F are pairwise disjoint and that the union of the
spans includes exactly the points from + 1 up to K + li[k(i)]. The arc Ci simply spans
the region from the end of the last arc in Fi to the beginning of the first arc in F=-,(i):

Ci (K + l,[k(i)], --’(i)).

Letting C {C1, C2,’" ", CK}, the family F is defined by

K

F= U FUC.
i=1

An example of the construction is shown in Fig. 3.
It is easy to see that the family F can be constructed in polynomial time. It remains

for us to show that F is K-colorable if and only if r P.
To do this, we first consider all possible ways of K-coloring the alternative family

F’, which uses the points 1,2, ., K + rn + 1 and which is derived from F by replacing
each arc Ci=(K +li[k(i)], r-a(i)) C by the two arcs (K +li[k(i)],K +m + 1) and
(K + rn + 1, r-1(i)). Let F’i, 1 -<_ .-<_ K, denote the subset of F’ that consists of all arcs in
F, the arc (K + li[k(i)], K + rn + 1), and the arc (K + rn + 1, i). Then the sets FI form a
partition of F’, and each set F’i is made up of a collection of paifwise disjoint arcs that
together span all the points p, 1 = p =< K + m + 1. It follows that at each such point p all
K colors must be distributed among the K arcs (one from each FI that span p.

Any K-coloring of F’ can be described by a collection of functions o-p, 1 _-<p _-<
K + m + 1, where crp () denotes that index {1, 2,..., K} such that, among all the arcs
spanning point p, color j is assigned to the one from FI. Thus each rp is a permutation of
{1, 2, ., K}. Without loss of generality we can assume that Crl(]) =/’ for all j, i.e., that
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each arc of the form (K + m + 1, i) is assigned color i. Furthermore, we observe that in
each set F the two arcs (K + m + 1, i) and (i, K + li[1]) both intersect the K- 1 arcs
(K+m+l,k), i+l<-k<-K, and (k,K+lk[1]), l<-k<-_i-1, so that both these arcs

ARC COLORING INSTANCE

WPPSG INSTANCE
K=5 rr(1) 2
X,={1, 3} -n’(2) 4

X2 {3, 4, 5} rr(3)
X3=12, 5} rr(4) 5
x4={1,2,4} r(5)= 3

FIG. 3. An instance ol WPPSG and the corresponding instance o[ARCCOLORING constructed ’rom it.

must have the same color. Thus, in any K-coloring of F’, we have

O’1 0"2 0.K+1-

We next examine how 0.p+1 can be formed from o-p, K + 1-<_p < K + m + 1. If
0.p(j) and the arc from F’i spanning point p also spans point p + 1, then we
necessarily must have 0"p (j) 0"p+ l(j) i. Thus the only cases in which 0"p+ 1(/’) can differ
from 0.p(]) are those in which F’p(j) contains an arc that ends (and, by construction,
another arc that starts) at the point p. The colors assigned to the sets having this property
by 0.p can be arbitrarily redistributed in forming 0"+1. However, by our construction,
these are exactly the sets F’ such that e Xp-c. Therefore, we can write 0"+
where rp-c e Sxp_K. Furthermore, any such choice of rrp-c provides a legal way of
redistributing colors at this point.
Thus the possible "final" permutations oc+m+l that can be obtained by K-colorings

of F’ have a particularly simple structure. They are exactly those permutations that can
be written as rrl rr2 rr,n where each ri belongs to Sx,, i.e., they comprise the set

P=SxI" Sx2 Sxm.
Recalling that F’ was obtained fromF by "splitting" each arc C C into two parts,

we observe that the K-colorings of F’ that correspond to K-colorings of F are exactly
those in which both parts of each Ci are assigned the same color. To interpret this in
terms of the 0., notice that one "part" of C, the arc (K + l[k (i)], K + m + 1), was placed
in the set F’, whereas the other "part", the arc (K + m + 1, r-a(i)), was placed in the set
F,- (i). Thus, in order for both parts of Ci to have the same color, we-must have

-1o’l+rn+l (i)= 0.-a (’n" (i)).
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Since this equality must hold for all 6 {1, 2, ., K}, and since o-1 was assumed to be the
identity permutation, this implies that a K-coloring of F’ corresponds to a K-coloring of
F if and only if or/c+,,+1 r or cr/c+,+l r. But the set of possible values for cr/c+,+l

is exactly the set P, so F is K-colorable if and only if n" belongs to P, which is what we set
out to prove.

.For the transformation in the other direction, suppose that we are given a family F
of circular arcs and a number K of colors. Let rn be the largest integer used in the
description of the arcs in F. Without loss of generality, we may assume that each point p,
1 <_- p _-< m, is spanned by exactly K arcs from F. If some point p is spanned by more than
K arcs, then this can easily be discovered in polynomial time, and it implies that the
answer in this instance must be "no." If some point p is spanned by k <K arcs, then we
can add K- k arcs of the form (p- 1, p) (or (m, 1) if p 1) to F without changing its
K-colorability.

Given an F of the above form, we first modify it to form an equivalent family F* on
the points 1, 2,. ., K + mo Let D1, D2, ", D/c be any ordering of the arcs in F that
span the point 1. Then we replace each arc (a, b)F-{D1, D2,’" ", D/c} by the arc
(K + a, K + b) F*, and we replace each arc Di (a, b) by the two arcs (K + a, i) and
(i, K + b). Since the two arcs replacing each Di must necessarily have the same color in
any K-coloring of F*, it follows immediately that F* is K-colorable if and only if F is
K-colorable.

The gist of the argument from this point on is that F* has the same type of structure
as the family F constructed in the first half of the proof, so all we need to do is to invert
the transformation used there. In order to bring out the structure of F*, we shall
partition it into sets F, 1 <_- <_-K, and C. The set C consists of exactly those arcs in F*
that contain the point 1 in their spans. The sets F will be constructed in the order
F1, F2, ", F/c, with a particular F; being formed by selecting certain arcs from the set

i-1

R(i)=F*-C- O F.
j:l

as follows: The first arc selected to be in Fi is the single arc in F* that has as its left
endpoint. Then, so long as there exists an arc in R (i) whose left endpoint is the same as
the right endpoint of the last arc added to F, we choose one such arc and add it to R (i).
Thus each Fi will consist of a collection of disjoint arcs that span all points from + 1 up
to some pointP (and no others). We also index the arcs in C as C1, C2, ", C: in such.a
way that the left endpoint of arc C is the same as the right endpoint Pi of the last arc
added to Fi. The fact that every point is spanned by exactly K arcs from F* enables all of
this to be done.

Now we are in a position to construct the sets X1, X2, , X,, and permutation r
for the corresponding WPPSG instance. The set X consists of those integers
1, 2, , K} such that Fi contains an arc with right endpoint K + ]. The permutation r
has rr(i)= ] if and only if the arc C has right endpoint i.

It is not difficult to see that this transformation can be performed in polynomial
time. It is also straightforward to verify that if the transformation from the first half of
the proof is applied to the WPPSG instance, the resulting ARCCOLORING instance is
exactly F*. Hence exactly the same argument as used for that transformation suffices to
show that zr Sx1 ,Sx2 Sxr if and only if F* is K-colorable, and our proof is
complete.

There is an obvious algorithm for solving the WPPSG problemand, therefore,
the ARC COLORING problem, via the transformation of Theorem 1. Given
Xx, X2, ", Xm, one simply computes all elements of the set L Sx Sx Sx.. by
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starting with the set of permutations P0-{e} and successively constructing P+I=
{rl rrz" rl Pj and r2 Sxi+l},/" 0, 1,. ., m 1. The set P is then given by P,, and
we can easily check whether r belongs to it.

To analyze this algorithm, we observe that multiplication of two permutations over
{1, 2,..., K} can be done in O(K) operations, and, in order to store sets of permu-
tations, we may assume that each permutation r Sc is associated with a distinct
integer I(o-), 1 <-I(o-) <-K!, in such a way that r can be computed from I(r) and I(r)
computed from cr in O(K log K) operations (e.g., see [9, pp. 19,579]). Then the space
required for the algorithm is O(K !), and the time required is O(m (K !)2. K log K).

This time complexity can be improved, however, by making use of the fact that, if
7FIPj, 7r2 e Sxi+l, and "/7"1 "7/’2 37’ P., then 7"/’1" Sxi+t 7"gtl’SXi+l, SO we need not
compute any of the products involving r. Hence we can compute P+I from P. as
follows"

Step 1. Select a permutation rl from Pi and remove it from P..
Step 2. For each permutation 7"/’2

(a) add rl" r2 to
(b) remove rl" 7/’2 from Pi (if it’s there).
Step 3. If Pi is nonempty, return to Step 1.

This method for computing P.+I from Pj has the property that each product gives us a
new member of Pi+l. Thus it requires at most K! products and at most O(K!)
conversions between a permutation r and its index I(tr). Using this method, the time
for the overall algorithm therefore becomes O(m K!. K log K).

The transformation from ARC COLORING to WPPSG given in the proof of
Theorem 1 can be implemented easily to run in time O(K. n). Thus we have the
following corollary:

COROLLARY. Deciding whether a family of n circular arcs is K-colorable can be
done in O(n K K log K) time.

The same time complexity suffices for constructing a K-coloring, since in solving
the WPPSG instance we can easily save enough information to allow us to reconstruct a
sequence of permutations whose product is r. Thus, for any fixed value of K, the
circular arc coloring problem can be solved in linear time, and for small values of K the
algorithm might actually be practical.

3. ARC COLORING and WPPSG are NP-complete. In this section we show that
WPPSG is NP-complete. By the results of the preceding section, this will imply that
ARC COLORING is NP-complete. The latter result will in turn imply that CHORD
COLORING is NP-complete, as we shall see in the next section. In all three cases, we
leave to the reader the straightforward verification that the problem in question is in
NP.

TaEOEM 2. WPPSG is NP-complete.
Proof. The known NP-complete problem that we transform to WPPSG is the

following:
DIRECTED DISJOINT CONNECTING PATHS (DDCP). Given a directed

acyclic graph G (V, A), an ordering sl, sz, ., s of the vertices with in-degree 0, and
an ordering h, tz,. ., t of the vertices with out-degree 0 (we may assume that the two
sets have the same size), does G contain n mutually vertex-disjoint paths, each going
from a distinct s to the corresponding ti, 1 < <--n ?

The undirected version of this problem was proved NP-complete by Knuth (see
[7]), and the directed acyclic version can be proved NP-complete by a trivial
modification of his proof.
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Suppose we are given an instance G (V, A), Sl, $2, ", Sn, and t, t2, ", tn of the
DDCP problem. The first step.of the transformation is to replace each arc a (u, v) A
by two arcs (u, Wa) and (Wa, v), where Wa is a new vertex involved in only these two arcs.
This certainly has no effect of the existence of the desired paths. Let G’=(V’,A’)
denote the resulting directed graph.

Now, let Vl, v2," ", v, be any topological sorting of the vertices of G’, i.e., any
ordering such that, for each i, all vertices x for which (v, x) A’ come after v in the
sequence. Such an ordering can be constructed in time linear in IA’]. (See, e.g., [Knuth,
Vol. 1]). Furthermore, without loss of generality, we may assume that v s for
1 <= -<_ n and that vq-n+i ti for 1 <= <= n.

For each vertex vi, let

B(i) {/" (v., De) A’}.

The sets X., 1 _-</’-< m =q-n + 1, for the corresponding WPPSG instance are then
defined as follows:

X.={n+j}UB(n+i), l<=j<-q-n

Xq_,+l= {1, 2, .,q-n}.

The permutation r is defined by:

r(i)=q-n+i, l<=i<=n

rr(i)= i-n, n + l-<-i <=q.

This transformation is easily performed in polynomial time. It remains for us to
show that 7r 6 P $x1" Sx2 Sx.. if and only if the desired paths from each si to
each t exist in G’.

First, let us examine how the WPPSG instance can be interpreted in terms of the
graph G’. Each position in a permutation corresponds to a vertex of G’. Initially, each
such position/vertex is labeled by its own index. When we apply a permutation r from
some Sx, we move the labels around on some subset of vertices, specifically on some
subset of the vertices whose indices belong to the set X. Furthermore, the set X
contains precisely the indices of vertex v,/i and its immediate predecessors in G’. Thus
the process of choosing a sequence of permutations rl, r2,"" ", r,,, each 7r Sx,,
corresponds exactly to choosing a sequence of label rearrangements, first among v,/l

and its immediate predecessors, then among vn/2 and its immediate predecessors, and
so on, until finally we are allowed to rearrange the labels on all vertices in V’-
{tl, t2, ", t,}. Our goal is to move each label i, 1 =< =< n, all the way from vertex si vi
to the corresponding vertex t vq-n/i. Once this has been done, the final permutation
can be chosen to arbitrarily rearrange the labels on the vertices outside of {t, t2, -, t,}.
(In essence, we don’t really care what labels end up on these vertices, but the WPPSG
problem requires that the entire permutation (i.e., the complete final labeling) be
specified.) Thus the permutation r belongs to P if and only if the above relabeling
process can be performed in such a way that the label ends up on vertex v=), 1 =< =< q.

Given this interpretation, it is not difficult to see that the transformation works as
required. Suppose that G’ does contain a set of vertex-disjoint paths, one from each s to
the corresponding ti, 1 -< -<_ n. Let A* c A’ denote the set of all arcs that occur in these n
paths. Notice that, since the paths are disjoint, no vertex will appear more than once as
right endpoint of an arc in A*. The jth step of the corresponding relabeling process,
1 <- j -< q n, is performed as follows: At the jth step we are allowed to rearrange the
labels that occur on vertex vn/i and its immediate predecessors. If there is some arc of
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the form (u, v,+.) A*, then we simply interchange the labels on u and vn+., leaving all
other labels where they were. If there is no such arc in A*, then no labels at all are
moved. Since the given paths are disjoint and since V’ is indexed in topological order, it
is straightforward to verify that this process will succeed in moving each label i, 1 -< _-< n,
from si to ti by the end of step q n. Step q n + 1 then can rearrange the labels on the
vertices in V’-{ta, t2, ", tn} from where they have been left by the preceding steps to
where they are required to be. Thus the existence of the specified disjoint paths implies
the existence of the required relabeling sequence, which in turn implies that rr P
Sx Sx SXm.

For the other direction, suppose there exist rr Sx,, 1 <= <-m, such that rr

rr r2 rrm, and consider the corresponding relabeling process on O’. For 1 =< -<-

n, we know that label starts out on s and ends up on the corresponding t. What we
need to show is that each label moves only along a path in (7’ and that the paths for two
such labels never intersect at a vertex. For the first of these, suppose that at the/’th
relabeling step label is moved, but not along an arc of (7’ (or not in the proper
direction). The topological ordering of V’ insures that X is the first set to contain v,+,,
so label could not have appeared on vn+. at the beginning of this step. Thus step j must
move label from one immediate predecessor of +i to another such immediate
predecessor. This implies that v,+i must be one of the original vertices of (7, because
each of the vertices added to O in forming (7’ has only one immediate predecessor. In
this case, however, we know that each immediate predecessor of v,+. has only one arc
leaving it in O’, the one to v,+., so no immediate predecessors of v,+i occur in any sets
after .X.. Thus such a "parallel move" of label would prevent it from ever reaching t, a
contradiction which proves that the labels 1, 2,. ., n move only along paths in (7’. To
see that two such paths cannot intersect, we simply need to observe that the only time a
label i, 1 _-< =< n, can move to a vertex v+i by moving along an arc of G’ is at step j, and
only one such label can be moved to v,+. during that step. Thus the paths followed by
these labels must be disjoint, and the proof is complete.

As a consequence of Theorems 1 and 2, we immediately have the following:
COROLLARY. ARC COLORING is NP-complete.
We can also make a remark about an interesting special case of WPPSG, that in

which each set Xi contains only two elements. This is simply the problem of determin-
ing, given a permutation rr and a sequence of pairwise interchanges, whether r can be
realized by performing some subsequence of the given interchanges. Let us call this
problem WPPSG2. We can transform any instance of WPPSG to an equivalent instance

(l)of WPPSG2 by replacing each setX {a, a2, ", a} by the following sequence of
2

two-sets:

{al, a2}, {al, a}, {al, a,},

{a2, a3}, {a2, a,},

{al-2, al-1}, {al-2, al},

{al-1, at}

Thus we have as a corollary of Theorem 2"
COROLLARY. WPPSG2 is NP-complete.
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4. Chord coloring. We model the chord coloring problem as follows: A chord, like
a circular arc, is a pair (a, b) of integers. The difference between an arc and a chord lies
in the way we interpret such a pair. If the integers occurring in a family of chords (or
arcs) are arranged in clockwise order around a circle, the chord (a, b) is viewed as the
straight line connecting a and b, whereas the arc (a, b) is viewed as the arc of the circle
(in the clockwise direction) from a to b. Note that, in this interpretation, the chords
(a, b) and (b, a) are identical, but the arcs (a, b) and (b, a) are different (and comple-
ments of each other). We can, however, identify the chord (a, b) with the shorter of the
two arcs (a, b) and (b, a), i.e., the one with smaller span (as defined in 2), breaking ties
arbitrarily. Then it is easy to see that two chords intersect if and only if the correspond-
ing two arcs Ai and As overlap, in the sense that their spans intersect and, in addition,
neither sp(Ai)_ sp(As) nor sp(As)_ sp(Ai). In order to avoid any confusion when we
use this identification in what follows, we shall always refer to chords as "overlapping"
rather than intersecting.

The circle graph corresponding to a family F {A 1, A2,.. ", An} of chords is the
graph G (F, E) where {Ai, As} E if and only if the chords Ai and As overlap. The
chord coloring problem is then defined as follows"

CHORD COLORING. Given a family F of chords and a positive integer K, can F
be partitioned into K classes so that no two chords in the same class overlap? (Or,
equivalently, can the circle graph G (F, E) be colored with K colors?)

The main result of this section shows that CHORD COLORING is at least as hard
as ARC COLORING.

THEOREM 3. CHORD COLORING is NP-complete.
Proof. We derive this result by showing that ARC COLORING is polynomially

transformable to CHORD COLORING. Given an instance, F, K of ARC COLOR-
ING, we shall show how to construct in polynomial time a family F’ of chords such that
the chords in F’ are K-colorable if and only if the arcs in F are K-colorable. The idea
behind the construction is quite simple and can be summarized as follows" If we view
chords in terms of their corresponding arcs, arc coloring and chord coloring are almost
identical problems, differing only in cases where one arc is contained in another (see Fig.
4(a)). We are going to remove all such occurrences of containment from F by replacing
each arc by a sequence of small chords (Fig. 4(b)). However, we must ensure that all
small chords replacing a particular original arc behave like a single arc, in the sense that
they all must be given the same color. We do this by adding a "clique" of K 1 chords at
each of the junction points (Fig. 4(c) shows the details around the junction points circled
in Fig. 4(b)).

(a) (b) (c)

FIG. 4. An instance of arc containment (a), the result of replacing each arc by a sequence of small
"chords" (b), and a "closeup" showing how "cliques" are added at junction points (c).



226 M. GAREY, D. JOHNSON G. MILLER, AND C. PAPADIMITRIOU

Formally, let F be the given family of n arcs, with m-<_ 2n denoting the largest
integer used in their descriptions, and let K be the specified number of colors. For each
arc Ai (ai, bi) e F and each point p sp(Ai), F’ contains the chords

(2K(2pn (n + i)), 2K(2(p + 1)n i)), p=ai+l,

(2K(2pn i), 2K(2(p + 1)n i)), ai+ 1 <p<b.

Furthermore, it is easy to verify that two original arcs intersect if and only if there are
two chords derived from them that overlap. Now consider each pair of chords, derived
from the same original arc, that share a common endpoint. By the construction, that
common endpoint has the form 2Kx for some integer x. We then add the following
"clique" chords, all containing the point 2Kx in their spans:

(2Kx- 1, 2Kx +K- 1),

(2Kx 2, 2Kx +K 2),

(2Kx (K 1), 2Kx + 1).

Observe that these K 1 "clique" chords all overlap one another and, in addition, they
all overlap the two chords that share endpoint 2Kx. Furthermore, these are the only
chords that they overlap.

Since each A satisfies ]sp(A)l_<= rn <-2n, the above construction clearly can be
performed in polynomial time. By sorting all the chord endpoints and replacing each
endpoint by its rank in the sorted order, all of which can be done in polynomial time, we
also can convert the set of chords into one having the same intersection pattern and
having a description using no integer larger than twice the total number of chords. For
convenience, however, we shall continue to work with the "un-condensed" version in
the remainder of the proof.

We claim that the arcs of F are K-colorable if and only if the chords of F’ (using
"overlap" instead of "intersect") are K-colorable. Given any K-coloring of F, let C(Ai)
denote the color used for arc A. Then, for each Ai, we color all the chords in F’ derived
fromA with color C(Ai). Since two chords derived from the same arcA do not overlap
and since two chords derived from different arcs A and A. do not overlap unlessA and

A. intersect (in which case we know that C(Ai) C(Aj)), this "partial" coloring
correctly assigns different colors to overlapping chords. All that remains is to color the
various "clique" chords. Consider the clique chords surrounding some point 2Kx that is
a common endpoint of two chords derived from a particular arc Ai. Since these K- 1
clique chords overlap only one another and two chords already colored with color
C(Ai), we may color each of them with a different one of the remaining K- 1 colors.
Doing this for each such set of clique chords, we finally obtain a K-coloring for the
chords in F’.

On the other hand, suppose that we have a K-coloring for the chords in F’.
Consider any two chords that share a common endpoint and that are derived from the
same original arc A. These two chords must be assigned the same color, since both
overlap all the K-1 clique chords surrounding their common endpoint and K-1
distinct colors must be used on those clique chords. It follows that, for each original arc
Ai, all chords in F’ derived from A’ must have the same color. Thus, we can obtain a
K-coloring for the arcs in F by assigning to each arc A; the same color that is assigned to
all the chords derived from A. This is a legal K-coloring, because two arcs Ai and A. in
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F intersect only if two chords in F’ derived from them overlap, and because the given
coloring for F’ assigned different colors to any two chords that overlap. [3

;. Conclusion. In this paper we have shown that the word problem for products of
symmetric groups is NP-complete, and from this have derived the NP-completeness of
graph coloring, even when restricted to circular arc graphs or circle graphs. Although
we have not given formal definitions for the register allocation problem and the
problem of realizing a permutation with parallel stacks, which were claimed to be
equivalent to circular arc graph and circle graph coloring in 1, the NP-completeness of
these problems also follows from our results. (The reader may fill in the details by
looking up the formal definitions in [2], [12].)

A number of open questions remain. In 2 we were able to present an algorithm
which, for any fixed K, ran in polynomial time and produced a K-coloring of a family of
circular arcs if one existed. Does a similar algorithm exist for the chord coloring
problem, or is there, as with general graph coloring, some fixed K for which the chord
coloring problem is NP-complete? What is the complexity of the coloring problem for
proper circular arc graphs (graphs representable by families of arcs which intersect if and
only if they overlap)?

More basically, is there a polynomial time algorithm for recognizing circle graphs
and constructing their representations in terms of chords (or arcs)? Such algorithms
have been found by Tucker for circular arc graphs [13] and proper circular arc graphs
[10]. A similar algorithm for circle graphs might well widen the usefulness of the
algorithms in [5], as these assume that the representation of the circle graph is known.
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RECONSTRUCTION OF A PAIR OF GRAPHS FROM
THEIR CONCATENATIONS*

SUKHAMAY KUNDU, E. SAMPATHKUMAR$, JAMES SHEARER AND DEAN STURTEVANT

Abstract. A concatenation of two vertex disjoint graphs is defined to be the graph obtained by identifying
a vertex of one graph with a vertex of the other graph. We show that an arbitrary pair of connected graphs can
be uniquely reconstructed from the set of all their distinct concatenations, with only trivial exceptions.

1. The reconstruction problem. Let G1 and G2 be two vertex disjoint graphs, and
let xi(i-- 1, 2) be an arbitrary vertex in Gi. The graph G(xlx2) obtained by merging
the vertices Xl and x2 into a single vertex is called the concatenation of G1 and G2
at the points x and x2. The reconstruction problem after concatenation is tO determine
the original pair of graphs G1 and G2 given the family of all concatenations G(xx2)
obtained by varying the vertices x and x2 in the respective graphs. As in other graph
reconstruction problems, it is understood that the vertices in G(xx2) are unlabeled, and
that the concatenated vertex in G(XlX2) is not distinguishable as such from other nodes.

We show that with only trivial exceptions any pair of connected graphs is uniquely
determined from its concatenations. The reconstruction theorem given here requires
only that we know the distinct nonisomorphic G(xx2)’s, and not how many times each
concatenation appears among all concatenations.

The original graph reconstruction problem [12] states that, for all graphs with three
or more vertices, G can be uniquely reconstructed from the family of graphs {G\x}, G\x
being the subgraph of G obtained by deleting the vertex x and all edges incident with x.
This particular reconstruction property has been established for a large set of graphs
including trees, outer planar graphs, unicyclic graphs and disconnected graphs [1]-[7].
Graph reconstructions from elementary contractions and elementary partitions were
considered in [8]-[10]. In all cases, the proofs depend heavily on the particular
structural properties assumed for the graphs. No unified technique is yet available for
general graph reconstruction problems.

2. Preliminaries. Let G (V, E) be a connected graph (unless otherwise specified,
all graphs discussed in this paper are assumed to be connected). For u v, define the
cutdegree of u, denoted cd (u), to be the number of connected components in the
induced subgraph G\u on V\{u}. u is a cutvertex if cd (u)> 1. (Note that if G is a tree,
then the cutdegree of a vertex is the same as its ordinary degree.) A block of G is a
maximal subgraph without cutvertices. A limb (at a vertex u) is a component of G\v
together with u and all the edges in E joining u to that component.

A rooted graph is a pair (G, u), where G (V, E) is a graph and u V. Two rooted
graphs (G1,/-’1), (G2, u2) are isomorphic if there is a graph isomorphism b: G G2 such
that b(ul) u2. The concatenation of two rooted graphs (G1, ,1) and (G2,/-’2), denoted
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by (G1,111) (G2, 112) is the rooted graph (G(111112), 111112), the concatenated vertex being.
denoted by /21112.

For a graph G, define the sequence (G) (c1, a2, by ci c;(G) number of
vertices of cutdegree (if G is trivial, a(G)=(0,0,...)). Define A(G)=
max {i: ai # 0}; A(G) 1 if G is a block. Thus, if G (G1,111) (G2, 112), we have
a.(G)=a.(G1)+a_(G2)+f(cd (111)+cd (112))-f (cd (11))-.e(cd (112)). Here addition is
componentwise, and f(i) is the sequence with ith entry equal to one, the rest zero.

LEMMA 1. 117 any limb L at a vertex x of a connected nontrivial graph G, there is a
vertex 11 # x of cutdegree one in G.

Proof. Let a spanning tree of G be given. The subtree which spans L will have a
vertex 11 # x of degree one; 11 is the desired vertex. [3

LEMMA 2. Suppose G1 a17d G2 are known to be nontrivial. Then (G1)+a. (G2) and
{A(G1), A(G2)} can be determinedfrom the setofnonisomorphic concatenations oral and
62.

Proof. Let C be a concatenation with lexicographically least _a (C). By Lemma 1,
this must arise when two vertices of cutdegree one are identified, so _a(C)=
.a(G1)+(G2)+(-2, 1, 0,... and .(G)+a.(G2)=a.(C)+(2,-1, 0,... ). Further-
more, max {A(G1), A(G2)} max {i: ai(G1)+ ai(G2) 0}.

Let C’ be a concatenation with A(C’) maximum. This must arise when two vertices
of maximum cutdegree in G1 and G2 are identified. Hence, A(C’) A(G1)+ A(G2) and
min {zX(G1), zX(G2)} A(C’)-max {A(G1), A(G2)}. [3

3. Main theorems.
THEOREM 3. Suppose the graphs G1 and G2 are known to be nontrivial. Then they

can be determined, up to isomorphism, by the set oftheir (nonisomorphic concatenations.
Proof. By the preceding lemma, we may distinguish four cases.
Case 1. A(G1)> A(G2)> 1. Let C be a concatenation with A(C) maximum. The

concatenation point is the unique vertex of cutdegree A(C). Define (C)= {L: L is a
limb of C at a vertex of cutdegree _-> A(G1) and L has no vertices of cutdegree A(G1)}.
Notice that (C) is (G1) together with at least two proper subgraphs of G2, since
A(G2) > 1.

Let C’ be a concatenation with ca(l(G1)- 1 vertices of cutdegree A(G1) and one
vertex of cutdegree (G1) + 1. This must be the result of the identification of a vertex of
cutdegree A(G1) in G with a vertex of cutdegree 1 in G2 (existence guaranteed by
Lemma 1). (C’)=(G1)U{G2}, so {G}=.(C’)\(C). "Plucking" G. from the
(uniquely determined) concatenation vertex in C’ leaves

Case 2. zX(G1) A(G2) A> 1. Let C bea concatenation with OA(G1) + CA(G2)-- 1
vertices of degree A and one vertex of degree A+ 1 with a limb at that vertex of
maximum size (over all such concatenations). This limb will be the largest (in number of
vertices) of G1 and G2.

Case 3. A(G1) ;> A(G2) 1. The block-cutvertex tree T(G) associated with a graph
G is defined as follows. The vertices of T(G) are the blocks and cutvertices of G. Two
vertices in T(G) are joined by an edge if and only if one is a cutvertex and the other is a
block (in G) containing that vertex. It is easily verified that T(G) is a tree.

We consider separately the cases T(G1) is a path and is not a path. These cases may
be distinguished given the set of concatenations, since if T(G1) is a path, then using
Lemma 1, there is a concatenation whose block-cutvertex tree is a path. On the other
hand, T(G1) is a sub-graph of T(C) for every concatenation C; so if T(G1) is not a path,
neither is T(C).

If T(G1) is not a path, there is a vertex in T(G1) of degree at least three. Let C be a
concatenation having the longest path in T(C) from a leaf to a vertex of degree at least
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three, subject to T(C) having the minimum number of leaves. The leaf on this path will
be the block G2.

When T(G1) is a path, there are three cases.
Case 3a. T(G1) has 3 vertices, that is, every concatenation has three blocks. (This is

the case where G1 consists of 2 blocks with a common cutvertex.) If there is a unique
block which appears as a limb in every concatenation, it is G2. G1 can then be
determined as follows. Suppose the blocks of G1 are not both G2. Then some
concatenation contains a unique limb isomorphic to G2 which may then be plucked
from the graph leaving G1. In the remaining case, consider those concatenations in
which G2 is joined to the cutvertex of G1. The automorphism group of the graph G2
induces a partition of its vertices into equivalence classes. If the cutpoint of G1 lies in the
same class in each block, then, in some concatenation, the cutvertex lies in the same
class of all 3 blocks uniquely determining G1. If this case does not occur, then in some
concatenation the cutvertex will occur in one class in one block, and in another class in
the other two blocks. This again uniquely determines G1. If there are two blocks which
appear as limbs in every concatenation, then G1 consists of the concatenation of two
identical blocks while G2 is a distinct block. Hence in any concatenation, two blocks are
identical and the other is

Case 3b. Every concatenation has four blocks. If there is a unique block which
appears as vertex v or , in every concatenation C with T(C) as in Fig. 1, then this block
is G;. This again uniquely determines G1 except when both endblocks of G1 are
isomorphic to G2. But in this case, it is easy to see that there will be concatenations in
which the blocks corresponding to v and u are joined at points in the same equivalence
class of G2 uniquely determining G . Otherwise, the two endblocks of Ga are identical
and G2 is the "odd man out" among the endblocks of any concatenation for which T(C)
is not a path.

FIG.

Case 3c. Every concatenation has at least five blocks. There will be a concatenation
with a vertex of cutdegree 3 and a unique limb of , which is also a block. This block is
G2. Plucking this G from , leaves G1.

Case 4. iX(G1)= A(G2)-- ]. In any concatenation there will be a unique cutvertex.
The limbs at this cutvertex will be the graphs G1 and G.

If the restriction that the graphs be nontrivial is relaxed then, in general, it is not
true that A(G1) and A(G2) may be calculated (if G is trivial, then _a (G1) + g(G2) g(C)
for the unique concatenation C, which is why the proof of Lemma 2 breaks down). In
fact, any time there is a unique concatenation C, it is possible that Ga C and G2 is
trivial. The cases in which this is not the only possibility is dealt with in the following
theorem.

THEOREM 4. LetG and G2 be nontrivial graphs. They have a unique concatenation

if and only if they are both vertex transitive.

Proof. If. Clear. Only if. Suppose G1 is not vertex transitive.
If G1 has a cutvertex x, let y be a vertex of cutdegree one in 61 and z any vertex in

G2. Then a.((G, x) (Gz, z)) a.((G, y) (G, z)) and, hence, these two concatena-
tions are different.
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If Ga is a block, let xa and x2 be two inequivalent vertices in it. Let z be a vertex of
maximum cutdegree in G2. Then in the concatenations Ci (Ga, xa) (G2, z)(i 1, 2),
the concatenation points are the unique vertices ui of maximum cutdegree A(G2)+ 1.
Hence, Ca is isomorphic with C2 if and only if the rooted graphs (Ca, ua) and (C2, ua) are
isomorphic which is true if and only if the rooted limbs at ui are (pairwise) isomorphic.
But the rooted limbs at ui are the rooted limbs at z in G2 together with (Ga, xi). As
(G1, xl) and (Ga, x2) are not isomorphic, we conclude C and C2 are nonisomorphic
concatenations, fi

Combining the two theorems, we have
COROLLARY 5. Two connected graphs may be recovered from the set of their

nonisomorphic concatenations except when there is a unique concatenation C, and the
limbs at the unique cutvertex in C are vertex transitive.

4. Concluding remarks. When the graphs are not connected, however, recon-
struction is not so easy. For example, suppose the components of Ga are A, A, B and
the components of G are A, C. The set of concatenations is the same as that obtained
when Ga has components A, B, and G2 has components A, A, C. However, the authors
believe that if the multiset of concatenations is given (i.e., we know the multiplicity of
each concatenation), then the graphs may be uniquely reconstructed in all cases.

Acknowledgment. The authors would like to thank Jim Walker for helpful
comments relating to the proof of these theorems.
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CONTROLLING OVERLOAD IN A DIGITAL SYSTEM*

E. ARTHURS AND B. W. STUCK?

Abstract. Service requests arrive to an input buffer in a digital system. The buffer capacity and work
discipline are to be chosen such that the maximum rate at which tasks are processed through the buffer while
still meeting delay criteria is not above some maximum level. This input buffer is intended to be a control valve
to prevent internal system overload. A processor visits the buffer at random time epochs, serves up to a given
maximum number of tasks, leaves, and repeats this process. The equilibrium probability of buffer overflow,
and the equilibrium waiting time distribution of a task until it is processed are studied as a function of model
parameters.

1. Introduction. The mathematical model studied here is as follows: tasks arrive at
a finite capacity buffer according to a Markov counting process conditioned on the
number of tasks in the buffer. When a task arrives and finds the buffer full, one task
(either the arrival or one in the buffer) is rejected or lost and buffer overflow is said to
have occurred. A processor visits the buffer at random time intervals, processes up to a
given maximum number of tasks according to a fixed work scheduling algorithm (called
the buffer discipline), and then leaves. Each task occupies the processor for a time
interval called the service time of the task. The service times are unknown, assumed for
simplicity to be independent identically distributed random variables. Our goal is to
study, as a function of model parameters, the probability of buffer overflow and the
waiting time distribution of a task until its completion. Such a system has been called a
loss-delay system [9].

The primary motivation for this study came from attempting to determine per-
formance limitations in the so-called overload control mechanisms currently widely
used in various electronic telephone switching systems. In such systems, our buffer
would be the input buffer for the entire call processing system; by regulating how much
work is let into the system through this buffer for further processing, time fluctuations in
the stream of arriving calls can be smoothed; if there were no regulation, system
performance would be significantly and adversely affected.

In addition, this study was motivated by the following secondary considerations:
(i) Digital systems in which several buffers share a single processor are quite common in
applications outside of telephone call switching [3], [8], [12], (ii) the cost of information
storage is currently a significant economic factor in the design specification of a digital
system, and it is therefore important to analyze the effects of a finite storage system on
performance.

Finally, our problem is a highly simplified description of a computer disk informa-
tion retrieval and storage system, where the buffer is an annulus on one level of the disk,
the processor is the read/write head, and the processor intervisit time interval lasts
from when the head leaves a given annulus until it next returns [12].

Although in most systems the intervisit distribution to a buffer is determined
endogenously as the result of a multiple buffer scheduling rule [7], we feel it is important
to first understand the performance limitations of a one (finite) buffer system with
exogenous specified intervisit distribution, and will present generalizations of this work
(to a set of buffers) elsewhere.

The next section presents a summary of the main results of this study. The third
section states the mathematical problem and fixes notation. Section 4 presents a
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detailed analysis of our model for one particular buffer discipline. Sections 5, 6 and 7
present brief sketches of how to modify the 4 analysis for other buffer disciplines.

2. Summary of results. The maximum throughput rate of any digital system,
denoted Ac, is defined to be the maximum task completion rate for which all delay
requirements can be met. When the mean rate of work arriving exceeds Ac, an external
overload is said to occur. If there is no means for limiting the number of tasks accepted,
then an external overload can result in an overcommitment of the system resources
(e.g., processing, storage, and so forth) with the subsequent loss of processing efficiency
and violation of one or more delay requirements; this phenomenon is called internal
overload.

Requests for service appear at the input queue as the first step in processing.
Internal overload is prevented by limiting the maximum number of requests processed
per processor visit to a suitable fixed value, S. For normal traffic loads S will appear
large in the sense that most attempts will be processed during the next processor visit
after their arrival. When external overload occurs S will appear small in that many
attempts will wait more than one processor visit after their arrival to be processed. In
actually implemented overload controls, S may be adjusted depending on an estimate
of the mean intervisit interval, for example, with the longer the intervisit time the
smaller the value of S. Here we choose to fix S because we feel it illustrates the essential
features of controlling overload without undue analytic complications. Our analysis can
in principle be extended to allow S to depend on such complications.

It is also felt necessary to limit the size of the input queue to a suitable value Q in
order to maintain satisfactory waiting time performance in the presence of external
overload. For normal traffic loads Q will appear big in the sense that the probability an
arriving task finds the input queue full is small (e.g., <10-4), while when there is an
external overload Q will appear small in that there is a significant chance that an
arriving task will be rejected from a full input queue.

Four techniques of operating the input queue were analyzed:
1. Nongated latest arrival cleared (NGLAC),
2. Nongated earliest arrival cleared (NGEAC),
3. Gated latest arrival cleared (GLAC),
4. Gated earliest arrival cleared (GEAC).
A precise definition of each of these buffer disciplines is given in 4. Roughly

speaking, a gated discipline involves shutting a gate on arrivals at the instant the
processor arrives to work on the tasks in the input queue, and doing up to a maximum of
S jobs until the gate is reached, while a nongated discipline has no gate. All call requests
are processed in order of arrival within the input queue, first come, first served.

The design problem is to choose S, Q and the intervisit time probability dis-
tribution (i.e., specify the speed and work schedule of the central processor), such
that

1. the maximum rate of accepting and processing calls through the input queue,
AA, does not exceed the maximum rate at which the central processor services work,
which is called the system mean capacity, denoted

2. the fraction of incoming tasks which are rejected is sufficiently small when the
mean arrival rate of work requests does not exceed the mean capacity;

3. the probability distribution of flow time (the time from when a work request
arrives until the processor finishes processing it) satisfies the service requirements.

We implicitly assume from this point on that internal overload can be avoided if )tA
does not exceed Ac.
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The principal findings were that
(i) visiting the input queue at constantly spaced time intervals vs. exponentially

distributed time intervals can significantly reduce loss;
(ii) visiting the input queue more frequently, processing fewer work requests each

visit vs. emptying the queue each visit, can significantly reduce loss.
This may imply that smaller storage capacity may be adequate if the intervisit

intervals are deterministic and $ is small, vs. the larger storage capacity required for
irregular intervisit intervals and emptying the buffer of all work.

The major theoretical contribution of this work is to extend the existing analyses of
finite queues to include"

(a) the server leaving the queue after completing up to a given maximum number
of tasks;

(b) a general class of Markov arrival processes with both state-dependence and
group arrival.

A systematic method is given for determining the probability of buffer overflow
and the Laplace-Stieltjes transform of the distribution of waiting time for such systems
in equilibrium. Our approach is a natural generalization of the method of Riordan [9]
for the M/G/1 finite queue.

Closing comments. Many qualifications are needed to be able to apply this work to
an actual application in an intelligent manner. Here we touch on only two. First, we
have chosen to ignore retry phenomena, such as studied by Cohen [14], where work
attempts that time out will try at a later point in time to reenter the queue. Second, we
have chosen to assume the intervisit time intervals were independent identically
distributed random variables, when in fact the amount of work processed on a given
visit to the input queue in an actual system may significantly correlate with the length of
successive intervisit intervals (processing many work attempts will lengthen it, while
processing few work attempts will shorten it). We do not believe that it is impossible to
incorporate either of these phenomena into the analysis presented here, but it would
have obscured the essential elements that were brought forth here. We leave these
extensions for future work.

3. Problem statement. Figure 1 shows a block diagram of the queuing model. The
model treated here is as follows:

3.1. Buffer discipline. All tasks are served in order of arrival, first come, first
served, in each of the four buffer disciplines now described. Four buffer disciplines will
be treated:

3.1.1. Nongated latest arrival cleared (NGLA,C).
(a) The maximum number of jobs processed each processor visit is limited to S. If

the buffer is emptied before S requests are processed, the processor leaves.
(b) If a job arrives and finds the buffer full (O jobs already present), it is cleared

from the system.

3.1.2. Gated latest arrival cleared (GLA,C).
(a) Those jobs processed during a processor visit are limited to those already in the

buffer at the time epoch that the processor arrives. The maximum number of tasks
processed each processor visit is S.

(b) Same as (b) in NGLAC.

3.1.3. Nongated earliest arrival cleared (NGEAC).
(a) Same as (a) in NGLAC.
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(b) If a job arrives and finds the buffer (O jobs already present), it is inserted at the
end of the queue and the task with the earliest arrival epoch is cleared from the system.

3.1.4. Gated earliest arrival cleared (GEAC).
(a) Same as (a) for GLAC.
(b) Same as (b) for NGEAC.

BUFFER
CAPACITY

STATE Q TASKS
DEPENDENT
MARKOVIAN
ARRI VAL

STATISTICS

COMPLETED TASKS

PROCESSOR

{Vi } -INTERVISIT TIME INTERVALS

{Pi }- PROCESSING TIME INTERVALS

S MAXIMUM NUMBER OF TASKS
EXECUTED EACH PROCESSOR VISIT

OVERLOAD CONTROL BLOCK DIAGRAM

FIG.

3.2. Processor description. The processing times {Pi} for the jobs (i 1, 2, .) are
assumed to be independent identically distributed (i.i.d.) random variables drawn from
a common probability distribution Ge(t), Ge(O)= 0, with associated Laplace-Stieltjes
transform denoted ye(s). The mean processing time E(P) is assumed finite and
nonnegative.

The intervisit intervals { Vi} are the time intervals from when the processor leaves
the buffer until it next returns. From this point on, the intervisit intervals are assumed to
be i.i.d, random variables drawn from a common probability distribution
Gv(t), Gv(0)-0, with associated Laplace-Stieltjes transform denoted yv(S). We
assume the mean intervisit interval, E(V), is finite and strictly positive.

For ease of exposition we further assume that the distributions Ge(t) and Gv(t) are
not jointly arithmetic on the same span. That is, there does not exist a positive real
number 6 such that Ge(t) and Gv(t) have their common support concentrated on the
set of points (0, 6, 26, 3&. .).

3.3. Arrival processes. The arrival process is a Markov counting process condi-
tioned on the number of tasks in the buffer. More specifically, given that the number of
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tasks in the buffer at an arrival epoch time instant is equal to m, and that no completion
of service occurs in the interval (t, + 8]

(i) the probability of an arrival epoch in (t, / 8] is given by

C(m)8+o(8);

(ii) the probability of a gro.up size equal to K, given that there was an arrival epoch
in (t, + 8 is equal to

R(KIm) forK=l,2,...;

(iii) the probability of more than one arrival epoch in (t, t + 8] is 0(8).
(iv) To avoid discussing physically uninteresting situations, we further assume that

C(m) is bounded and nonincreasing with C(Q-1)> 0, and the distribution of the
group size RB(KIm) has a finite mean for all m.

We now define some functionals of the arrival process which will be used later on.
Let th denote the event that the buffer contains m tasks at time T and no service
completions occur in (T, T + t]. Then we can write

RA(g, tlrh) Pr [K arrivals in (T, T + t]lrh ].

The forward Kolmogorott equations for RA(K, t]rfi) can be set up in the usual
manner from basic postulates (i)-(iv), taking note that since no completions occur in
(T, T + t], the buffer contains the minimum of Q and (m + K) at any time t, where K is
the number of arrivals in (T, T + t]. We then have

--RA(K, tlrfi) -C(min [m +K, Q])RA(K, tlth)

K-1

+ C(min [m +j, Q])RB(K-jlmin [m +j, Q])RA(f, t[rfi)
/=0

for m 0, 1,. ., Q and K 0, 1, 2,..., with initial conditions

1, K =0,
RA(K, O)

O, K > O.

The KolmogorotI equations can be solved explicitly in two special cases. In the
special case of the finite source of size O, RA(K, tlrfi) is given by

RA(g, tlrt k e

0,

-xto-,,-K), 0 <= K < Q- m,

K>O-m.
When the arrival process is a compound Poisson counting process, it can be shown that

RA(K, tlrfi)= RA(K, t) independent of m

and

pA(X, t)= ., RA(K, t)xt exp [ct(ps(x)- 1)]
K=0
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where 1/c is the mean time interval between arrival epochs, and On(x) is the moment
generating function of the arrival batch size compounding distribution.

Let A., denote the random variable for the number of arrivals during an intervisit
interval, given that there are rn tasks in the buffer at the beginning of the interval. The
probability distribution of A.. denoted Rv(K[rfi), is given by

Rv(Klr) Io RA(K, t[rh) aGv(t).

Let Um denote the random variable for the number of tasks arriving during a
service interval given that there are rn tasks in the buffer at the beginning of the interval.
The probability distribution of B,, denoted R,(KIrh), is then given

e,(glr)- I0 eA(k, tire) dGe(t).

4. Analysis of the NGLAC discipline. Three cases are to be distinguished in the
analysis of the NGLAC buffer discipline:

(A) E(P) > 0 and S finite,
(B) E(P) O,
(C) E(P) > 0 and S infinite.
From a mathematical point of view the latter two cases are degenerate versions of

(A) where the number of processing phases collapse to zero and one respectively. (The
case E(P)= 0 is referred to as a bulk service in the literature, e.g., [9].)

4.1. Case (A). We define the Markov process u(t) which takes values in the system
state space . Elements of the set are triples (m, n, x) where m is the number of tasks
in the buffer (m 0,..., Q), n is the processor phase (which will be defined shortly;
n 0,..., S), and x is the elapsed time of the phase, x (0, o]. The phase n 0
corresponds to the processor not processing work in the buffer, while n > 0 corresponds
to the processor doing work at the buffer and there have been (S-n) completions
during the current processor visit (we choose to number the phases this way solely for
convenience in the analysis to follow; naturally, other numbering schemes may be
used). More precisely, we choose to define the set l) (0, c], where

fl {{(m, O)forn=O?ndm=O,...,Q},{(m, n)for n 1 ., S and rn 1,..., Q}.

For later use, we note that at the beginning of a phase, the possible state values belong to
{x 0+}, with

S= U ,,,
n=O

fo={(m,n=O)’m=O,’’’,O-1}, a.={(m,n)’m=l,’’’,O-1}[.=t,....s_x,

fs ={(m, n =S)" m 1,. ., O}.

Figure 2 shows one possible arrival pattern and the resulting state changes for
(O= 5, S=2).
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Q=5, S=2

Next, we define P[u(t)] dx P(m, n, x, t) dx as the probability that u(t) belongs to
the set (m,n, y): (m,n)O,x<=y<x+dx, at time t. For convenience, we assume a
state space transition occurs at 0. Rather than analyze the probabilistic behavior of
,(t), we choose to approach the analysis via an imbedded semi-Markov process vz(t).
vi(t) also takes values in ( x (0, o]. Let {t} be the set oftime epochs, to O, Ti+l > t, of
phase transitions in the v(T) process. If v(ti)=-(m, ni, 0), then we define

Pi(t) (m, n, x t) for t < _-< t+l.

We define zr[,(t)] dx zr(m, n, x, t) dx as the probability that vt(t) belongs to the set
(m, n, x)" (m, n) O, x <-_ y <x + dx at time t. From this discussion, it follows that for

The use of semi-Markov processes in the analysis of queuing systems was introduced by A. Fabens [6];
one of the first systematic treatments of queuing theory problems using semi-Markov chains was due to
D. G. Kendall 13].
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x >O, (m, n) l),

(1) P(m,n,x,t)=

Z "tr(j, O, x, t)RA(m --j, xlj)
i=0

for 0_-<m < Q, n =0,

E (j, o, x, t) Z
/=o k =O-j

RA(k, x[j) for m O, n 0,

E r(j, n, x, t)Ra(m -j, x[j)
j=l

for0<m <O, 0<n <S,

E "tr(j, n, x, t) E Ra(k,
/=1 k=Q-i

for m =O, 0<n <S,

E "rr(j, S, x, t)RA(m -j, xlj)
/’=1

for0<m <O, n =S,

E zr(j,S,x,t) E Ra(k, xlf) form=O,n=S,
/’=i k O

where Rn(k, xl/’) Pr [A(x) k[j]. For simplicity of exposition, we deal with the steady
state case from this point on. Our goals are to determine the probability of buffer
overflow and the probability distribution for the waiting time of an accepted task, i.e.,
the time interval from when a task arrives and is accepted into the buffer until the
processor starts processing the task.

PROPOSITION 4.1. Given the preceding assumptions, there exists a unique equilib-
rium probability distribution denoted

lim 7r(m, n, x, t)= 7re(m, n, X).

77"e is independent of r(m, n, x, O) and is given by

O)[1-Gv(x)]/E(V), n =0,
(2) "rre(m’n’x)=

e(m,n)[1-Ge(x)]/E(P), n>0,

]:or (m, n) (. J’e is given by

z?(m, 0)E(V)/N, n O,
(3) e(m, n)=

77(m, n)E(P)/N, n >0,

(4) N= Z (m, O)E(V)+ E (m, n)E(P)
(m,0) (m,n>0)

for (m, n)6 , where r(m, n) is the invariant measure associated with the generator
g(m’, n’; m, n) of the semi-Markov process Vl(t),

g(m’ ’" 0)[ 0)]n m, n)= Pr[v1(ti+l)= (m’, n’, x vi(t) (m, n, x

The proof of this theorem is broken down into two parts. First we show that g is the
generator of an irreducible aperiodic Markov chain.

From earlier assumptions about the arrival process, Rv(k) and Re(k) are positive
for all negative k. It is clear that all states (m, n) lead to (0, 0) in a finite number of
transitions; simply assume no arrivals during the successive phases until (0, 0) is
reached. The states (m, S) can be reached from (0, 0) in one transition. The states
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(m, n), where (m, n) 1 and 0 < n < S can be reached from (0, 0) by the path (0, 0),
(m, S), (m, S 1),..., (m, n). The states (m, 0), <- m =< O can be reached from
(0, 0) by the path (0, 0), (1, $), (1, $- 1),. ., (1, 1), (m, 0). Finally, (0, 0) can be
reached from (0, 0) in one step. Hence the chain is aperiodic and irreducible.

We now turn to the second part of the proof of the theorem: To specify the
behavior of ul(t) between the transition epochs {ti}, define the sojourn time distribution
H(t;m,n),

H(t; m, n) Pr[h+a- h < t[vi(h)= (m, n, x 0)]
Gv(t), n O,
Gp(t), n > O.

The generator g is given explicitly, for (m, n) and (m’, n’)61, by

g(0, 0; 0, 0)= nv(0]0);

g(m’, S’, m, O) Rv(m’- mlm),

g(O, S; m, O)= Y Rv(klm),

m=0,...,O-1;

m=O,...,O-1;

O<m’<O;

g(m’, S- 1; m, S) Rp(m’- rn + llrn),

g(O-l,S-1;m,S)=

g(0, 0; 1, n)= Rp(011),

g(O-l,n-1;m,n)=

Y. Rp(klm),

n=l,.-.,S;

2 Rp(klm),
k=O-m

m=l,...,O-1;

m-l<m"

0<m’< Q- 1;

0<n<S;

g(m’, n’; m, n)= 0 otherwise.

Since the Markov chain is irreducible and aperiodic, and the state space is compact,
all states are positive recurrent, so there exists a unique invariant measure .k(m, n)
[5, p. 183], where

(m, n)= , g(m, n; m’, n’).k(m’, n’),
m,n)l’l

,k(m, n) => 0 and Y’. z?(m, n) 1,
(m,n)’l

for (m, n) 1). Since i(t) has been shown to be an irreducible aperiodic semi-Markov
process with all states positive recurrent, the desired result now follows [10, p. 109,
Th. 5.17]. Q.E.D.

PROPOSITION 4.2. Given the preceding assumptions, there exists a unique equilib-
rium probability distribution, Pe,

lim P(m, n, x, t) Pe(m, n, x).
t-
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Pe is independent ofP(m, n, x, O) and is given by

e(m-k, O)[1-Gv(x)]RA(k, xlm-k)/E(V)
k=O

for O<-m < O,

m-1

’e(m-k, n)[1-Gp(x)]RA(k, xlm-k)/E(P)
k=0

for l<=rn<O, 0<n<S,

(5)

’. e(O-k,O)[1-Ov(x)] RA(l, xlO-k)/E(W)
k=l l=k

7re(O-k,O)[1-Gp(x)] RA(I, xlQ-k)/E(P)
k=l l=k

0<n <S,

m-1

re(m k, S)[1 Gp(x)]RA(k, x)/E(P)
k=0

]:or l<=m<O,

e(O-k,S)[1-Gp(X)] RA(I, xlQ-k)/E(P)
k=0 =k

form=O, n=S.

Proof. This result follows from the arguments given in the previous proposition plus
the relationship between P(m, n, x, t) and rr(m, n, x, t) given in (1). Q.E.D.

Next we wish to determine the probability of loss, L, the equilibrium probability of
buffer overflow. If we define Pr [Accept] as the probability that an arrival will be
accepted, we have Pr [Accept] equals (1 -L), and if we define NA(T) as the number of
tasks accepted for processing in an interval of duration T, and N(T) as the total number
of tasks arriving in an interval of duration T, then [10]

(6)

(7) A dx
o

NA(T)
Pr [Accept] rlirnoo N(T) a.s.

average number accepted per arrival epoch
average number of arrivals per arrival epoch"

Therefore, we can write Pr [Accept] as ]QA/2Q, where
O-m

Pe(m, n, x)C(n) E kR(klrh) + Z Q- m)Rn(klrh)
(m,n)ll k=l k= 0 -m+l

(8))Q= dx , Pe(rn, n,x)C(rh) E kRs(k[rh).
0 (m,n)12 k=l

If we denote the mean number of completions per unit time by AA, then we can
write

so
(9) hA =E(P) dx

n=l

y’
m=l

Pe(m, n, x).

Let h denote the mean number of arrivals per unit time. In terms of the quantities just
defined, it is straightforward to show that

(10)
(1 -L)"

Our next goal is to determine an explicit expression for the Laplace-Stieltjes
transform of the waiting time distribution. Because tasks are served in order of their
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arrival, and because it was assumed the processing times ot the tasks were independent,
we can write

(12)

(1 (z) v(z)/(z)
where yv(z) is the Laplace-Stieltjes transform of the equilibrium flow time distribution;
hence, once we find yve(Z), we will know yv(z). From elementary arguments it can be
seen that

(z) dx 2 P(m, O, x)(zlm, O, x)

+ 2 P(m, n, x)w(zlm, n, x
n=l

where P(m, n, x)dx is the probability that an accepted task finds the system in
{(m, n, y): (m, n) , x N y <x + &}, and (zlm, n, x) is the Laplace-Stieltjes trans-
form of the equilibrium waiting time distribution of an accepted task, given the system
state.

We can write P(m, n, x)= (m, n, x)/,
P0/R Om<O,n=O,

P(m,n,x)= ff,/, O<m<O,n>O.

(13) fio= 2 P(m-], O, x) 2 C(m-])Ru(k[m-]) for0m<O, n=0,
i=o k =i+

m-1

ft,= Z Pe(m-j,n,x) 2 C(m-j)R(k]m-]) for0<m<O, O<nS.
i=0 k =i+1

It is then straightforward to show that

(z)#+l/Io, n o,
yw(z]m, X) - (z)y+-")/sII,, m + 1 > n > 0TP

I? dyGv(x + y) e-ZY I? dyGp(x + y) e-ZY
{4) *= [-Gv(x)] "= [-G(x)]

[y] smallest nonnegative integer greater than or equal y.

Thus, from (6)-(14) we can calculate the Laplace-Stieltjes transform of the equilibrium
waiting time distribution, and find the moments of the distribution; numerical methods
are currently being investigated for calculating the approximate distribution by invert-
ing this transform, in order to examine the asymptotic behavior of the distribution.

4.2. Case (B). In this case, since E(P)= 0, there is only one phase, the intervisit
phase n 0. The generator must be modified in the obvious way to reflect the sudden
completion of up to S tasks at the end of the intervisit period. The determination of the
waiting time distribution and loss are carried out in the same manner as for case (A) with
the difference that there is only one phase and ye(z) is replaced by unity in (14).

4.3. Case (C). In this case, S m, the buffer is always emptied before the
processor leaves the buffer. Thus there are only two phases, the intervisit phase, n 0,
and a single processing phase, since all processing phases are identical. The generator
must be modified in the obvious manner to return to the processing phase as long as
there are tasks in the buffer. The determination of the loss and waiting time distribution
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is carried out in the same manner as for case (A), except that there are only two phases
and the terms yrk/Sl(z) are replaced by unity.

4.4. An illustrative example. Now we illustrate our analysis with some machine
calculations. In many problems of practical interest (e.g., [3]), the mean intervisit
interval is much greater than the mean processing time per task; in these applications, it
is often reasonable to employ the approximation E(P)= O. We do so here because it
reduces the state space dimension from Q(S + 2) S to Q S + 1 and hence reduces the
computation cost involved in calculating r. Figures 3 and 4 (respectively 5 and 6) plot
probability of loss (respectively mean waiting time) vs. mean number of arrivals per
intervisit period for a simple Poisson process with E(P) 0, for a deterministic (D) and
exponential (El) intervisit distribution, a holding Ac, the maximum mean completion
rate, constant, because in most applications Ac will be a given design parameter. The
invariant measure r was calculated using EISPACK 11, 2.1.10]. Note that for a fixed
mean number of arrivals per intervisit interval, (a) the loss can be significantly smaller
for the deterministic vs. exponential intervisit distribution, and (b) visiting or polling the
buffer more frequently (smaller S) reduces the probability of buffer overflow. An
additional observation is that as the mean number of arrivals per intervisit interval
becomes infinite, the mean waiting time E(W) approachs Q/Ao Finally, note that as the
mean number of arrivals per intervisit interval approaches zero, the mean waiting time
approaches SE(V)/2E(VI), where Vs is the random variable denoting the intervisit
interval for a given S, E(V1)= 1/Ao As the mean arrival rate approaches infinity, the
mean rate of accepting work is

S
(15) lim Aa,- SE(P)+E(V) -Ac’

since as the arrival rate becomes infinite, there will be S tasks processed each visit.
Roughly speaking, to first order S controls the maximum rate of accepting work (i.e., S
is the overload control mechanism), while controls buffer overflow probability, for
fixed E(P) and E(Vs). Using the algorithms which lead to Figs. 3-6, the designer can
choose a particular (O, S) pair and determine performance over a range of arrival rates.

5. Analysis of the GLAC discipline. There are only two distinguishable cases for
the GLAC discipline"

(A) E(P) < O,
(B) E(P) 0.
The case S does not arise because the largest effective value for S is O. Case

(B) is identical for the GLAC and NGLAC disciplines, so it only remains to discuss
case (A).

5.1. Case (A). The analysis in this section is quite brief, since it is identical with the
overall analysis in the previous section. The only difference in the two cases is that the
generator associated with r,l(t) is different here from that in the previous section.

Throughout this section, we assume O --> S because the S O case is identical with
the S > O case. The sets D and are

(16)

s O
O,= U U (m,n),

n=O

= U U (m,n U U (m,n=S
n=O m=S
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The generator g(m’, n’; m, n) for (m, n), (m’, n’)6 , is

g(O, o; o, o)= Rv(Ol0);
g(m’,min(m’,S);m,O)=Rv(m’-m]m) for0<m’<O, O<=m<-m’;

g(O,S;m,O)= Rv(k[m) for0<_-m<O;

g(m’, S-1; m, S)=Rv(m’-m + l[m) for0<m’<O-1, S-l<rn_-<m’;

(17) g(O-l,S-1;m,S)= Z Rp(k]m) forS<-m;
k =Q-m+l

g(m’,n-1;m,n)=Rp(m’-m+llm for l_-<n_-<S-1, 0<m’<Q-1;

g(Q- 1, n- l; m, n)= ] Rp(k[m)
k Q -m+

g(m’ n",m,n)=0 otherwise.

The analysis is identical with that for the NGLAC case, with the proviso that the
invariant measures associated with the two generators will in general be different (for
S 1 the two are identical).

6. The NGEAC ease. The probability of buffer overflow is the same for the
NGEAC and NGLAC cases, but the waiting time distribution in general is different.
The main reason for studying the NGEAC discipline is that the waiting time of an
accepted task can be significantly smaller at high arrival rates for NGEAC vs. NGLAC
discipline.

6.1. Summary ot results [or the NGEAC case. Before proceeding with the
analysis, we wish to gain insight into the differences in the mean waiting time for an
accepted task in the NGEAC vs. NGLAC buffer discipline; we do so by appealing to
Little’s theorem [15].

We define D to be the random variable denoting the duration of time that a given
cleared task spends in the buffer. Clearly, DNGLAC 0 while DNGEAC -> 0. From Little’s
theorem, since the probability of buffer overflow is the same for the two buffer
disciplines, we see that

(18) LE(DNEAC) / (1 L)E(WNEAC) (1 L)E(WyLAC),

and rearranging, we find that

L
(19) E(WNGEAC)--E(WNGLAC)--

1 L
E(DNGEAC)’

SO J(WNGEAC)<E(WNGLAC). Elementary arguments show that E(DNGEAC)"
O(Q/X), i.e., limx_ E(DAC) 0. To calculate E(DoAC) is as difficult as cal-
culating E/(WNGEAC), apparently. Here we content ourselves with approximating
E(DNGEAC) by Q/A for all A. Figures 7 and 8 plot this approximation versus the mean
number of arrivals per intervisit interval with E(P)= 0 as in Figs. 3, 4, with Xc fixed.
Note that the approximation is much less than E(WNGEAC) for X >> 1, and hence the
actual mean waiting time for the NGEAC buffer discipline may be significantly smaller
than for the NGLAC buffer discipline with all other factors the same. At low arrival
rates (L << 1), it is plausible that the NGEAC and NGLAC buffer disciplines should
have approximately the same mean waiting time.

6.2. Analysis o[ the NGEAC case. We choose to analyze only the case E(P)> 0
and S finite, and leave the other two cases as exercises.
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The definition of u(t) is identical for the NGEAC and NGLAC buffer disciplines,
and its analysis will not be repeated in this section.

Let Pr[W =< t, acceptance Ira, n, x, l] be the equilibrium probability that a task will
be accepted with a waiting time W less than or equal to t, given that immediately after
the arrival epoch the task is in position 1 of a queue of size m with the system in phase n,
and the elapsed time of the current phase is x. It then follows that the transform of the
equilibrium distribution for the waiting time of an accepted task, yw(z), is given by

yw(Z)=(l_L)P,b(1) dx[o + n], where

(20)

Q

o= , Pe(m, O, x) ., Rv(klm)
m=O k=l

rain (k,Q)

Y’, yw(zlmin (m + k, O), O, x, tr(m, O, ], k)),
i=1

S Q., P(m, n, x) , Rp(klm)
n=l m=l k=l

min (k,Q-1)

yw(zlmin (m + k, O), n, x, o-(m, n, ], k))
i=1

where L and Pc(m, n, x) are given in the previous section, and

o-(m, n, L k)

(m+])-max(m+k-Q,O), n=O;O<k<Q;O<-m<-Q;O<j<-k,

(21)
/" n=0;Q<-k;0<=m<=Q;0</’<-Q,
(m+])-max(m+k-Q,O), l<=n<-S;O<k<Q; l<-m<-Q;O<-j<k,
/’+1, l <=n<=S; Q<-k; I <=m<-Q;O<j<-Q-1,

(22) yw(z[m, n, x, l) Jo e-Ztd’ Pr W _-< t, acceptance Im, n, x, l].

In order to find yw(z[m, n, x, l), we define a new function, a a(z[m, n, I), where

(23) a(zlm, n, l) Jo e-Ztdt Pr [W <- t, acceptance [m, n, l]

where Pr W =< t, acceptance [m, n, l] is the conditional probability that a task which is in
position of a queue of size m at the beginning of a phase of type n will be accepted with
the remaining waiting time W less than or equal to t. Elementary considerations lead to
the following explicit formula for yw(z]m, n, x,/):

yw(z[m,n,x,l)
Q-re+l-1

i=0

(24) o-,+-

i=0

f. e- dGe(x + t)/[1 Gp(x)]

Tv(Z, i]x)a(z[min (Q, m + i), S, l- max (0, m + i-Q))

for n =0; O<-m <=O; l<=m,

yp(Z, ilx)a(zlmin (O, m + i)- 1, n 1, l- 1-max (0, rn + i-Q+ 1))

for O<n; l<=m<=Q; l<l<=m,

forO<n; l <- m <=Q; l= l,
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where

and

a(zlm, n,l)

Q-re+l-1

i=0

Q-re+l-2

i=0

Io e RA(I, t)dtGv(x + t)/[1 Gv(x)],vv(z, ilx) -z,

yp(Z, ilx)= Io e-ZtRA(i’ t)dtGp(x + t)/[1- Gp(x)]

for l<_-n <_-S; l<_-m <_-Q; l= 1,

yv(z, i[O)a(zlmin (Q, m + i), S,/-max (0, m + i-Q))

for 1-<n =<S; l_-<m <=Q; 1 <l<-m,

3,P(Z, i[0)a(zlmin (Q, m + i)- 1, n 1, l- 1-max (0, m + i-Q + 1))

for l<-_n<-S;2<-m<-_Q; l<l<-m.

Numerical methods can be employed for approximating the distribution function that is
the inverse of this Laplace-Stieltjes transform, as well as determining moments of the
equilibrium waiting time distribution of an accepted task.

7. Analysis of the GEAC case. The overall analysis of this final case is identical
with that of the NGEAC case, except that the generator there must be replaced by the
generator for the GLAC case. The main reason for including this case is the mean
waiting time using GEAC may be significantly smaller than for GLAC for arrival rates
approaching infinity.
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SOME MONOTONICITY PROPERTIES OF PARTIAL ORDERS*

R. L. GRAHAMS-, A. C. YAO: AND F. F. YAO

Abstract. A fundamental quantity which arises in the sorting of n numbers al, a2.’’", an is Pr (ai <
ai]P), the probability that ai < ai assuming that all linear extensions of the partial order P are equally likely. In
this paper, we establish various properties of Pr (ai < ajlP) and related quantities. In particular, it is shown
that Pr (ai <bjlP’)>=Pr (a<b.iP) if the partial order P consists of two disjoint linearly ordered sets
A ={al<a2<" "<a,,,,},B={bl<b2<" ’<bn} and P’=PU{any relations of the form ak<bt}. These
inequalities have applications in determining the complexity of certain sorting-like computations.

1. Introduction. Many algorithms for sorting n numbers {al, a2," , an} proceed
by using binary comparisons ai" aj to build successively stronger partial orders P on {ai}
until a linear order emerges (see, e.g., Knuth [2]). A fundamental quantity in deciding
the expected efficiency of such algorithms is Pr (ai < ailP), the probability that the result
of ai’a is a < ai when all linear orders consistent with P are equally likely. In this
paper, we prove some intuitive but nontrivial properties of Pr (a < ailP) and related
quantities. These results are important, for example, in establishing the complexity of
selecting the kth largest number [4].

We begin with a motivating example. Suppose that tennis skill can be represented
by a number, so that player x will lose to player y in a tennis match if x < y. Imagine a
contest between two teamsA {a 1, as, , a,,} and B {bl, be, , bn}, where within
each team the players are already ranked as al < as < < am and bl < be < <
If the first match of the contest is between a and bl, what is the probability p that a will
lose? Supposing that the two teams have never met before, it is reasonable to assume
that all relative rankings among players of A LI B are equally likely, provided they are
consistent with a < as < < a,,, and bl < be < < bn. It is easy to show by a simple
calculation that p rn!(m + n). Consider now a different situation when the two teams
did compete before with results al < bh, ai2 < hi:z, a, < bi,; in other words, the team
B players always won. Let p’ be the probability for a < bl assuming that all orderings of
elements in A U B, consistent with the known constraints, are equally likely. One would
certainly expect that p’-> p, as the additional information indicates that the players on
team B are better than those on team A. However, the proof of this does not seem to be
so trivial. The purpose of this paper is to establish several general theorems concerning
such monotone properties.

We now give a proof that p’ -> p in the preceding example. It establishes the result
even when A and B are themselves only partially ordered, provided that al and b are
the unique minimum elements in A and B, respectively. Let us denote by P’ the partial
order obtained by adding the relations {all < bh, ai:z < bj:,..., air < b,;,} to P A (_J B.
We will show that Pr (a l< blP’)/Pr (bl<allP’)>-m/n, from which it follows that
Pr (a < bliP’) >- m/(m + n) Pr (a < bliP).

* Received by the editors October 5, 1979, and in final revised form November 12, 1979.
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author was supported in part by the National Science Foundation under Grant MCS-77-05313.
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251



252 R.L. GRAHAM, A. C. YAO AND F. F. YAO

Consider the sets So of all (m + n 1)!/(m 1)!(n 1)! possible sequences of O’s
and l’s with one element "underlined", where

(i) the sequence is of length rn + n, with m O’s and n l’s,
(ii) the first character is 0,
(iii) one of the l’s is underlined.
Define the set $1 similarly but with first character 1 and with one of the O’s

underlined. We get a 1-1 correspondence between S0 and $1 by complementing both
the first character and the underlined character. If Xo So corresponds to xl $1, then
Xo < x in the partial order < defined on (0, 1)-sequences as follows" Say that x < y if we
can transform x into y by one or more replacements of ’01’ by ’10’; or, equivalently,
x < y if x and y have the same number of O’s and for all k, the position of the kth 0 of x is
no further to the right than the kth 0 of y. List all the pairs of the correspondence as
X0<-’>X1, Y0 <--> Yl,

For a partial order O on a set X, we say that a 1-1 mapping A"X --> { 1, 2, , n } is a
linear extension of (2 if h (x) < h (y) whenever x < y in (2. Let h, be a linear extension of
P’ which places elements of A into the positions where x has a 0, and elements of B into
the positions where x has a 1. The correspondence x0 <---> x naturally associates to hxx a
linear extension h,o of P’ in which the relative order of the ai and also the relative order
of the bi are both unchanged. We therefore obtain a list of inequalities N(xI)
N(xo), N(yl)_-< N(y0), , where N(xi) denotes the number of all linear extensions
defined above. (For some xi, N(xi) may be 0.) Summing all the inequalities gives

m (number of linear extensions of P’ LI (bl < a 1)

<_- n (number of linear extensions of P’LI (ax < bx),

which is what we wanted to show.
The preceding example suggests the following conjecture. Let A=

{al, a2, am}, B {bx, b2, bn}, X A tA B and (P, <) be a partial order on X
which contains no relation of the form bi < ai or a < bi.

Suppose E E1 (_l t.J E and E’ E U (_l E’ where E and E} are events
of the form (ai < bi) ^ (ai < bi) ^ ^ (ai, < bi,).

Conjecture. Assuming all linear extensions of P are equally likely, the events E and
E’ are mutually favorable, i.e.,

Pr (EIP) Pr (E’IP)=< Pr (EE’]P).
In this paper, we shall prove several results related to this conjecture, which in

particular imply the conjecture for the case when both A and B are linearly ordered
under P (see Corollary 2 to Theorem 1). The general conjecture, however, remains
unresolved.

2. A monotonieity theorem. In this section, we shall prove a theorem which
implies an important special case of the conjecture, namely, the case when A and B are
each linearly ordered under P. In fact, in this case the conjecture is true even if P
includes relations of both of the types a < bi and bk < al.

LetA --{al <a2< < a,,,}.and B --{bl <b2< <bn} be linear orders. Let A
denote the set of all linear extensions of P A (.J B. A cross-relation between A and B is
a set Z

_
(A x B) U (B x A), interpreted as a set of comparisons ai < bj and bk < at. For a

cross-relation Z, we define {h A" , (x) < (y) for all (x, y) Z}.
It will be convenient to represent each as a lattice path - in 7/2 starting from

the origin and terminating at the point (n, m) (see Fig. 2). The interpretation is as
follows: As we step along starting from (0, 0), if the kth step increases the A (or B)
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(o,o)

o(n,m)

2 3 4 B

FIG.

coordinate from i- 1 to then A maps ai (or bi, respectively) to k. Thus, in Fig. 1,
A (a 1) 1, A (bl) 2, A (b2) 3, A (a2) 4, etc.

Let us consider the geometrical implications of a constraint of the form h (ai)<
h (bi). By definition, as we go along A from (0, 0) to (n, m), A must achieve an A-value of
before it achieves a B-value of j. But this means exactly that A must not pass through

the (closed) vertical line segment joining (j, i) to (j, 0). In general, a set X c_ A x B
represents a set of vertical "barriers" of this type which, for any A e X, the correspond-
ing lattice path h is prohibited from crossing (Fig. 2). Of course, a set Y B xA
corresponds to a set of horizontal barriers in a similar way, with (bi, ai)e Y being
represented by the line segment joining (0, i) to (/’, i). We will also refer to such vertical
and horizontal barriers as x-barriers and y-barriers. For a cross-relation Z_
(A x B) t.J (B x A), we define Zx Z (A x B) and Zy Z f) (B x A). Thus Zx and
Zy are the vertical and the horizontal barriers determined b’y Z, respectively.

Let Z and W be two cross-relations between A and B. We say Z is more
A-selective than W if both Wx

_
Zx and Zy

_
Wy. (For example, a set of x-barriers is

(0, O) (.i, O) B

FIG. 2. A vertical barrier corresponding to the condition h(ai) < h(bi).
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always more A-selective than a set of y-barriers.) Intuitively, one would think that in
this case linear extensions of Z should have a greater probability for ranking A’s
elements below B’s. Let Z’ and W’ be another pair of cross-relations with Z’ being
more A-selective than W’. The basic result we prove is the following

THEOREM 1. 12 n 2’1. n ->- 12’n 12 n
COROLLARY 1. Pr (Z’lZ)/Pr (W’lZ)->Pr (Z’lW)/Pr (W’l W) when the denomin-

ators are not zero.
Corollary 1 follows immediately from Theorem 1. It asserts that the ratio

Pr (Z’)/Pr (W’) is larger when conditioned on Z than when conditioned on W.
COROLLARY 2. Pr (VIZ) >- Pr (V[ W) for any V with Vy

_
Zv. In particular,

Pr (XIZ) >= Pr (XI W) for any X
_
A B.

This follows from Corollary 1 by letting Z’= V, and choosing W’ so that W*
and W’y Vv.

Proofof Theorem 1. We will construct a 1 1 mapping of (’f3 I) (2 f) "fly") into
(2 (3 2’) (if’ f3 if"). Suppose 2’ f3 and ’ Z f3 if/’. Let ,, ,’ be the cor-
responding lattice paths, and let {sl, s2, , Sr} be the set of lattice points common to
and A ’.

We assume that the si are labeled so that s (0, 0), sr (n, m), and as we move
along A from s to st, we reach si before si+l. Consider the pair of path segments
&(si, si+l) (defined to be the portion of between (and including) si and si+l) and
A’(si, Si+l). We will call the closed region bounded by these two segments an olive,
provided that the region is nondegenerate (i.e., ,(si, si+l) and ,’(si, si+l) do not
coincide). Let O1, O2, , Ot be the set of olives formed by & and &’. The upper path
segment bounding Ok we denote by O the lower we denote by O. Note that, given
U ’, the path can be determined by specifying which Oi contribute O to and

consequently, which Oi contribute O}- to .
We want to show that for each ’(3 with ,’ f3 lye", we can associate a

unique/2 f3 ’ with ’ lf f3 lf’. In fact, t2 and ’ will be constructed from the path
segments of A- and ’ so that tO/Y’= ,U A-’. The rule for obtaining (and consequently
’) is as follows"

Let/2 be the same as except that whenever an olive Ok is
intersected by a barrier of Z or W, we let O+

In the example illustrated in Fig. 3, 02 is penetrated (from below) by an x-barrier
in Z-W, and 04 is penetrated (from the left) by a y-barrier in W-Z. Note that always
contains the lower boundaries O of the penetrated olives Ok. To obtain /2, we
substitute O+ +

2, 04 for O, 0-2 in the path
To show that/2 (3 ’ and that the complementary path/2’ if" (q I’ we need

only verify that/2 and/2’ clear their respective sets of barriers in Z U Z’ and W U W’.
Suppose Ok is penetrated (from below) by an x-barrier in Z-W, such as 02 in

Fig. 3 Then contains O and ’ contains O+
k. We want to argue that O must clear Z

and Z’, while O{ must clear W and W’. First of all, if O +k clears W’ then it clears Wy’
and hence Zv. Secondly, O+ ’.k clears Zc since O{ clears Z It follows that O clears
both Z and Z’ as desired. The fact that O clears W and W’ can be shown in the same
way.

Similarly, if Ok is penetrated by a y-barrier in W-Z, such as 04 in Fig. 3, then
assigning O to/2 and O to/2’, will enable/2,/2’, to clear their respective barriers.

The mapping (A, , ’) - (/2,/2’) is 1 1, since the path
by substituting O{ for O in those olives Ok penetrated by a barrier of Z or W. This
completes the proof of Theorem 1.
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W-Z

o3

02

Z-W

FIG. 3. Olives which are penetrated by an x-barrier in Z-Wand a y-barrier in W-Z.

3. Extension to disjunctions of partial orders. In this section, we will consider pairs
of cross relations (Z, W) on A {al < a2 < < a,,} and B {bl < b2 < < bn},
when Z consists of just x-barriers and W consists of just y-barriers. However, we now
incorporate the concept of a disjunction of a set of cross-relations. For a disjunction

U iZi, where Zi c_ (A x B) 1.1 (B x A), we let2 denote f’l i2i. Suppose U iXi and
0 U Y where Xi A x B and Y

_
B x A, with ’= UiX and 0,= U Y defined

similarly. The analogue2 of Theorem 1 is the following
THEOREM 2. Id n Id Id ’n o ’1.
As in the case of Theorem 1, here we can also derive as corollaries that

Pr (l’)/Pr (1’) >- Pr (l’)/Pr (1’), that is, the ratio Pr (/Pr 0) is larger when
conditioned on ’ than when conditioned on . For the special case that ’= ,
we obtain

(1) Pr (1’) _-> Pr ().
Proof of Theorem 2. A,s in the poof of Theorem 1, we will show that for each

i o 0 with i’ ’ 0, we can associate a unique /2 ’ with t2 0 ,.
Furthermore,/2 and/2’, will be constructed from and i’ by interchanging certain path
segments. We may assume without loss of generality that no Xi, X, Y., or Y; have a
barrier which penetrates both i and i’.

Let O1, 02, , Ot be the set of olives formed by h and h’. Thus h corresponds to
a subset P

_
{ 1, 2, , t} T such that contains O iff k P, and with this association

h’ corresponds to the subset O T P pc. For a given olive Ok, there may be various
barriers which intersect it. For each Xi, let Gi denote the set {k T: a barrier from Xi
intersects Ok}. Similarly, define Gi for Xi, Hi for Yi, and Hi for gi. Observe that

X iff X e 3i for some i,

iff P
_
Gi for some i,

iff P []cr ---upper ideal in 2r generated by 3= {G1, G2, },

where the meaning of the last statement is as follows.

2 We could, of course, write this as If’l ’1 [0 f’l 0,1 __> ,fq o1 (q 0, to make it resemble Theorem 1
more.
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DEFINITION. For a finite set T, let 27‘ denote the collection of all subsets of T
partially ordered by set inclusion (i.e., C <D iff C

_
D). An upper ideal in 27‘ is a subset

0//_ 27‘ such that if S then any element S’ higher in the partial order (i.e., S c_ S’)
must also be in a//. Similarly, a lower ideal

_
27‘ has the property that if S and

S’_ S, then S’ .
As above, we have

,( 0 iff , for some/’,

iff P
_
H for some ,

if[ P [c]t --= lower ideal in 27‘ generated by c {H, H, }.

Now, what we are tringto show is that for each rl 0 with ’ ’ rl 0,, we can
associate a unique/2 rl ’ with/2’ 0 rl 0,. Translating this into the language of
ideals, we want"

For each P e []u fq [c]L with pc e [’]u [’c]t, there can
be associated a unique Q []cr f’l [’]u with QC [C]L f’l [,c].

We claim that, in fact, we will be able to find such a mapping for arbitrary upper ideals
07/, a//, and lower ideals , ’ in 27". In other words, there is a 1- 1 mapping (P, pc)
(Q, QC) such that if P e q/f-I and pc ql’ f-) ’ then Q q/f’l a//, and QC f-I ’.
Further, we will restrict the mapping so that

(2) pc_o.

If (2) holds then

Thus, we want

P O e ?l

pc s’ QC .’

since 07/is an upper ideal,

since ’ is a lower ideal.

Pef-l Qea//’

pc ql’ fl S’ QC with P Q.

We claim even further that we can find the required mapping for the more general
domain

P
pc ql Q L withPc__Q.

But notice that if ’ is an upper ideal then a//,c is a lower ideal. Thus, the condition

P Qea//’

pc0//, QC withP_Q

becomes

P f-I ?l’c =- 7/F QC 7" withPc_O,

where o, being the intersection of two lower ideals, is also a lower ideal. Of course,

pc_Q if[ pNQC=.
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Thus, the theorem will be proved if we show the following result, which is actually of
independent interest"

For an arbitrary lower ideal in 2, there is always a

permutation 7r" Y/V-> o/g, such that for all w Y/V, w (q 7r(w) .
For each x e 7#, let d(x) denote the set {w 7/V’x fq w }. By Hall’s theorem [1],

it is enough to show that

d(x)l

for all 6e_ 7d/’. In fact, for 6e_ o//,, let de(x) denote d(x) [6]L. What we will actually
show is the stronger assertion

(3) U dze(x)l ->

for any 5e_ 27. So, suppose ow {S1,""", Sk} with Si
_

T. Thus,

y U dse(x) iff y e [J)]L and y f’l x for some x ,
iff y

_
Si for some and y fl Sj for some j,

iff y
___
S- S. for some i, j.

Therefore, if we can in fact show that there are always at least k different sets of the form
Si-S then (3) will follow. However, this is exactly the result of Marica and Sch6nheim
[3]. Hence (3) holds and the theorem follows. []

Theorem 2 can be generalized slightly by allowing the partial order (P, <)
underlying, 0, ,, , to be more than just A U B; i.e., P may itself include relations of
the form ai < b and bk < al. In this case, all such relations can also be interpreted as
barriers which cannot be crossed by a linear extension t of P. Since both paths , and ’avoid all these barriers, then so will any path /2,/2’ constructed from their path
segments.

4. Concluding remarks. We should point out that if we weaken the hypotheses on
the structure of (P, <) even slightly, then (1) can fail. To see this, consider the following
partial order (P, <) on the set {a l, a2, bl, b2, c} as shown in Fig. 4.

a2 b2

al b

FIG. 4. An example violating (1).

Choose X Xl {(1, 1)}, X’=X {(2, 2)}, and all other Xg, XI, Y/, Y; to be .
An easy enumeration yields

IAI 8, 121 3 12’1, 12 2’1
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Thus,

Pr (.’1’) 1/2 < - Pr (’)
which violates (1).

We should also note (as pointed out by D. Kleitman and J. Shearer) that the
conjecture is not true if we allow P to have even one relation of the form ai < b as the
following example shows.

Let

a={al, a2}, B={bl, b2}, P={al<bl},

E={alKb2} and E’={azKba}.

A simple calculation shows that
4Pr (E]P) Pr (E’[P) . - >1 Pr (EE’IP).

Note added in proof. V. Chvital has pointed out that the fact we use concerning
mappings of lower ideals seems to be due to Erd6s, Herzog and Sch6nheim in An
extremal problem on the set of noncoprime divisors of a number, Israel J. Math., (1970),
pp. 408-412. Very recently, L. A. Shepp has managed to settle the conjecture in the
affirmative by an ingenious application of the FKG inequalities.
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A CHARACTERIZATION OF WEIGHTED ARITHMETIC MEANS*

J. ACZIL AND C. WAGNER:

Abstract. We prove, among other things, that the set of weighted arithmetic means is identical with the
set of functions f: R R satisfying

(i) min {xi} <= f(xl, x2, ", xn) <= max {xi}
and

(ii) for k =2, 3" Yi=l xii=s (j= 1,2,’.. ,n)::r.,ik=lf(Xil, Xi2, ,Xin)=S.

We call a function f: R --> R an averaging function if

(1) min {xj} -<_ f(x 1, x2," xn) _-< max {xj},

and a weighted arithmetic mean if f(xl, x2, , xn) wlxl + w2x2 +" + wx., where
0_<- wi<- 1 and Wx+W2+" "+w.- 1. It is easy to check that among the familiar
averaging functions (weighted arithmetic, geometric, and harmonic means, weighted
medians) weighted arithmetic means uniquely enjoy, for all k ->_ 1, what we shall call the
k-allocation property:

For all s R, if (Xi]) is a k n matrix with Xxj -[" X2j --" + Xkj S for 1 --< j --< n, then
/(x11, xz, x,) +f(xzl, Xzz, xz,) + +f(x,, xt,:z, xk,) s.

We prove in this note that the k-allocation property assumed only for k 2 and
k 3, characterizes weighted arithmetic means in the set of all averaging functions. In
fact, we obtain the following more general result’

THEOREM. The function f: R - R satisfies the k-allocation property for k 2 and
k 3 and is continuous at a point or bounded from one side on an (n-dimensional)
interval or fust on a set of positive measure if and only if there exist real numbers
Wl, w2, , w with wa + w2 +" + w, 1 such that f(Xl, x2, , xn)
WIX1-[" W2X2 "1- "q- WnXn.

Proof. To postulate the k-allocation property for k 2, 3 is equivalent to assuming
that, for all s R,

(2) /(Xl, x2, Xn)-["/(S--Xl, S --X2, S --Xn) S

and

(3) f(Xl, X2," ,Xn)-["f(yl, Y2,"" ", yn)+f(S--Xl--yl, S--X2--Y2," ,S--X,--yn)=S.

Setting s x in (2), and writing

(4) -f(0, u2,’",

we have

(5) /(Xl, X2, Xn)-" Xl %" g(Xl--X2, Xl--Xn).

Setting s=xl+yl in (3), and writing ui=x-xi and vi=y-yi (2-<]-<-n), it
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follows from (4) and (5) that

g(u, ., u,) + g(vl, ", v,)- g(u + v, ., u, + Vh) O,

(6) g(u + v, ., u, + v,) g(u, ., u,) + g(v, ., v,).

By [2] and [1, pp. 215-16 and p. 32], the general solution of (6), continuous at a
point or bounded from one side on an interval or on a set of positive measure, is

(7) g(u2, Un) a2u2 +" + a,,u,,.

Hence the general solution of (2) and (3), under these same weak regularity conditions,
is, by (5),

(8)
f(Xl, X2,’" ", Xn) (1 + a2 +’ + an)X1- a2x2

WIX1 + W2X2 + t. WnXn,

with Wl + w2 +" + wn 1, as asserted. Note that, in (8), one or more of the numbers wj
may be negative.

Now if f is assumed to be an averaging function, the aforementioned boundedness
conditions are clearly satisfied, and setting x. 1 and xk 0 for k /" yields 0 -< w -< 1.
Thus we have as a corollary to the above theorem the following characterization of
weighted arithmetic means"

COROLLARY. Letf: R R. Then f is a weighted arithmetic mean if and only iff is
an averaging function satisfying the k-allocation property for k 2 and k 3.

Remark 1. In the statement of the above corollary the averaging function condition
(1) may be replaced by a considerably weaker supposition. It is clearly sufficient, for
example, that there exist some c >0 (no matter how small) such that O<-xi<-c
(/" 1, 2," , n) implies 0 _-< f(Xl, X2," Xn).

Remark 2. The foregoing theorems arose in connection with a study of arithmetic
averaging as a method of amalgamating a set of indivii:lual opinions as to the most
appropriate values of some sequence of decision variables. (See [3].)

Suppose that there are k decision variables and n individuals and we denote by
the opinion of individual/" as to the most appropriate value of variable i. In many of
these problems (such as the allocation of a fixed sum of money among k competing
projects) the column sums of the matrix (xii) are required to have a common value s. If a
group adopts as the consensual value of variable the weighted arithmetic average
i WIXi1-1- WEXi2 -"" "-1- WnXin the consensual values have the highly desirable property
1%" 2-’" "l- k S. The above results assert that weighted arithmetic means are the
only averaging functions with this property.
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A CANONICAL REPRESENTATION OF SIMPLE
PLANT LOCATION PROBLEMS AND ITS APPLICATIONS*

GERARD CORNUEJOLSt, GEORGE L. NEMHAUSER, AND LAURENCE A. WOLSEY{}

Abstract. We consider a location problem whose mathematical formulation is maxs{v(S): S _N,
ISI K} where v(S) v(QS) +ixmaxjs cij, C (cii) is a real matrix with row index set I {1,. ., m} and
column index set N {1,. , n} and K <_-n is a positive integer. A set function of the form v(S) is called a
simple location function. We give a constructive proof that a set function w is a simple location function if and
only if it can be represented in the canonical form w(S) rv+TnSO rT with rT -> 0 for all Q5 c T c N. The
proof is also a polynomial algorithm for reducing the matrix C to the canonical form. We give two applications
of this canonical representation. The first is that a large class of algorithms for the location problem need to
enumerate all but of the feasible solutions in order to find one of the /th best solutions. The second
application is the derivation of new integer programming formulations of the location problem. Some of these
formulations seem to be easier to solve than the standard one. We conclude the paper with two alternate
representations of set functions and, in each case, characterize the nondecreasing, submodular and simple
location functions.

1. Introduction. In this paper we continue the study of uncapacitated location
problems using a canonical representation of their objective functions. Related work is
contained in [1], [2], [3], [7], [8], [9].

Let C (cij) be a real matrix with column index set N {1, ., n} and row index
set I {1,..., m}, For each S

_
N define

(1.1) v(S)= v(QS)+ max cij,
iI ]S

where v() is any real number. Set functions of the form (1.1) will be called simple
location ]’unctions. It is easily shown that simple location functions are

(a) nondecreasing: v(S) <-_ v(T), V S
_
T N whenever v() -< v({i}) for all N

and
(b) submodular: v(S) + v(T) >-_ v(S t_J T) + v(s fq T), VS, T

_
N whenever v() -<

v({i}) + v({1"})-v({i,/’}) for all i, ] N.
The well-known simple K-plant location problem is

(LK) max {v(S): IsI- K},
S_N

where N is a set of potential facility locations, I is a set of clients, cii is the profit obtained
by serving client from facility ], K is the number of facilities to be chosen, and v(S),
given by (1.1), is the net profit derived from the subset of facilities S. Problem (LK) can
have as its input any positive integers n -> K and m and any rn x n real matrix C.

A general set function w can be expressed in the canonical form

(1.2) w(S)= re+ rr VS _N.
TCIS#Q5
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The major part of this paper is concerned with the representation of simple location
functions in this canonical form. In 2 we give a constructive proof of the fact that w is a
simple location function if and only if rr >= 0, c T c N. The proof is also an algorithm
for reducing the matrix C of (1.1) to a canonical form.

Sections 3-5 present applications of the canonical representation. Let z be a
nondecreasing set function that satisfies: if for any S c N and j: S, z(S U{j})= z(S),
then z (T U {j}) z (T) ’qT S. In 3 we give a constructive proof of a result of Kreps
[6], which states that a set function z that satisfies the above condition is "order
equivalent" to some simple location function v in the sense that v(S) >= v(T) if and only
if z(S) >= z(T), V $, T

_
N.

In 4 we use this result on order equivalence to strengthen an earlier result on
problem (L:). We show that algorithms for (L:) that only have access to the values v (S)
need to enumerate all but of the feasible solutions in order to guarantee finding one of
the/th best solutions.

In 5 we give new integer programming formulations of (L:). The linear pro-
gramming relaxations of some of these integer programs may, because of their
dimensions, have computational advantages.

In 6 we introduce two other representations of general set functions and establish
their relationships to (1.2). In particular, we characterize the nondecreasing sub-
modular functions and the simple location functions for each representation.

2. A canonical representation of simple location functions. A simple location
function v is defined by (1.1) from a matrix C and v (). However, matrix C cannot be
determined from v. In this section we show constructively that a matrix of a very simple
form, which we call the canonical matrix, can be uniquely determined from C. We say
that a row of a matrix is in canonical form if

(a) it has a nonzero element,
(b) all of the nonzero elements are equal, and
(c) if it has a negative element then it has no zero elements.

A matrix is in canonical form if all of its rows are, and if
(d) for all T

__
N there is at most one row with nonzero elements for the subset of

columns T and zero elements for N- T.
Note that each row of a canonical matrix R can be indexed by the set c T c_ N of
nonzero entries having value rT rT, j T and rTi O, j N- T. Thus for all S

___
N,

v(S)=r+ 2 maxrr.=r+ 2 rr,
3T_N jS

where re v ().
The construction of a canonical matrix is based upon a simple procedure that is

applied iteratively to each nonzero row that is not in canonical form. An application of
the procedure replaces a row by two rows, at least one of which is in canonical form.
Below we describe the procedure and prove its validity in a slightly more general setting
than is needed now. We can assume that zero rows are deleted before the procedure is
applied.

Canonical Reduction Procedure. Suppose row of C is not in canonical form and,
for simplicity of notation, ci _-> cm/, j 1, ., n 1. Let cp be the nonzero element of
largest index. Replace row by the two rows i and i2 with

j=l,...,p,
ci O, j > p,

Ci2 Cq- Cii, ] 1, ", n.
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Examples. (2 0 -1) is replaced by (-1 -1 -1 and (3 1 0); (2 1 0) is
replaced by(1 1 0) and(1 0 0).

Row il is in canonical form. In row i2 the index of the smallest nonzero element has
been reduced by at least one. Rows ik, k 1, 2, have the property that cikj

j=l,..., n-1.
PROPOSITION 2.1. Let

and

f(y max { Y. ciix," Y
jN jN

f’(y) max Y. E CijXikj" E Xikj 1, 0 Xik Yj, k 1, 2, j
k=l jN jN

where yi=>0, j N and Y4y>_- 1. Then f(y) f’(y).
Proof. The fact that sequences {C,}i,N and {Cikj}jN, k 1, 2, are nonincreasing

implies xii xili xi2j /j N for any y that satisfies Y’,i,N yi => 1. The result then follows
from c0 ci,. + ci2. /j N. fi

THEOREM 2.1. Given an m x n matrix C, there exists uniquely (up to row permu-
tations) an m’ x n matrix R with rows indexed by ( T N such that

ifj T,
(a) r.= 0 ifj: T,

(b) rTO, TN,

(c) m’-<min(mn-m+l,2n-l),

(d) v(S) r+ Y max c/ r;+ Y max rTi r+ Y rT VS N.
iI jS f2TGN jS

Proof. Applying the canonical reduction procedure at most n times to each of the m
rows of C we obtain a unique matrix R’ with each row satisfying (a). Also note that the
procedure only produces a row with negative elements when p n and in this case
T N. Therefore (b) holds. Finally recombining rows of R’ which have nonzero entries
in identical sets of columns, in particular the m possible cases when T N, gives a
unique matrix R satisfying (c). Property (d) follows from the repeated application of
Proposition 2.1 with y yS, the characteristic vector of S. [-1

Theorem 2.1 implies
COROLLARY 2.1. z(S) r+ETS# rT is a simple location function if and only if

rT >-- O /f c T c N.

3. The order structure of simple location functions.
DEFINITION. Two set functions wl and w that satisfy w(S) >- wl(T) if and only if

w(S) >- w.(T) /S, T
_
N are order equivalent.

Note that this definition implies that wl(S)> Wl(T) when we(S)> w(T) and
wl(S) wl(T) when w(S)= we(T).

Let z be a nondecreasing set function that satisfies the following condition"

if z(S [.J {]}) z(S) for some S N and ]g S, then

z (T [.J {/}) z (T) for all T S.

Strictly increasing functions and nondecreasing submodular functions are classes of set
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functions that satisfy (3.1).
In a very different context and by a quite different technique, the following

theorem has been proved by Kreps [6].
THEOREM 3.1. IfZ is a nondecreasing setfunction and satisfies condition (3.1), then

z is order equivalent to a simple location function.
Proof. Given a z that is nondecreasing and satisfies (3.1), we will construct

with rT- _-> 0, VT
_
N so that v defined by v(S) r+,Tcs rT- is order equivalent to z.

Define the closure of S to be S S L.J {f S" z (S L.J {/’}) z (S)}. S is said to be closed
if S S; sets that are not closed are called open. Suppose that S is open and j S- S.
Then if T D S and j T, (3.1) implies j T T so that T is open. Now, if/" S S and v
exists, we have

v(S U {/}) v(S) ., rT"u{i} , r(N-7)L{j} O.
T_N-S-{j} T_S

Thus from nonnegativity we obtain r(N_u{j}=OVT_S. Hence rc_s=O and
rn_ 0 for precisely those sets T S, j T, which (3.1) implies are open. It remains to
compute the values of rn-s for all closed sets S. This is done by the following
procedure.

Initialization: We begin by ordering the closed sets N S, $1, ., S so that
0z(S z(S )= z(S-a)z(S’). Then we compute the {rn-s,} recursively in the

order 0, 1, ., t. Define r ru_so 0 and v(N)= 2t- 1. Set k 1.
Step k" Suppose ru-s,, 0,. , k- 1 have been fixed with the properties

(i) rn-s, 0, =0,. ., k- 1,
k-1

(ii) rn-s, 2-a- 1 and
i=0

(iii) v(S) v(N)- ru_, 0,. ., k 1 satisfy the order equivalence
TS

property.

(Note that v(Sg) is well defined in (iii). To see this consider any T S i. Since S is closed,
either z(T) > z(S) or T S i. Consequently, either T is not closed or T S for some

i. In all cases the value of rn_ has been fixed.) Suppose that we require v(Sk-) >
v(Sk) v(sk+), where ] is defined so that v(Sk*j) > v(Sg+j+l) or k +] t.

To simplify notation define rn_s.,, =0, j. Choose {/}ii:0 to satisfy

E’ 2+ 2-=0 ? and the j equations

(3.2) o-r E r- E r, i= 1,..., j.
TN-S TN-S

The coefficient matrix of these j+ 1 equations is nonsingular so there is a unique
solution. We will show that the solution yields"

k+i
(a) E ru-s, 2"+- 1;

i=0

(b) v(S) v(S+);
(c) v(S)< v(S"-);
(d) r-s,+, >-0, 0,. ., j.

The proof is essentially independent of 2; it only uses the trivial "if" part of Corollary 2.1.
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Proof of (a).
k+j k-1

2 rN-S’ 2 rN-S’ + 2 fi 2k-l- 1 + 2k+j- 2k-1 2k+- 1.
=0 i=0 i=0

Proof of (b). Equation (3.2) implies

v(N)- v(Sk) Z rT Y’, rT v(N) v(sk+i), 1 j.
TN-S TN-Sk+i

Proof of (c).

E e e-(e/l_ ) e- E e => 2-(j + ),
=0 i=0

which implies that there exists such that t -> 2k-. Thus

k-1

v(Sk) v(Sk+t) v(N)- Y’, rT <- v(N)-2k- < v(N)- ,, rN_S <--_ v(sk-1).
T_N-Sk+t i=0

k-1 k-1Proof of (d). =o rN-S 2 1 and (3.1) imply --<_ 2k- 1, i, p 0, .,
p. Furthermore, as shown in (c), there exists such that t>2k-1. Thus i-->

2- -(2-1 1) _-> 1 for all 0, ., j.
The recursive procedure is continued with k replaced by k +

4. Black box algorithms Ior the simple K-plant location problem. Here we use
Theorem 3.1 to obtain a result about a class of algorithms for the optimization problem
(LK). We observe first that any algorithm (approximate or exact) in which all decisions are
based only on the relative values of pairs of subsets will behave identically whether
applied to the problem

(OK) max {z (S)" ISI K},
SN

where z is a nondecreasing set function that satisfies the condition (3.1), or to the
location problem (LK) with v order equivalent to z. We call these ordinal algorithms. In
particular, certain heuristics for (LK) and (QK) such as "greedy" and "interchange" 1 are
ordinal algorithms. We define a black-box algorithm (see [8]) to be one in which all
decisions are based only on function values. Evidently ordinal algorithms are a subset of
black-box algorithms.

THEOREM 4.1. Every black-box algorithm for (LK) that guarantees to find one ofthe
lth-best solutions, where is any positive integer, needs to enumerate all but of the feasible
solutions.

Proof. Let z (S) K + 1 for all the sets S
_
N of cardinality larger than K and for

of the sets of cardinality K; z(S)= ISI for all the other sets S
_
N. Obviously z is

nondecreasing and satisfies condition (3.1). Therefore, by Theorem 3.1, it is order
equivalent to a location function v. Since v(S)= v(S2)if IS11 IS217 K, no information
can be gained from the values of v (S) if [SI # K. On sets of size Ka black-box algorithm
will have the same behavior for v and z. Consider z. To find one of the sets of size K
with z (S) K + 1 one needs to enumerate all but of the sets of cardinality K since, if
(l + 1) sets are omitted and it turns out that the value of all the evaluated sets is K, then it
is impossible to determine which of the (l + 1) remaining sets have value K + 1. [3

5. Integer programming formulations of the simple K-plant location problem and
related linear programs. The most familiar and widely cited integer linear programming
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formulation of the simple K-plant location problem is

(5.1) max 2 2 cijxib
iI jN

(5.2) 2 Xij 1 Vi I,
/N

(5.3) Xii yi <= O
(5.4) Z Yi K,

jN

(5.5) Xi] >- 0 Vi I, j N,

(5.6) Yi {0, 1} Vj N,

where Yi 1 means that facility ] is chosen. The yi’s are the strategic variables since
given an $

_
N and its characteristic vector yS (y 1, f S and y 0, otherwise) an

optimal set of xq’s is given for all e I by

10 for some j S such that c0 max Cik,
S kSx ii

otherwise.

In this formulation, and in the ones to follow, upper bounds on the yj’s are unnecessary
and we obtain linear programming relaxations by replacing (5.6) by

(5.7) y.=>0 VjN.

This integer program and its linear programming relaxation have mn+ n variables
and mn + m + 1 constraints. To solve this linear program or its dual with a general
simplex routine requires basis matrices of size larger than mn ran.

The objective of this section is to give several new integer programming formula-
tions and linear programming relaxations. Some of these relaxations may have compu-
tational advantages. In particular, one of the linear programs has a dual with only n
constraints other than upper bounds and nonnegativity, and another has only m + n
variables. Each of the linear programs has the same optimal value as the linear program
(5.1)-(5.5), (5.7).3

Consider the K-plant location problem in the canonical from given by matrix R. R
has n columns and no more than m(n- 1)+ 1 rows. All nonzero elements in row T
equal rw and rw > 0 except for T- N. Let F- {T c N’rw > 0}. The problem can be
stated as

(5.8) max rTXTb
TFjT

(5.9) x. 1 vT F,
jN

2 Schrage [10] treats (5.3) as variable upper bound constraints and therefore can work with "basis"
matrices of size (m / 1) (m / 1). This specialized approach is not available in general simplex routines. See
Guignard and Spielberg [4] for the results of applying various decomposition schemes to [(5.1)-(5.6)].

Size is not, of course, the only consideration. Replacing (5.3) by the n constraints ixxii -< myiV/’ N
yields another equivalent integer programming formulation. Although the linear programming relaxation of
this integer program is relatively easy to solve, the bounds it produces are weak. Consequently, this linear
program is not as useful as [(5.1)-(5.5), (5.7)] in a branch-and-bound algorithm. A more general discussion of
equivalent integer programs is given by Williams [11].
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(5.10) XTi--yi<=O VT6F, j6N,

(5.12) XTi>=O VT6F, j6N,

(5.13) Yi {0, 1} Vj N,

where we have dropped the constant ry from the objective function.
From 2 and, in particular, Proposition 2.1, it follows that the integer programs

(5:1)-(5.6) and (5.8)-(5.13) are equivalent and their respective linear programming
relaxations are also equivalent.

THEOREM 5.1. The integer program (5.1)-(5.6) and its linear programming
relaxation are equivalent, respectively, to

(5.14) max Y. rTxT,
TF

(5.15) xT- Y y._-<O VTF,
jeT

(5.16) Y Yi K,
ieN

(5.17) 0_-<xT_-< 1 VT6F,

(5.18) yi{0, 1} VjN,

and its linear programming relaxation.

Proof. Let y be a nonnegative n-vector and g(y)=maXx, YTvYiTrTxTi, subject
to (5.9), (5.10) and (5.12). Then g(y)= Tvrr min (YiTYi, 1). Similarly, define h(y)
maxx. YTFrrXr, subject to (5.15) and (5.17). Then h(y)= YrvrT min (YiTYi, 1)=
g(y).

The theorem follows since the constraints on y are the same for the two integer
programs, and also for their linear programming relaxations.

Two more equivalent integer programs are obtained from (5.14)-(5.18) by the
following changes in variables: (i) "ITT--2jT Yi--XT and (ii) TIT rTXT.

If follows from the proof of Theorem 5.1 that the linear programming relaxations
of these integer programs are also equivalent to (5.1)-(5.5), (5.7). We will now show
that the problems obtained from these transformations have some attractive compu-
tational features.

First consider (i). When (i) is substituted into (5.14), (5.15) and (5.17) the
constraints 7rT 2jeT Yi obtained from XT 0 can be eliminated since they are automa-
tically satisfied by any optimal solution. Now replacing (5.18) by (5.7) and taking the
dual we obtain

(5.19) min biT -[- Kw,
TF

(5.20) Z uT+ w >= ., rT Vj N,
T{j} T{j}

(5.21) O=UT=rT VTF.

This linear program may have computational advantages because it only has n con-
straints other than upper bands and at most m (n 1)+ 1 variables.
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Now consider (ii)" Substituting (ii) into (5.15) yields

(5.22) r/r-rr yj_-<0 VTeF,
jeT

and from xr <_- 1 we obtain

(5.23) r/r <_- rr VT e F.

In many instances some of the constraints of (5.22) and (5.23) can be aggregated.
Suppose that the canonical reduction procedure of 2 was applied to row of matrix C.
Row is then replaced by p _-< n- 1 rows, indexed by St, 1, ., p. The tth new row has
value rs, > 0 for/" e St and value 0, otherwise. As above, a row with all nonzero elements
can be suppressed. The critical observation is that we can assume So S,-1

SlN.
pWe are interested in the case p _-> 2. Let / t= v/s, and consider the constraints

(5.24) rl <- Y rs, + rsr y k O, ", p.
t=l t=k+l

The kth constraint in (5.24) is the sum of (5 23) for the sets {St} kt= and (5.22) for the sets
{St}Pt=k+. Thus replacing the 2p constraints (5.22) and (5.23) and p variables {ns,}t=l
obtained from row of matrix C by the system (5.24) is certainly a relaxation.

To show that the replacement yields an equivalent program consider any y -> 0 with
jt,ryj__--> 1. NOW let k, 0_-<k _-<p, be such that YqS/l YJ -< 1 and js YJ >-- 1, where
So N and Sp+x . Note that the constraint of (5.24) with k k gives the maximum
value of rt i. Furthermore, in (5.22) and (5.23) the maximum values of the {rts,} are given
by

rts,= rs, , Y Vt_>-k+l

and

Hence

rts, rs, V <- k.

E ns,= E rs,+ E rs, y
t=l t=l t=k+l

k +Finally, suppose that cik Yt=t rs,, k 1,..., p, and define ci0 0 and a
max (0, a). Then (5.24) yields

+(5.25) n _-<ck + (cij-ci) yj, k =0,..., p.

Thus, by applying (5.25) to each of the m rows of matrix C, we obtain the integer
programming formulation

(5.26) max Y r/,
i=1

+(5.27) rt <-c+ (cij-c) Yi, k=0,...,n, i=l,...,m

(5.28) E Yi K,
]sN

(5.29) ye{O, 1} WeN,
where Cio=0, 1,..., m.
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THEOREM 5.2. The integer program (5.26)-(5.29) and its linear programming
relaxation are equivalent to the integerprogram (5.1)-(5.6) and to its linearprogramming
relaxation, respectively.

The formulation (5.26)-(5.29) and Theorem 5.2 have been obtained by a very
different approach in [9]. The linear programming relaxation of (5.26)-(5.29) may be
attractive computationally since it has only m + n variables.

We are doing a computational study of the performance of the simplex method on
some of these linear programs. Preliminary results on 10 10 and 30 30 problems
from the literature, each solved for four values of K, indicate the following:

1. In all cases dual formulations are much easier to solve than the corresponding
primal formulations. In several cases the primal required more than 10 times as many
pivots as the dual.

2. In all cases the formulation (5.19)-(5.21) dominated the duals of the linear
programming relaxations of (5.1)-(5.6) and (5.26)-(5.29); in particular (5.19)-(5.21)
required fewer than half of the number of pivots required for the other duals for each
problem. Most remarkable is that, although the canonical reduction of the 30 30
matrix yielded over five hundred rows, the largest number of pivots required was 18,
which occurred for K 3.

6. Representations of set functions. The canonical representation of simple loca-
tion functions by (1.2) is natural because of the direct connection between matrix C and
the {r}. Other representations may also provide insight. In this section we consider two
other representations and establish their relationships to (1.2). In particular, we
characterize the nondecreasing submodular directions and simple location functions for
each representation.

Let w be a set function defined on all of the subsets of S. Consider the represen-
tations

(a) w (S) r+ rr VS
_
N,

TNS#

(b) w(S)= Z CT VS-_N,
TS

(c) p(S)= w(S) VS _N and

o,u{(s) o,(s O {i})-p,(s) VSN, JN-S, fN-S-J.
The {CT} in representation (b) can be thought of as coefficients of a Boolean

polynomial (see [7]), and the {pj(S)} may be interpreted as "set function derivatives".
THEOREM 6.1. The expressions for the coefficients {CT}T_N, {rT}T_N and

{pj(S)}s_lV,_s-s in terms of w and each other are summarized in Table 1. All of these
coefficients are uniquely defined by (a), (b) and (c).

Proof. (See Table 1) Expressions (1) and (2) are definitions. We prove (10) by
induction on IJI. For J , (10) gives p(S) w(S), which is a definition. Assume (10)
is true for all S and J with IJI <= P. Thus by the induction hypothesis

pu{i}(S)= Y (-1)I’-TIw(SU{j}U T)- Y (--1)I’-TIw(SU T)
T_J T_J

Y (--1)IJU{n-TU{i}Iw($ U T U {/}) + Y. (-1) Iu{n-TI
TU{i}=_YU{i} T_J

Y’, (- 1)I{i}-TIw(S U T).
T_JU{/}

w(SU T)
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To derive (3), (4) and (7) we use the M6bius inversion formula (see [5])

g(S) Y, f(T) if and only if f(S)= Y, (- 1)Is-rig(T).
Tc_S Tc_S

Expressions (3) and (4) are obtained by Mobius inversion of (10) and (1) respectively.
Expression (7) is obtained by noting that (2) yields w(R)= y--YT_N_Rrr, where
y w (N) + w(). Hence y w(N- R) YrcR rT. Then by Mobius inversion,
rR=T_R(--1)IR-TI(T--w(N--T))=ET_R(--)VR-TI+Iw(N--T)+Tt(R)(R), where
e(R) 1 if R , and 0 otherwise.

We now derive (11) and (12) by substitution. From (1) and (10)

pj(S) Z (--1)IJ-TIw(S k-J T) Z (--1)IJ-TI Z Cp
T_J T_J PSCJT

as

as

E Cp F, (-1)IJ-TI= E Cp
PSUJ Tc_J Jc__Pc_JCJS

T _PfqJ

From (2) and (10)

T_J
TPf-)J

(--1)IJ-TI =0 unless P_J.

p.(S) ,Y_., (- 1)1"-T117-
T_J Pc_N-S-T

Ta(J) + E rp E (- 1)I’-TI+I
P_N-S T_J

TCIP=f

yae(J) + 1)lJ[+l E rp
JP_N-S

(--1)lar-Tl+l =0 unless PJ.
Tc_J

FCIP=

By M6bius inversion of (11) and (12), we obtain (6) and (9) respectively. Setting
S= and J=R in (6) and (9) we get CR =pR() and rR (-1)IRI+apR(N-R)+
y6e(R). Thus (5) and (8) are special cases of (11) and (12).. I-1

COROLLARY 6.1. W is nondecreasing if and only if VS c N, j N- S

(a) p(S) >= 0
or

or

(b) Y (’TO{]} >- 0
TS

(c) Y. rru{j} >- O.
Tc_N-$-{j}

Note that from (b) and (c) we obtain that c{-} => 0 and r{,} _-> O, Vj e N are necessary
conditions for w to be nondecreasing.

COROLLARY 6.2. W is submodular if and only if VS c N, {i, j} c N- S, # j

(a) o,.(S)-< 0
or

(b) Y C TO{i,]} 0
T_S
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Or

(c) r Tui, j >---- 0.
T_,N-S--{i, j}

Note that from (b) and (c) we obtain that ci. <= 0 and ri, _>- 0, /{i, ]}
_
N, ] are

necessary conditions for w to be submodular.
Statements (a) in Corollaries 6.1 and 6.2 are sign conditions on the first and second

"derivatives," respectively, of w. The next corollary characterizes the simple location
functions as these set functions w whose "derivatives" alternate in sign.

COROLLARY 6.3. W is a simple location function if and only if
(a) (-1)lJl+lpj(S)_->0 VJN,S_N-J,

(b) (- 1)ITi+lcT >= 0 V T
_
N,

(c) rT>--O Vt_JTN.

Proof. Given a simple location function v described by (1.1), we see that adding a
constant to a row of matrix C and subtracting the same constant from v() yields a new
simple location function v’ with v’(S)= v(S), VS . Now since rN ixminiNCii,
we see that rN >--0 for a suitable choice of v()= r. Therefore (c) follows from
Corollary 2.1.

Now we show (a):>(c). From (12), (- 1)ITI/pT(N-- T) rT >= O, k/ c T
_
N.

Conversely if rT >= O, /f T N, then (12) implies (- 1)lJl+
The proof of (a) :> (b) follows similarly from (11).
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THE CONDITION OF A FINITE MARKOV CHAIN AND
PERTURBATION BOUNDS FOR THE LIMITING PROBABILITIES*

CARL D. MEYER, JR.t

Abstract. Let T denote the transition matrix of an ergodic chain, , and let A I-T. Let E be a
perturbation matrix such that "i T-E is also the transition matrix of an ergodic chain, . Let to and &
denote the limiting probability (row) vectors for and q. The purpose of this paper is to exhibit inequalities
bounding the relative error II0’- 11/110’11 by a very simple function of E and A. Furthermore, the inequality will
be shown to be the best one which is possible. This bound can be significant in the numerical determination of
the limiting probabilities for an ergodic chain.

In addition to presenting a sharp bound for I1- ,11/11,o11, we wil derive an explicit expression for &, in
which & is given as a function of E, A, to and some other related terms.

1. Introduction. Let T denote the transition matrix of an ergodic chain, , and let
A I-T. (The terminology and notation will be that used in [5] and [6].) Let E be a
perturbation matrix such that T T- E is also the transition matrix of an. ergodic chain,. Let to and tb denote the limiting probability (row) vectors for and . The purpose
of this paper is to exhibit inequalities bounding the relative error [Ito- Kll/lltoll by a very
simple function of E and A. Furthermore, the inequality will be shown to be the best one
which is possible. This bound can be significant in the numerical determination of the
limiting probabilities for an ergodic chain.

In addition to presenting a sharp bound for I1 ,- 11/110,11, an explicit expression for
& will be derived in which & is given as a function of E, A, to and some other related
terms.

The approach taken in this paper differs from the traditional methods of past
authors in that group properties of the matrix A are used to produce the desired results,
whereas previous results have relied upon the so-called "fundamental matrix" given in
[5]; (see [9]). Examples will be given which show that the use of the group properties
produces results superior to those which can be produced using the traditional theories.

2. Group properties. The fundamental fact on which the analysis of this paper is
based is the following.

THEOREM 2.1. If A I- T where T is any row stochastic matrix, then A belongs to a
multiplicative matrix.

A proof of this is given in [2] and [6]. It also follows from well-known results found
in [4] and [8].

Since A belongs to some multiplicative group, (, A must possess an inverse in f.
This matrix is called the group inverse of A and is denoted by A#. The identity in f is
P AA#, the projector whose range is R (A) and whose nullspace is N(A).

As is shown in [6] and [2], almost all of the important information concerning an
ergodic chain is available in terms of the entries of A#. In particular, the limiting matrix,
W, for a chain with transition matrix T is given by

I +T+T2 +. +T
(2.1) W= lim I-AA#, (see [6] or [2]).
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As pointed out in [6], the computation of A# is not unduly complicated. Indeed,
computing A# is less of a chore than calculating the fundamental matrix. Further
properties of A# are presented in [2].

3. A perturbation formula for (A + E)#. Su.ppose T and " are transition matrices
for ergodic chains and c, respectively, where T T- E so that A + E. In order to
analyze c, it suffices to analyze /#. The purpose of this section is to provide an
expression for (A+ E)# which will hold for all possible values of E. Notice that E cannot
be arbitrary. Since must be a stochastic matrix, the elements, eu, of E are constrained
so that leul-< 1. There are, of course, other additional restrictions.

If =[1, 1, 1,..., 1]T, then Aj =0 and (A+E)j =0 so that Ej =0. If o and c
denote the limiting probability (row) vectors for c and c, respectively, then (2.1)
implies that

E(I- AA#) E(jto) 0,

so that

(3.1) EAA# =E, (i.e., Row Sp(E) Row Sp(A)).

Since A belongs to a matrix group, there exist nonsingular matrices P and
C(n_a)x(n_a) such that

A# pIC-l_ 0

L- ,] e-’ and [0+ O] p_ZI-AA#- P 6t?

(These statements are evident, but the reader may wish to consult [2].) Write E in the
form

(3.3) E P[E-L-E-3]
LE2t E4J

P-I’
where E is (n 1) x (n 1). The fact that EAA# E implies that E3 0 and E4 0, SO

that

(3.4) / A+ E P[C--+-E-I ]e-1

Ez

Since c is again an ergodic chain, it must be the case that the limiting matrix,, must be
a rank 1 matrix. By virtue of (2.1), it follows that rank (I-#) 1. By using the
formula - (found in [2] or [7]),LYI 2 0

it is easy to see from (3.4) that

I-# p[I- (C+ E1)(C+ El)# -lO]P-’E2(C + El)#

The fact that rank (I-/#) 1 now implies that I-(C + E)(C +E)# =0. That is,
C +E is a nonsingular matrix. Since C + E1 (I + EC-1)C, it follows that (I + E1C-1) is
nonsingular, so that

I+EA# P[I+EIC- ]E2C_I
p-,
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is also nonsingular and

(3.6) (I + EA#)-1 P EzC_I(I + E,C_I)_1 -Now write the expression for (A + E)#. Using (3.4), (3.5), together with the fact that
(I + EaC-) is nonsingular, yields

[ c-l(I + E1C-1)-I I_0 ]p_l(3.7) (A + E)# P EC_a(I + EIC_)_C_(I + E1C_)_ 0J

From (3.2) and (3.6) it is easy to see that

C-I(I FqC-1)A#(I + EA#)-1 P [ + p-1
0 ,OJ

[ 0 ’0]p_1(I- AA#)(I + EA#)-1 P E2C_1(I + EIC_I)_ +t
and

(I- AA#)(I + EA#)-IA#(I + EA#)-1

0 ’,__0__l p_1

PL- EC-(I+ EC-)-aC-(I+EC-)- 0J

Thus (3.7) becomes

(3.8) (A + E)# A#(I + EA#)-- (I- AA#)(I + EA#)-A#(I+ EA)-a.

By using the identity (I + EA#)-= I-EA#(I+ EA#)-, together with (2.1), one arrives
at the following result.

THEOREM 3.1. Let c be an ergodic chain with transition matrix T and limiting
matrix W and let g be an ergodic chain with transition matrix T-E. If A I-T,
then I + EA# is nonsingular and

(A + E)# A#- A#EA#(I+ EA#)-I- W(l + EA#)-A#(I+ EA#)-1.
It is clear that this theorem guarantees that for the situation under question,

lim (A+ E)# A#,
E->O

so that the following corollary is obtained.
COROLLARY 3.1. For the situation of Theorem 3.1, the elements of A# depend

continuously on the elements of A.
This result can also be proven using the information in [2] or [3].
Now that an explicit representation for (A + E)# is known, one can obtain almost

all of the important information regarding c through the results of [6]. However, the
purpose here is to concentrate on the problem of obtaining a perturbation formula and
bounds for the limiting probabilities, because it is these quantities which lie at the heart
of any analysis of the chain.

4. A perturbation formula and perturbation bounds for the limiting probabilities.
If W and W are the limiting matrices for ergodic chains and c, respectively, then
using Theorem 3.1 together with (2.1) yields an explicit expression for "TV. One has the
following result.
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THEOREM 4.1. If q and c are ergodic chains with transition matrices T and
T-E and limiting matrices W and I, respectively, then

=W(I+EA#)-a=W-WEA#(I+EA#)-1, where A=I-T.

In passing, it is pointed out that as a corollary one obtains lim._.o TV W, which is
of course the well known result stating that the limiting probabilities are continuous
functions of the elements o T. By making use o[ (3.1) and (2.1) another important
corollary of Theorem 4.1 is obtained. It is the one which reveals the structure necessary
in order for the limiting probabilities to remain invariant under a pertur.bation.

COROLLARY 4.1. For ergodic chains c and g, it is the case thatW W ifand only if
R (E)

_
R (A). (i.e., the limiting probabilities are unaltered if and only if the columns ofE

are linear combinations of columns of A.)
Consider now the problem of bounding the relative error term Ilto- &ll/lltoll, where

to and & are the limiting probability vectors for and c, respectively. Since every row
of W is equal to to and every row of is equal to &, Theorem 4.1 yields,

(4.1)

and

(4.2) to- & toEA#(I + EA#)-1.

For the vector 1-norm (llXlll=jlxy[), the induced matrix norm is IIAlll-
maxllx,l=lllxAII1 maxi q lail, because one is dealing with row vectors and left hand
multiplication. A trivial observation is that the relative error in to for the 1-norm is
always bounded by 2. That is,

and Ilto- 111 can be made to be arbitrarily close to 2 with particular choices of to and &.
However, this does not take into account the relative size of IIEII1. The expression in
(4.1) can provide a more useful bound in the case of the 1-norm. Using (4.1) to bound
the relative error in to provides an additional desirable feature, namely, that the bound
is obtainable without having to impose any additional hypothesis on the magnitude of
the elements of E.

The above remarks are summarized in the following.
THEOREM 4.2. For ergodic chains cg and c with transition matrices T and

T T-E and limiting probability vectors to and &, the relative error in to for the 1-norm
is

where A I-T and gl((l)= IIAIIIlIA#II.
The 1-norm may not be the most desirable choice of norms. It seems that the

oo-norm is a more natural choice of norm when investigating the sensitivity of the
limiting probabilities to perturbations in the transition probabilities.
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It is worth completing the statement on norms by noting that for any two
probability vectors, to and t, the following relations always hold for an n-state chain.

I1o111-- 1 and

1
I111- < and [[to- 11= 4, so that I1- 11. 4.

1---< Iltolloo--< 1 and Ilto- &lloo--< 1, so that I1- 11oo n.

Consider now an arbitrary vector norm and a compatible matrix norm such that
I111-1. Take the norm of both sides of (4.2) to obtain

f IIEA#II < 1, then,

1

and the inequality takes a familiar form which is given below.
THEOREM 4.3. Let c and be ergodic chains with transition matrices T and ,

respectively, where " T-E. Let d to-(o where to and (o are the limiting probability
vectors for cg and , respectively, and let A I-T. If IIEA#II < 1, then

If IIFII {IAII 1, then

(4.3)

[[tll--
1- K()

where 0()= IIAII IIAII. Moreover, there are nontrivial cases where equality is actually
attained in each of the above.

Note that (3.1) guarantees that IIEII/IIAII <- IIEII, which is less than 1, by hypo-
thesis.

The term Ildll/ll’ll is the relative error in to while IIEII/IIAII is the relative error in A.
This inequality is of exactly the same form as the familiar inequality obtained when
analyzing a perturbed nonsingular linear system of equations. The only difference is the
term 0(c). The fact that the analysis of any ergodic chain revolves about the limiting
probabilities, together with the appearance of K() in Theorems 4.2 and 4.3, motivates
one to make the following definition.

DEFINITIOrq. Let rg be an ergodic chain whose transition matrix is T, and let
A I-T. The condition of the chain c is defined to be the number vc()= I11111AII.

Clearly, if the condition of the chain is relatively small, then the limiting prob-
abilities will be relatively insensitive to small changes in the transition probabilities. If
the condition of the chain is relatively large, then the limiting probabilities may or may
not be sensitive. Although the bound in (4.3) can sometimes be pessimistic, it is
important to point out that there are nontrivial cases where equality is actually attained.
Examples are given in following sections.
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As a final observation, note that since AA#= l-W, where W,, is the limiting
matrix, one has I111 2- 2 man wi, 11112->_ 1, and I111o a / (n 2) max oi, so
that

2
x () >= 2 2 man oi -> 2 --,

n

x2() => 1,

2
o(c) -> 1 + (n 2) max o)i 2 --.

n

A special case which is of frequent interest is that in which the perturbation affects
only a single state. That is, only the probabilities for leaving (or entering) the ith state
are perturbed. The question is, "How does this affect (.O and perhaps the rest of to?"

In this case, the ith row of T, denoted by tn, is perturbed so as to produce in, the ith
row of . If un=[0, 0,..., 0, 1, 0,..., 0]x is the ith unit vector, then E is the rank 1
matrix E un(tn-t0. Equation (4.1) degenerates to

d to-& wieiA#(l + EA#)-1,
where en ti--in. Since E uien, one can write

(I + EA#)- (I + uieiA#)-1 I-

so that (4.2) reduces to the following.

uieiA#

1 + eiA#ui’

COROLLARY 4.2. IfC is an ergodic chain and the transition probabilities ]:or leaving
the ith state are perturbed so as to form an ergodic chain , then

eiA# 1(4.4) to & toi 1 + eiA#uiJ
where to, &, el, A#, and ui are as described earlier.

In particular,

O) ()i O"

O) 1 + r’
where o eiA#ui and

(’0i[ eiA#Uk 1oa-a3_ 17euiJ"
Ile,A#ll < 1, then

o,- o3i < IlenA#ll
0) 1 -IleA#ll

Ileal[/IA#/I < 1, then

and
a 1 IleiA#ll_!"

I[eill/llAllx.(_cg’) 1o.,, <-
Ileill/llAIl, ()-I]O)i Oi[ < Ileill/llAIl()

and
o, Ile,ll/llAIl()

5. Example. Below, a general example is constructed to show that equality in (4.3)
can be attained for the oo-norm. Note that the fact that row vectors, rather than column
vectors, are involved means that the oo-matrix norm is given by IIAIL-
maxllxll,= IIxAIL maxj Ei lai, i.
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Consider the regular chain whose transition matrix is the symmetric circulant,

-3 1 3 1 3 1-
1 3 1 3 1 3

1 3 1 3 1 3 1

_1 3 1 3 1 3_2,2,

Since T is symmetric, the limiting probability vector is

1
m=nn [1, 1,...,1].

It is easy to check, that A# is given by the symmetric circulant,

n -1 0 -1 0 1 0
-1 n -1 0 -1 0 -1
0 -1 n -1 0 1 0A#= 1

-1-
0

-1

-1 0 -1 0 -t 1 0 n

by verifying that AA#A A, A#AA# A#, and AA# A#A. (These three conditions
suffice to define #; see [2] or [6].) Note that 2. Let the perturbation be

--E E --E E E --E E-
0 0 0 0 0 O,
0 0 0 0 0

where 0 < e < 1/4n. Then "i" T-E is the transition matrix for a regular chain, and
I111- so that I1111111- 2 < 1, From (4.2),

d=m-=toEA#(I+EA#)-1.

It is easy to see that EA#=2suv, where u=[1,0,0,..-,0]w and v=[-1, 1,
-1, 1, , 1, 1], so that oEA# 2eWlV (e/n)v and

(I + EA#)-1 (I + 2sulv)-1 I-
2E

1-2e UlV.

Thus,

and

Ildll 2e IIEA#II
I1,11 1-2e 1-11EA#IIo

d v,
n(1-2e)

1 -{IElloollA{Ioo 1 -IIEII/IIAII

One can also construct examples so that equality in (4.3) will hold for other norms.
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6. Why not treat this strictly as an eigenvector problem? In principle, the problem
is an eigenvector problem. That is, one is analyzing the normalized left hand eigen-
vector associated with the eigenvalue AT 1 for a row stochastic matrix T, or

equivalently, the normalized left hand eigenvector associated with the eigenvalue
AA 0 for A I- T. The known facts concerning the eigenvectors of a perturbed matrix
are therefore, to some extent, relevant. However, there are some peculiar aspects which
the general eigenvector theory does not capitalize upon. For example, the stochastic
nature of the problem sets it apart. The fact that the relevant eigenvalue, AA 0, (as well
as its multiplicity) is unaltered by the perturbation is certainly special. The perturbation
E is constrained to be one of a special kind, namely one which preserves the ergodic
nature of the chain.

Moreover, the problem at hand is not concerned with the sensitivity of the entire

eigensystem of a stochastic matrix. Only a very special eigenvalue and eigenvector with
peculiar properties are involved. One should therefore not be too surprised to find some

sort of special behavior exhibited which is not present in the general theory.
In general, if x is an eigenvector for B such that (B-Al|)X--0 and there exists

another eigenvalue A2, Of B which is close to A 1, then one expects x to be sensitive to

perturbations in B. (See [10]). However, this can produce some wrong impressions
when applied to the special case at hand. The following example illustrates how

applying this general theory can be somewhat misleading. Let1 and c2 be two ergodic
chains whose transition matrices are given by

.99995 .00005 0 51(6.1) T1 0 .99995 .0000

.99995 0 .00005_]

and

=[.99995 .00005]
k.O0005 99995J"

The eigenvalues for A I-T1 are A 0, /2 .000100002 and A3 .999949998,
while the limiting probability vector is 0o1(.4999875, .4999875, .000025). The
eigenvalues for Az I Tz are/x 0 and/2 .0001 and the limiting probability vector
is o0z (.5, .5). In each case the matrices have another eigenvalue very close to the
eigenvalue 0. The general perturbed eigenvector theory therefore suggests that the
eigenvectors associated with the eigenvalue 0 should be sensitive to perturbations in the
elements of each of the matrices A and A.

However, if one allows the term "sensitive" to mean that small relative errors in
the A matrix can produce large relative errors in the limiting vector o0, then the
sensitivity of the limiting probabilities may or may not be greatly influenced by the
distance between the eigenvalue 0 and the other eigenvalues of A.

For the two chains, and cz, of the above example, one finds that

5000 -4999.75 -.251A#

1-5000.25 5000 .25
[_ 4999.5 -5000.25 .75

and

[ 000 -5000 
-5000 5000J’
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so that t(c61) 15,000 while K(cg2) 1. Theorem 4.3 guarantees that the chain2 is
well conditioned while 1 is more badly conditioned. Indeed, if 1 is perturbed so as to
produce c1 with "i"1 T1-E, where

.00l

-.001 il0
0

one finds that

tl (.045452376, .954499897, .000047727),

so that a relative error of 10-3 in A1 (using the -norm) produces a relative error of
about .91 in 1. In contrast, Theorem 4.3 guarantees that a relative error of 10-3 in Az
can produce a relative error of at most 1/999 10-3 in z.

The conclusion is that one cannot always use the distance between A 0 and the
nearest nonzero eigenvalue of A as a measure of how sensitive the limiting probabilities
are to perturbations, so that this criterion is not an accurate measure of the condition of
an ergodic chain.

7. Why not treat this strictly as a system of linear equations? If Tnn is the
transition matrix of an ergodic chain, it follows that A I-T has rank n- 1, and any
subset of n 1 columns of A is linearly independent. The problem of finding the limiting
probability vector is simply that of solving the system

toA O, Y (.0 1.

Clearly, this is equivalent to one n n nonsingular system of the form toM b, where M
is obtained from A by replacing one column (say the kth one) by the column

[1, 1, , 1]T and b is the kth unit vector.
Since M is nonsingular and b is not subject to perturbation, the standard result

(which is the analogue of Theorem 4.3) holds. That is, if a perturbation of the transition
probabilities causes M to go to 11 M+F where IIF[I IlM-all < 1, then

(7.1) I1 0- oll < IIFII/IIM[I cond (M)
I[oll 1- IIF[[/][MI[ cond (M)’

where cond (M)= IIMII IIM-I[

and III1[ 1. (See [10]). This suggests that cond (M) might also be used as a measure of
the condition of the chain.

However, converting the singular matrix A into the nonsingular matrix M can
drastically alter the condition of the problem. That is, although A is singular, it can be
well conditioned in the sense that IIAII IIA II is small, whereas the modified matrix M is
nonsingular but IIMII IIM-111 can be very large.

For example, consider the chain whose transition matrix is

n-1 n-1
E E

1-e
n-1

E E

_n-1 n-1 n-1

,E’ E E

0<e<l,
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so that

n-1 -1 -1

11 n-1 -1

-1 -1

Clearly, Ais positive semidefinite so that

max ,i

mino Ai
where/i denotes eigenvalue.

It is easy to verify that the eigenvalues of A are given by

en En En en }n-I n- n- n-1

so that/2(() 1, regardless of what value is assigned to e and what the size of n is. Now
replace any column (say the kth one) of A by [1, 1, , 1]T, SO as to form the matrix
M. The matrix MTM then has the form

MTNI n

-1 1
-1 1

n-1 1

-1 n-l_

It is not difficult to see that the eigenvalues of MTM are given by
2 2 2

{ t/,?/ ,’’’,

so that for large n or small e,

max singular value n 1
cond2 (M)= .

min singular value e

Thus cond2 (M) can be made arbitrarily large by taking either e small or n large. Note
also that cond2 (M) is independent of which column is selected to contain the l’s.

It clearly would be a mistake to use cond (M) as any sort of guide to the sensitivity
the limiting probabilities might exhibit to perturbations in the transition probabilities.
Aside from the theoretical hazards which the matrix M can produce, it is obvious thatM
could also present numerical difficulties if it were used in any sort of computational
scheme.

The bound produced by using M and (7.1) is almost always inferior to the bound
obtained from Theorem 4.3. As an example, consider again the three-state chain c,
whose transition matrix is .given by (6.1). Suppose this chain is perturbed so that the
transition matrix becomes T- T-E, where

x 10-5 2.5 10-5 f]
E= 0 0

0 0



FINITE MARKOV CHAIN AND LIMITING PROBABILITIES 283

Then A+ E. 11 is obtained from by replacing some column of by j. Assume that
in M as well as in 11, the column which is is taken to be the second column. Then,

-5 0

F= II-M 0 0
0 0

is the perturbation in M in (7.1). Using the c-norm, one finds that cond (M) 60,000
whereas K() 15,000. The bound for the relative error in to which (7.1) provides is
approximately I whereas the bound produced by (4.3) is about .6. In this case, the actual
relative error (with the az-norm) is about .3334.

This example exhibits only a single case where (4.3) is superior to (7.1). However,
experience has shown this to be typical. For each value of n 3, 5, 10, 20, and 30,
twenty n-state ergodic chains were randomly generated. Arandom perturbation (which
satisfied the hypothesis of Theorem 4.3 and (7.1))was introduced, and the bounds given
by (4.3) and (7.1) were computed using the az-norm. For n--3, (4.3) gave a better
bound than (7.1) in 13 out of the 20 trials. For n 5, (4.3) gave a better bound in 18 out
of 20 trials. For each of the cases n- 10, n 20, and n 30, (4.3) was found to be
superior in 20 out of 20 trials. Moreover, for each of the 100 chains generated,
was never significantly greater than 5 whereas cond (Mnn) was always in the
neighborhood of n 2.

Since the goal was not to use M in any sort of computational scheme, but rather to
determine the degree to which characteristics of M (e.g., cond (M)) reflect the relative
sensitivity of the limiting probabilities, no attempt was made to scale M. This, of course,
could be done, and should be done if M is specifically given and is to be used in
computations. However, when M is not specifically given, no theoretical advantage as
far as producing a general analytical bound on the relative error can be realized.
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NONNEGATIVE CHOLESKY DECOMPOSITION AND ITS
APPLICATION TO ASSOCIATION OF RANDOM VARIABLES*

ALLAN R. SAMPSON,"

Abstract. The concept of a multivariate family of distributions indexed by a covariance scale parameter
is formally defined and examples given. The multivariate normal is one such family. Sufficient conditions are

given so that a positive definite matrix has a nonnegative Cholesky decomposition. These conditions also yield
the association of random variables with a covariance scale parameter distribution. These results are related
to other matrix results and to Barlow and Proschan’s stronger conditions (Statistical Theory ofReliability and
Life Testing: Probability Models, Holt, Rinehart, Winston, New York, 1975), for the association of the
multivariate normal, namely, Aij <- 0, / where -1 A

1. Introduction and summary. The association of random variables having a
multivariate normal distribution or some related distributions has been studied among
others by Barlow and Proschan (1975), Abdel-Hameed and Sampson (1978), and
Ahmed, Leon and Proschan (1978). Most of the approaches involve the specific
distributional form of the multivariate normal or some relationships specific to the
multivariate normal.

In this paper we give new sufficient conditions for the association of random
variables having the multivariate normal, and show more importantly that these
conditions are sufficient for the association of a broad class of multivariate random
variables. For the random variables of interest, this condition is given in terms of a scale
parameter which is an analogue of the covariance matrix. Additionally we connect the
previously known association conditions with this new covariance condition. The
approach we follow involves deriving a nonnegative version of the Cholesky de-
composition which can then be used with standard association theorems to derive our
results. Related matrix results are also considered, as well as, applications to a bivariate
Cauchy and a bivariate extended gamma distribution.

In 2, we give the matrix theory results concerning the Cholesky decomposition
and discuss the related concept of completely positive matrices. In 3 we define and
give examples of distributions with a covariance scale parameter. We then apply the
matrix results in 4 to obtain sufficient conditions for the association of random
variables with a distribution having a covariance scale parameter. Some additional
comments are presented in 5.

2, Nonnegative Cholesky decomposition and completely positive matrices. The
basic matrix results that are obtained provide sufficient conditions so that a positive
definite matrix has a nonnegative Cholesky decomposition. Additionally, we make use
of certain results pertaining to completely positive matrices.

Denote by - the set of lower triangular matrices with positive diagonal elements. If
a matrix A has all positive (nonnegative) elements, we write A> 0(=>0); and if S is a
positive definite matrix, we write S is p.d. The multivariate normal distribution with
mean Ix and covariance matrix is denoted N(Ix, ,).

DEFXrTXOr 2.1. (See Varga (1962, p. 85)). A= {,ij} is a Stielt/es matrix if A is p.d.
and Aij _-< 0, for all .

* Received by the editors October 15, 1979, and in final revised form January 15, 1980.
t Institute for Statistics and Applications, Department of Mathematics and Statistics, University of

Pittsburgh, Pittsburgh PA 15260. The work of this author is sponsored by the Air Force Office of Scientific
Research under Contract F49620-79-C-0161.
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THEOREM 2.1. (See Varga (1962, p. 85)). If A is a Stieltjes matrix then A-1

In general the converse to Theorem 2.1 is false. Theorem 2.2 and Corollary 2.1
that follow will be used to connect standard association conditions to the new condition.

THEOREM 2.2. Let , be a p p symmetric matrix and partitioned as

where Ell is (p- 1) (p- 1). If ,-1 is a Stieltjes matrix, then ,-I is a Stielt]es matrix.

Proof. Note that- [ (11- s-l-’)-1 -(s-,’)-I
--S--It(Xll s--lt)-1 (S- tX)--I

Because X-1 is a Stieltjes matrix, it follows that X0, (s-g’Xg)-l0, and
(X-s-lgg’)-1 is a Stieltjes matrix. By the result of Woodbury (1950) (also see Rao
(1973, p. 33)), we can write

X (XI- s--*’)- -(s .’X?.)-(X.)(X.)’
hence, it now follows that X is a Stieltjes matrix.

DEFINITION 2.2. Suppose X {i} is a p x p matrix. For > j, X(i, ]) is defined by

..O’11 .O’lj .O’li1X(i,/3--
|1 ,|.
L.O’i o’ij o’ii ..]

COROLLARY 2.1. If ,-’ is a Stieltjes matrix then (,(i, j))-i is a Stieltjes matrix.
Proof. Note that if -’ is a Stieltjes matrix then (pp,)-i is a Stieltjes matrix for

any permutation matrix P. Now there exists P such that

pXp,= [X(i, ]) 121
[ X21 X22J’

and the result follows from Theorem 2.2. [-1

DEFINITION 2.3. (Cholesky Decomposition). (See Wilkinson (1965, pp. 229-
232)). If X is p.d., then there exists a unique T e r, such that X TI".

There are a number of techniques for computing T based upon X. The usual
numerical techniques are recursive in nature (see Wilkinson). For our purposes a direct
relationship is required; a suitable version of this is given in Lemma 2.1. imilar
versions are used in standard existence proofs for the Cholesky decomposition.

LEMMA 2.1. Suppose X Tr’, T= {ti,} r. Then for > j,

(t, t,__ t Ix(i, il/,,
where 3%1. is the (j + 1, j)th entry of (X(i, ]))-1.

Proof. The proof follows immediately from the following algebraic identity"

t-1,i-1 ti,j-1

til 0 tij

cofactor (Cj+l,]),

where Cj+I,j is the submatrix of X(i, ]) where the (j+ 1)st row and flh column are
deleted.



286 ALLAN R. SAMPSON

The two principal results of direct use to us now follow.
THEOREM 2.3. Let , be a positive definite p x p matrix, ff the ( + 1, j)th entry of

(,(i, ))-1 is nonpositive for i>, 1 <-<=p- 1, then ,= "IT’ where T - and T>=0.
Proof. This follows directly from Lemma 2.1. 71
COROLLARY 2.2. If ,-1 is a Stiel@s matrix then , 7IT’ where T - and T >= O.
Proof. This follows directly from Theorem 2.3, Corollary 2.1 and the definition of

Stieltjes matrix.
Theorem 2.3 and Corollary 2.2 are related to certain results concerning completely

positive matrices.
DEFINITION 2.4. (Hall and Newman (1963)). , a p p matrix, is a completely

positive matrix if is p.d. and there exists 12, a p n matrix, with 12 => 0 such that
CC’.
THEOREM 2.4. (Diananda (1962)). Let , be a p.d. p x p matrix with p <- 4. If , >- O,

then !, is completely positive.
Hall and Newman show by counterexample that Theorem 2.4 does not hold for

p => 5. Gray and Wilson (1979) comment further on the results of Diananda, and Hall
and Newman. Hence, Theorem 2.3 can be viewed as providing conditions when p _->
for to be completely positive; also for p 2, the condition of Theorem 2.3 reduces to
tr12 _-> 0. However, the conditions of Theorem 2.3 actually provide a stronger result in
that the appropriate decomposition of can be accomplished with nonnegative
triangular matrices. An interesting alternative version of Theorem 2.4 can be obtained
for the case p 3.

LEMMA 2.2. Let , be a p.d. 3 3 matrix. If , >-_ O, then there exist a permutation
matrix P and T -with T >- 0 such that P:P’ "IT’.

Proof. Write : TT’, T s r. If T_-> 0, then the result is immediate. If T 0, then the
(3, 2) entry of T is negative; having the (2, 1) or (3, 1) entries negative would imply
: 0. Without loss of generality we write

I1T= a 1
b -c

where a => 0, b _-> 0, c > 0. There exists a permutation matrix P such that

1 -t-b24rc 2 b ab-c]
P’rr’P’ b 1 a |.

ab-c a l + a 2

The Cholesky decomposition UU’ for PTI"P’ is

(1 + b 2 + c2) 1/2

b
(1 + bg C2) 1/2

ab c

(1+’2)1/2

0 0
(1 +C2) 1/2

(1+b2+c2)1/2 0

(1 + b + c)1/2[ b(ab c) ’ 1

The nonnegativity of U21, U31, where U {uii}, follows from the fact PTT’P’ -> 0. The sign
of u32 is determined by a (1 + b2 + c 2) ab 2 + bc a + ac + bc >= O. Hence, U _-> 0.

3. Covariance scale parameters. An important result concerning the multivariate
normal distribution with known mean vector is that the covariance matrix uniquely
indexes the distribution. Moreover, the covariance matrix being diagonal is equivalent
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to the vector entries being independent. In generating new multivariate distributions, it
is sometimes desirable to preserve these two properties. For example, elliptically
symmetric families (e.g., Kelker (1970)) are uniquely indexed by their covariance
matrices, but diagonality does not necessarily imply independence.

One approach to generating multivariate families with these two properties is to
employ the covariance matrix or its analogue as a scale parameter in a multivariate
distribution whose components were originally independent. Suppose that X=
(X1, Xp)’ is a vector with independent entries. Let Y TX where T 19 C_ r. The
family of distributions of is then indexed by T r. By the uniqueness of the Cholesky
decomposition (Definition 2.3), the family of distributions can be equivalently indexed
by TT’, where lies in a parameter space S. Denote the family of distributions of Y
by F(y; ).

DEFINITION 3.1. The family of distributions F(y; Z) indexed by Z S is said to be
a family of distributions with covariance scale parameter

The following lemma provides some essential results for families of this type. The
proof is straightforward.

LEMMA 3.1. For a family of distributions with covariance scale parameter ,, the
entries ofY are independent ifand only if i, D, where D is a diagonal matrix. Moreover,
if var X1 var Xp 1, then X is the covariance matrix of Y.

This basic approach to generating families of multivariate distributions has been
considered in a number of contexts. Steffenson (1922) originally used a method
analogous to this to generate multivariate distributions with certain correlational
properties. Mardia (1970) reviews this approach and discusses related estimation
topics. Triangular transformations were employed by Arnold (1967) for constructing
bivariate distributions with certain dependence properties. Just to mention a couple of
other contexts in which this general approach has been useful, we note its use in
simulation and normality testing (Gnanadesikan (1974, p. 177)), nonparametric power
calculations (Jogdeo (1964)), and reliability applications (Krishnaiah (1977)).

Clearly the family of distributions N(i,), where is p.d., is a family of
distributions with a covariance scale parameter .

Density functions for two other bivariate covariance scale parameter examples are

-2(3.1) f(yl, y2)= " crlcr2(1-p2)l/a(o’2 + Y12)-1

((1-o),r +(y2-o(1-p2)-/2y)2)-1,
where -m < Yl < o3, --o0 < Y2 < o; and

.,A{--I 1/2(3.2) g(y, y2)=C(hl, h2, y (y2 p(1-p2) y)

exp [-AlO-7y- A26r (1-p2)-/2(y2-p(1-p)-/2
where y >0, y2-p(1-pe)-/2y >0, hi >0, h2>O, and

2)1/2)),2c(AI, A2, X,)=[F(A2)F(A)]-I(A/(r)*’(Ai/((r2(1-p

Yl)],

The density given by (3.1) is a bivariate Cauchy where each marginal has a Cauchy
distribution. The density given by (3.2) has a yl-marginal that is gamma and a
y2-marginal that is a weighted sum of independent gammas. For Y1, Y2 having the
density of (3.2), the parameters o-1, tr2, and p satisfy tr2 var Y1, tr var Y2 and
p correl (Y1, Y2).

4. Association and covariance scale parameters. In this section, sufficient condi-
tions are given for the association of random variables with a covariance scale
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parameter distribution. However, before providing the main result, we review some
positive dependence concepts and note related results.

DEFINITION 4.1. (Barlow and Proschan (1975)). A nonnegative real valued
function f(ul, , Up) is said to be totally positive of order 2 in pairs (TPz in pairs) if for
any pair of arguments Ua, Ub, f(Ul,’’’, Ua,’’’, Ub,’’’, Up) viewed as a function of
ua, uo is TP2. (For a definition of TP2 see Karlin (1968)).

DEFINITION 4.2. (Barlow and Proschan (1975)). The random variables
U1,’", Up are conditionally increasing in sequence (CIS) if for i= 2,... ,p,
P(Ui > uilU-i ui-, U1 ul) is increasing in ul, , ui-.

DEFINITION 4.3. (Esary, Proschan, and Walkup (1967)). The random variables
UI," Up are associated if Cov [f(Ul, Up), g(U1," Up)] 0 for all non-
decreasing functions f, g.

DEFINITION 4.4. (Lehmann (1966)). The random variables U1, , Up are posi-
tively quadrant dependent (PQD) if P(UI<-ul, Up<-_Up)>-lqP(Ui<-_u) for all

Ul Up.
DEFINITION 4.5. (Ahmed, Langberg, Leon and Proschan (1978)). The random

variables U1," , Up are positively orthant dependent (POD) if P(
up)>-l-IP(U>u) for all Ul,’’’, Up.

LEMMA 4.1. Let U1, , Up have probability density function f(u, , Up). Then
the following implications hold: (f(ul, up) is TP2 in pairs) implies (U1, , Up are
CIS) implies (U1,"’, Up are associated) implies (U1,’", Up are POD) and also
U1, Up are POD).
A proof of Lemma 4.1 may be found in Esary, Proschan, and Walkup (1967).
While the positive dependence properties of many different classes of distributions

have been studied, we focus on the results previously obtained for the multivariate
normal. Barlow and Proschan (1975) showy that the density corresponding to N(I, ) is

TP2 in pairs if and only if Aiy :< 0, j, where A {A/i} --1., that is, --1 is a Stieltjes
matrix. Special cases of this results have arisen in a number of other contexts (see, for
instance, Ahmed, Leon and Proschan (1978)). Slepian (1962) showed that if
(Y1," ", Yp)’--.N(O, ,) and >-0, then Y1," ", Yp are PQD and also POD. (A proof
of the POD result may be found in Gupta (1963)).

No corresponding positive dependence results appear to have been obtained for
families of distributions with a covariance scale parameter. Basically we show that the
new association results that are obtained for the normal distribution hold for covariance
scale parameter families, and that the association results do not actually depend on the
functional form of the distributions but only the "probabilistic structure."

THEOREM 4.1. Let Y=(Y1,’’’, Yp)’---F(y,), where F(y,) is a family of
distributions with covariance scale parameter ,. If the (] + 1, ])th entry of (i,(i, ]))-1 is
nonpositive for > ], 1 <-_ ] <- p 1, then Y1, , Yp are associated.

Proof. By Theorem 2.3, there exists T6 and T=>0 such that TT’. Hence, by
definition of covariance scale parameter family, there exist independent random
variables X1, , Xp so that Y TX. By Property P4 of Esary, Proschan and Walkup
(1967), Xa, , Xp are associated. Because T> 0, Y is a nondecreasing function of X,
and by their Property P2 it follows that Y1,’", Yp are associated random vari-
ables.

Note that when p= 2 the condition that ((i,/’))- has nonpositive (j+ 1,/’)th
element for i>], 1<=]<=p-1 reduces to p_->0, where p=rlz/(r11r22) 1/z. For finite
variance random variables, association implies coy (Y1, Yz) >- O, and, thus for these
bivariate covariance scale parameter families we have that Y1, Yz are associated if and
only if p => 0.
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COROLLARY 4.1. Let Y=(Y1,’" ", Yp)’---F(y, X), where F(y,
distributions with covariance scale parameter ,. If -1 is a Stieltjes matrix then
Y1, ", Yp are associated random variables.

Proof. It follows from Corollary 2.1 that X-1 being a Stieltjes matrix implies for
> j, 1 _-< j <- p 1 that (X(i, j))-i is a Stieltjes matrix; which by definition yields that the

(]+ 1, j)th entry of (X(i, ]))-1 is nonpositive. The result follows immediately now from
Theorem 4.1.

COROLLARY 4.2. Let Y=(Y1," ", Yp)’---F(y, X), where F(y, X) is a family of
distributions with covariance scale parameter X,. If the (j + 1, j)th entry of (,(i, j))-i is

nonpositive ]’or > j, 1 <-_ j <= p 1, then ]’or all y l, , yp
p

(a) P(Y1 --<- Yl,’" ", Yp <- Yp) --> 1-[ P(Y --< Y,),
i=1

P

(b) P(Y1 > Yl," Yp > Yp) -> H P(Y > Y,).
i=1

Proof. The proof is immediate from Theorem 4.1 and Lemma 4.1. [3

Again the PQD and POD results of Corollary 4.2 hold when z-a is a Stieltjes
matrix.

COROLLARY 4.3. Let Y (Y1, ", Yp)’" N(lx, X,). If i, >--_ 0 ]’or p <-- 4, or ]’or p >= 5
the (] + 1, ])thentry of (,(i, ]))-1 isnonpositivefori >], 1 <=] <=p- 1, then Y1, , Ypare
associated random variables.

Proof. For p _-> 5, the association of Y- I and hence of Y follow from Theorem 4.1.
For p _-< 4, Theorem 2.4 and the obvious extension of Theorem 4.1 are required.

We note that in a similar fashion, a location parameter could be introduced to
families with a covariance scale parameter. The corresponding association results for
these location and scale families would then be immediate from our previous results.
Because triangular matrices are required for parametrizing arbitrary covariance scale
families, we are unable to show for general scale families that when p 3, 4 and => 0,
the association result holds. To be able to do this would require two things: Lemma 2.2
holding for p 4, and a permutational invariance result for covariance scale families.
However, in the special case of normality (Corollary 4.3), we are able to obtain the
p-3, 4 results from the fact that (eg., Anderson (1958, p. 19)) if X has a normal
distribution, then CX has a normal distribution, where C is any rectangular matrix.

5. Comments. An immediate application of Theorem 4.1 yields that if (Y1, Y2)
have p.d.f.’s given by (3.1) or (3.2), then Y1 and Y2 are associated when p _->0. Also we
note that for these families p 0 is equivalent to the independence of Y1 and Y2.
Because the variances are finite and suitably scaled for the family of (3.2), it follows that
Y1, Y2 are associated for (3.2) if and only if the correlation between Y1 and Y2 is
nonnegative. For both examples, when p -_> 0, the PQD and POD inequalities for Y1 and
Y2 follow from Corollary 4.2.

It is observed that the condition of Theorem 4.1, i.e., that the (] + 1, ])th element of

(X(i, f))-I F xii O’i,iq
-1

[..O’i,i O"ii..J

is nonpositive, is equivalent to the ]th element of ri,] being nonnegative.
When YN(O, ), the conditional distribution of Yi given (Y1,’", Y)’---Y, is
N lY,i iX-1 -1

i yi, r.-r,ii r,i). In this case the nonnegativity of the fth element of rg.X.1
is equivalent to P(Y > ylY1 yl,. , Y y) being nondecreasing in y for fixed
values of yl, , y-1. Thus, for the multivariate normal the conditions of Theorem 4.1
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are equivalent to

(5.1) P(Y/> yiIY1 Yl, Yj Yj) nondecreasing in y.
for fixed values of yl, , yj-1, and for all > j, j 1,. , p- 1.

We note that for the multivariate normal, Y1," , Yp being CIS is equivalent to

1 >0 for j 1 To see the nonequivalence of CIS and condition (5.1),O’j+ l,j P.
first define

(5 2) = 2 2
1

If (Y1, Y2, Y3)’---N(0, ), where is given by (5.2), then P(Y2 > Y21Y1 Yl) is increas-
ing in y, P(Y3 > Y3[ Y1 Y) is increasing in yl, P(Y3 > Y3[ Y Yl, Y2 y2) is increasing
in y2 tor fixed y and is decreasing in ya lor fixed y2. Therefore, Y1, Y2, Y3 are not ClS
and yet they satisfy (5.1) and the conditions of Theorem 4.1.

It is interesting to observe and straightforward to show that - is not a Stieltjes
matrix when Z is defined by (5.2).

We conclude by showing that Theorem 2.1 can be proved using some positive
dependence results. (A standard algebraic proof is given in Varga (1962)).

Proof of Theorem 2.1. If A=-a is a Stieltjes matrix then there exists
(Y1, , Yp)’" N(O, ), and by Corollary 4.1 (or Example 4.16, Barlow and Proschan
(1975, pp. 145-150)), it follows that Y1, Yp are associated. But this implies >-0,
because the covariances of associated random variables are nonnegative.

Finally we note that by identical argument, we can show that if the (] + 1, ])th entry
of ((i,/))-1 is nonpositive for >j, --<j =<p- 1, then =>0.

Acknowledgment. The author wishes to acknowledge a helpful conversation with
Professor Werner Rheinbold.

REFERENCES
M. ABDEL-HAMEED AND A. R. SAMPSON (1978), Positive dependence of the bivariate and trivariate

absolute normal, t, X and F distributions, Ann. Statist. 6, pp. 1360-1368.
A. H. N. AHMED, R. LEON AND F. PROSCHAN (1978), Generalization of Associated Random Variables

with Applications, Department of Statistics Report M468, Florida State University, Tallahassee.
A. H. N. AHMED, N. A. LANGBERG, R. LEON AND F. PROSCHAN (1978), Two Concepts of Positive

Dependence, With Applications in Multivariate Analysis, Department of Statistics Report M486,
Florida State University, Tallahassee.

T. W. ANDERSON (1958), An Introduction to Multivariate Statistical Analysis, John Wiley, New York.
B. C. ARNOLD 1967, A note on multivariate distributions with specified marginals, J. Amer. Statist. Assoc.,

62, pp. 1460-1461.
R. E. BARLOW AND F. PROSCHAN (1975), Statistical Theory of Reliability and Life Testing: Probability

Models, Holt, Rinehart and Winston, New York.
P. H. DIANANDA (1962), On non-negative forms in real variables some or all of which are non-negative, Proc.

Camb. Phil. Soc., 58, pp. 17-25.
J. D. ESARY, F. PROSCHAN AND D. W. WALKUP (1967), Association of random variables, with applica-

tions, Ann. Math. Statist., 38, pp. 1466-1474.
R. GNANADESIKAN (1977), Methods for Statistical Data Analysis ofMultivariate Observations, John Wiley,

New York.
L. J. GRAY AND D. G. WILSON (to appear), Nonnegative factorization of positive semi-definite matrices,

Linear Algebra and Appl.
S. S. GUPTA (1963), Probability integrals ofmultivariate normaland multivariate t, Ann. Math. Statist., 34, pp.

792-828.



NONNEGATIVE CHOLESKY DECOMPOSITION 291

M. HALL, JR. AND M. NEWMAN (1963), Copositive and completely positive quadratic iorms, Proc. Camb.
Phil. Soc., 59, pp. 329-339.

K. JOGDEO (1964), Nonparametric Methods for Regression, Report $330, Mathematics Center, Amsterdam.
S. KARLIN (1968), Total Positivity, Vol. 1, Stanford University Press, Stanford.
D. KELKER (1970), Distribution theory ofspherical distributions and a location-scale parameter generalization

Sankhy Ser. A, 32, pp. 419-430.
P. R. KRISHNAIAH (1977), On generalized multivariate gamma distributions and their applications in

reliability, in The Theory and Applications of Reliability Vol. 1, C. Tsokos and I. N. Shimi, ed.,
Academic Press, New York,

E. L. LEHMANN (1966), Some concepts of dependence, Ann. Math. Statist., 37, pp. 1137-1153.
K. V. MARDIA (1970), Families ofBivariate Distributions, Hafner Publishing, Darien CT.
C. R. RAO, (1973) Linear Statistical Inlerence and its Applications, 2nd ed., John Wiley, New York.
D. SLEPIAN (1962), The one-sided barrier problem for Gaussian noise, Bell System Tech. J., 41, pp. 463-501.
J. F. STEFFENSEN (1922), A correlation-formula, Skand. Aktuar., 5, pp. 73-91.
R. S. VARGA (1962), Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, NJ.
J. WILKINSON (1965), The Algebraic Eigenvalue Problem, Oxford University Press, Oxford.
M. WOODBURY (1950), Inverting Modified Matrices, Memorandum Report No. 42, Statistics Research

Group, Princeton NJ.



SIAM J. ALG. DISC. METH.
Vol. 1, No. 3, September 1980

1980 Society for Industrial and Applied Mathematics

0196-5212/80/0103-0006 $01.00/0

A NOTE ON THE NP-COMPLETENESS OF VERTEX ELIMINATION
ON DIRECTED GRAPHS*

JOHN R. GILBERT,"

Abstract. A correction is made to Rose and Tarjan’s proof [SIAM J. Appl. Math., 1978] that determining
a minimum fill-in elimination ordering for a directed graph is NP-complete.

Vertex elimination on directed graphs is a model of Gaussian elimination on sparse
systems of linear equations, in which vertices model variables and edges model nonzero
coefficients. Eliminating a variable from the system (causing certain zero coefficients to
become nonzero) corresponds to deleting a vertex from the graph (causing certain edges
to be added to the graph). The zero coefficients which become nonzero while the
variables are eliminated in a specified order, or the edges which are added to the graph
while the vertices are eliminated in a specified order, are called the fill-in associated
with that order. Rose and Tarjan [1] present a number of algorithms relating to this
model, and prove complexity results about some of the problems involved. The purpose
of this note is to correct a flaw in the proof of their Theorem 10, which states that the
problem of finding an elimination ordering with the smallest possible fill-in is NP-
complete. We will not repeat their entire construction; the reader is assumed to have a
copy of [1] at hand, so we will use their notation freely without further explanation.

The difficulty lies in the construction that simulates a 3CNF problem by a minimum
fill-in problem. As the construction is given, in the second stage of elimination
(eliminating pqr(i) corresponding to false literals), suppose for example that in the
clause xyz only y is false, so only vertex xyz (2) is eliminated. This will cause fill-in of size
c2 from xyz(1) to X31(xyz(2)), which is unacceptably large. This problem can be solved
by adding to the construction edges pqr(1)-->X31(pqr(2)), pqr(1)-->X31(pqr(3)), and
pqr(2)--> X3(pqr(3)), but now another problem arises. Suppose for example that in the
clause xyz only x is false. Then xyz(1) will be eliminated while edges y xyz(1) and
xyz(1)---> X3a(xyz(2)) still exist; but edges y--> X31(xyz(2)) don’t exist, so c2 fill-in will
OCCUr.

Here follows a way to fix the construction. First we note that clauses containing
more than one instance of the same variable will cause trouble, so we assume that for
each variable x, no clause contains more than one x, more than one , or both x and $. A
way to modify the formula so that this is the case is given at the end of this note.

To modify the construction, add the three edges per clause mentioned above:

pqr(1)-> X31(pqr(2)), pqr(1)--> X31(pqr(3)), pqr(2)--> X31(pqr(3)).

Then remove all edges from vertices x or to pqr(i) or X31(pqr(i)), and instead add the
edges:

1. From x to xqr(1), pxr(2), and pqx(3).
2. From : to :qr(1), pr(2), and pq(3).
3. From x to: qr(i) and X31($qr(i)) for i= 1, 2, 3.

p$r(i) and X31(pr(i)) for i= 2, 3.
pq(3) and X31(pq.(3)).

Examples of the crucial part of the graph for clauses zxy and zy are given in Fig. 1.

* Received by the editors September 10, 1979, and in final revised form January 29, 1980.
Department of Computer Science, Stanford University, Stanford, California 94305. This research was

supported in part by a Hertz fellowship.
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X5o O

x
XoC) 0 0

x(zxy) (C)

FIG. a. Graph portion for clause zxy.

x

x,(zy) 0
FIG. lb. Graph portion for clause zy.

O X,

Now if F is satisfiable the elimination order still works, and fills in as given in [1]
(except that pqr(1) pqr(3) should be added to the second step; it doesn’t increase fill-in
because it occurs only if Xso - pqr(2) doesn’t occur). It is easy to see that the only places
this modification might change fill-in are during elimination of $ in the first stage, and
during the second stage. Since every edge a is accompanied by an edge x a except

X61, there is no new fill-in when is eliminated. During the second stage we need to
see that there is no fill-in from x or $ to pqr(i) or X31(pqr(i)). When eliminating a vertex
pqr(i), there is no fill-in from vertex because either the current literal isn’t and hence
there is no edge $ pqr(i), or it is and $, being false, has already been eliminated. The
situation for fill-in from x is similar. Either the current literal is x, in which case vertex x
has been eliminated; or the vertex pqr(i) has no edge x pqr(i); or the current literal is
in a clause containing an (and hence no x) and every edge x pqr(i) is matched by
edges x- X31(pqr(/)) for i<-]<-3, so there is no fill-in.

The proof that fill-in must be at least (I+3s/2/ 1)b if F is not satisfiable is
straightforward, and is not changed by the modification to the construction. The only
possible effect could be in case (ii)- some pqr(i) is eliminated before its corresponding
variable vertex and also before any vertex in Xa(pqr(i)). With the modified con-
struction this will still give c 2 fill-in from the variable vertex to X3(pqr(i)).

There is also a trivial typographical error in Table 1 of [1]: Xal(pqr(3)) has as an
adjacency in X33, not X23.
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To modify a formula in 3CNF so that no clause contains more than one x and/or Y
and so that every x occurs the same number of times as Y, we may proceed as follows.
First eliminate clauses containing both x and Y, and eliminate duplicate instances of
x or in each clause. Now replace each short clause p v q by (p v q v a) ^ (p v q v ),
where a is a new variable. Similarly replace each short clause p by (p v a v b)^
(p vvb)A(pva vb)^(pvvb).

Now all clauses have length three, and none contains more than one x and/or :. To
add an occurrence of x we add clauses (x v a v b) ^ (a v c v d) ^ (b v ? v d), where a, b, c,
and d are new variables. The new variables balance their negations, and the new clauses
are satisfied by a b c d true. Repeating this procedure enough times will put the
formula in the desired form, and will lead to at most a linear increase in size.

(In fact Rose and Tarjan’s original limitation on the formula, that x may not follow
Y in any clause, seems to be sufficient for the proof to hold; but the details of the
argument are extremely messy.)
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THE FKG INEQUALITY AND SOME MONOTONICITY
PROPERTIES OF PARTIAL ORDERS*

L. A. SHEPP?

Abstract Let (al, am, bl, bn) be a random permutation of 1, 2, m + n. Let P be a

partial order on the a’ and b’ involving only inequalities of the form ai < aj or bi < bj, and let P’ be an

extension of P to include inequalities of the form a < b; i.e., P’ P U P", where P" involves only in-
equalities of the form ai < b. We prove the natural conjecture of R. L. Graham, A. C. Yao, and F. F.
Yao [SIAM J. Alg. Discr. Meth. 1(1980), pp. 251-258] that in particular (*) Pr (al < bl P’) > Pr (al <
bl P). We give a simple example to show that the more general inequality (*) where P is allowed to contain

inequalities ofthe form ai < b is false. This is surprising because as Graham, Yao, and Yao proved, the gen-
eral inequality (*) does hold if P totally orders both the a’s and the b’s separately. We give a new proof
of the latter result. Our proofs are based on the FKG inequality.

1. Introduction. Suppose (al, a2, am, bl, bn) is a random (uniformly
distributed) permutation of 1, 2, rn + n. Following [GYY], we might think of
the permutation as the actual ranking of the tennis skill of players al, am, bl,

bn. Here player x always loses to player y in a match if x < y. In a c6ntest
between two teams A {al, am} and B {bl, bn}, suppose first that the
teams have never met before but the players of each team have played some matches
among themselves. Thus there is a partial order P between certain a’s and certain
b’s, e.g., a < (/2, al < a3, b2 < b, but there is no direct information about
the relative ranking of a’s vs. b’ s. Denote by Pr (a < bl P) the conditional proba-
bility that al loses to bl, given the partial order P.

After some matches between a’s and b’s have taken place, in which we shall
suppose that the a’ s have lost each match to the b’s so far, we have a new partial or-
dering P’= P U P", where P" contains inequalities of the form ai < bj; e.g.
P" {03 < b4, a5 < bz, }. Note that there are two ways to think about P: if P is
thought of as a partial order on {aa, ..., am, ba, ..., bn}, then the union
P t,J P" P’ is the larger partial order based on the additional information in P".
However, we shall think of P as a subset of permutations defined by the partial order
P so that the intersection P N P" P’ is the smaller subset of permutations based
on the additional information in P". Denote by Pr (al < b P’) the conditional prob-
ability that al loses to b given P’. It is tempting to conjecture that, in particular,

(1.1) Pr ((/1 < bl P’) -> Pr (a < bl ]P).
The additional knowledge with P’ that a’ s have lost to b’s prompts the belief (preju-
dice?) that a’s are inferior to b’s, and seems to make it more likely under P’ than
under P that a loses to bl. This conjecture of R. L. Graham, A. C. Yao, and F. F.
Yao [GYY] is true, as we show. However the same intuition makes it even more
tempting to conclude that (1.1) holds even if P contains inequalities of the form
ai < bj, because the prejudice under P that a’s are inferior to b’s is apparently fur-
ther reinforced by the new inequalities in P’. Nevertheless we give a simple example
to show this is false. Indeed let rn n 2 and

P {al < bz, az < bl},
(1.2)

P’ {a < b2} P.

Received by the editors January 14, 1980, and in final form March ll, 1980.
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It is easy to check that Pr (P)= 1/4, Pr (P’)= Pr (al < hi, P)= , Pr (al <
bl, P’) so that (1.1) asserts that] _-> , which is of course false. An even simpler
example was found by a referee: rn n 2, P= {a2<bl}, P’ {a2< b} f’l
P, Pr (al < bl[P’) - <- Pr (al < bl P).

The example (1.2) is especially surprising because (1.1) is valid even when P
contains inequalities of the form ai < bj, provided that P also contains inequalities
which give a total ordering of each of A and B separately. This was proved by
Graham, Yao, and Yao [GYY], and we give a new proof here.

We next give a more general formulation of the two results to be proved in 2,
and discuss the FKG inequality which we will use in their proofs. Let P0 be the
subset of permutations for which A and B have the complete order:

(1.3) P0 {al % a. <... < a,,} f’l {bl % bz < < bn}.

Suppose P1, P, P3 are each subsets of permutations which are intersections of
subsets of the form {ai < bj}. Then Graham, Yao, and Yao [GYY] proved"

Theorem 1. (Graham, Yao, Yao, [GYY]).

(1.4) Pr (Pa ]P Pz n Po) => Pr (P1 P2 71 Po).

Note that this is the result stated in the preceding paragraph if P1 is specialized
to a single inequality {a < b}.

Let Q0 be a subset of permutations defined by intersections of subsets of the
form {a < a} and {b < b} but not of the form {a < b} or {ai > bj},

(1.5) Q0 {ail < ail, ar < air} [’1 {bkl < bl, bk., < b.,},
and let P1, P be as in Theorem 1. Then Graham, Yao, and Yao [GYY] conjectured"

Theorem 2.

(1.6) Pr (P1 P n Qo) => Pr (P1 Qo).

The FKG (Fortuin, Kasteleyn, Ginibre) inequality was discovered [FKG] in
proving "intuitively obvious" conjectures about correlations in a statistical me-
chanics model. Although as shown in [FKG], the FKG hypothesis (1.7)-(1.10) is
only sufficient for the conclusion (1.11), in the present case I found the simple coun-
terexample (1.2) by looking for the simplest case of the general conjecture (1.1) for
which the FKG technique does not easily apply. Other applications of the FKG
inequality to prove known inequalities in combinatorics have been given in [SW].
D. J. Kleitman and J. B. Schearer [KS] also give an example where (1.1) fails if P
is allowed to contain a < b inequalities, and give a different FKG proof for Theo-
rem 1, but do not obtain Theorem 2.

The setting for the FKG inequality is as follows: Let F be a finite lattice; i.e., F is
a finite set F {x, y, z, } with a partial order x < y for which each pair x, y F
has a unique least upper bound x V Y and a unique greatest lower bound x A y,

(1.7) x/y@F, xAyF.

Further, F is assumed distributive; i.e. for all x, y, z F

xA(yvz) (xAy) V(xAz).

or equivalently, for all x, y, z F, x /(y A z) (x /y) A (x /z). Suppose/x, f, g
are real-valued functions on F for which for all x, y F,

(1.9) /z(x) _-> O, IX(X) lX(y) <- tx(x A y) lx(X / y),
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and f and g are monotonic in the same direction so that either

f(x) <- f(y),

f(x) >= f(y),

g(x) <= g(y), for all x and y, or

g(x) >- g(y), for all x < y.

The FKG inequality [FKG] then asserts

(1.11)

_
f(xlg(x)p(x) ., p(y) >- f(x)p(x)

_
g(y)p(y).

xF yF xF

2. Proofs of Theorems 1 and 2. Let F be the set of all (+n) subsets of {1, 2,
m + n} with m elements. For x- {Xl<X2<’’" <Xm}, Y {Yl<’’" <
Ym} F, say that x<y if xi_-<yi, i- 1,. ,m. Thus the elements of x/k

y- {(x/ky)l<. (x/k y)m} and x/y- {(x/y)l" (xk/ y)m} are

given fori- 1,. ,ruby

(2.1) (x/ y)i min (x, yi), (x /y) max (x, y).

Since x/ y, x /y F, (1.7) holds for F, <.
Examining all orderings of any three real numbers a,/3, 3/shows that

(2.2) min (c, max (, y)) max (min (a, ), min (a, y)).

From (2.1) and (2.2) we see that (1.8) holds so that F, < is also distributive.
Let P1, P2, P3 each be intersections of subsets of F of the form {x -<_ k},

i= 1,. ,m,k= 1,.. ,m + n. Let/z,f, g be defined by

(2.3)

1, ifx F71
tz(x) 0, else,

1, ifx F P1,f(x) 0, else,
1, ifx F 71 P3,g(x)
0, else.

Since xi_-<k, y-<k implies that min (x,y)_-<max (x,y)=<k, we se+ that
/z(x) /z(y) implies that tz(x/k y) /z(x k/Y) 1; thus (1.9) holds with equal-
ity. If x -< y andf(y) 1 then y P1. But ify -< k then xi _-< k, so that x P1 as
well, and f(x) 1. Thus f is decreasing, and similarly so is g. Thus (1.10) holds and
the hypothesis of the FKG inequality is satisfied. By (1.11), it follows that

(2.4) #(F 71 P1 71 P2 71 Pa)#(F 71 P.) => #(F 71 Pa 71 P2)#(F P2 71 Pa),

where #(A) is the cardinality of A.
Consider the one-one correspondence 4:F P0 in (1.3); here 4(x)= (a,
am, bl, bn), the permutation of(l, 2, m + n) which has a(x) x,

1, m, and bj(x) jth element of the complement ofx in {1, 2, m + n}.
Because the a’s and b’s are totally ordered by (1.3) in P0, we have

LEMMA 2.5. If (al, am, bl, bn) Po, then ai < bj if and only if
ai<-i+j-1.

It follows from (2.5) that for subsets P1, P., Pa as in Theorem which are each
intersections of subsets {a < b}, Pk h-l(P), 1, 2, 3, are each of the form
{x-< k}; so that (2.4) holds. Since 4 is one-one we have upon dividing by
((m + n)!)2,

Pr (P0 f P 71 P2 71 Pa) Pr (P0 N P2)
(2.6)

_-> Pr (P0 71 P1 N P2) Pr (P0 71 P. 71 P3),

which is the same as (1.4). Theorem is thus proved.
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We next prove Theorem 2. For N 1, 2,
integer-valued vectors x (al," am, bl,"

N}. Denote

x a= a(x), i= 1,
(2.7)

.., let FN be the set of Nm+n

bn) where each ai and b {1, 2,

Xm+ b b(x), j= 1,. ,n.

For x, y I-’N say that x < y if x a(x) <- a(y) y but xm+ b(x) >- b(y)
Ym+, J 1, n. The components of x/ y and x /y are

(x/ y) min (x, y), (x/ y)m+ max (Xm+, Ym+),
(2.8)

(x /y) max (x, Y0, (x /Y)m+ min (Xm+, Ym+).
Since x/ y, x /y FN, (1.7) holds for l-’u.

Because of (2.2), we again have (1.8) so FN, < is also a finite distributive lattice.
Let Q6 be a subset of 17’u defined by intersections of subsets of the form

{x" a(x) < as(x)} and {x" bi(x) < b(x)}, so that

(2.9)
Q {x" ail(X) < al(X),’"", air(x) < ar(x);

bll(x) < b ll(X), bks(x) < bts(x)},
and let P* and P be subsets of FN defined by intersections of the form
{x" a(x) < b(x)}. Let Ix, f, g be defined for x Fv by

1, ifx Q,
Ix(x) O, else,

(2.10)

{1, if xP*, {1, ifx
f(x) 0, else,

g(x)
0, else.

If x, y l-’u and Ix(x) Ix(y) 1, then x, y Q so that for z x or
y, at(z) < a,(z), 1, r, and bkt(z) < bh(z), 1, s. But then

rain (air(x), a(y)) < rain (a(x), a(y)), 1,... r,
(2.11)

max (bkt(x), bt(y)) < max (bt(x), bh(y)), 1,... s,

so that by (2.7) and (2.8), x/ky Q. Similarly, x/y Q, so that
Ix(x/k y)Ix(x /y) 1. Thus (1.9) holds. Note that (1.9) would fail if Q were al-
lowed to contain inequalities {a < b}.

Ifx<y andf(y) 1, thenyP*; so that a(x) <-a(y) <-b(y) <-_b(x) if
{a, < b} is any one ofthe inequalities involved inP*. Thusx P*, and sol(x) 1.
Thus f(x) is decreasing and so is g. Thus (1.10) holds and the hypothesis of the FKG
inequality is satisfied. By (1.11) it follows that

(2.12) #(Q P P)#(Q) ->- #(Q f3 P)#(Q P?).

Now consider the subset F of [’N, for which all a’s and b’s are distinct. Since
#(F) N(N- 1)... (N- n rn + 1), we see that

lim
#(rv)

1.(2.13)
N---oo J(FN)

In F however, al(x), "’’, am(X), bl(X), "’’, bn(x) are all distinct, and for each
x F a unique ordering of al, am, bl, bn is obtained by letting the or-
dering of ai(x), b(x) determine the ordering of a, b. For N >_- n + m, the fraction of
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F} corresponding to each ordering of al, am, hi, b, is 1/(m + n)!; so that
forN>=rn + n,

(2.14) #(a* C) Fv)= Pr (a)#(r)

Here A Qo, o o P, Qo o P 1 P, given in Theorem 2 and in (1.5), and the cor-
responding A* Q, Qo* P, Q Pf o P. Since for any A and the corre-
sponding A* we have

(2.15) #(A* ( (1-’N

as N w, it follows that also

I-’))) #(rN rv

lim
#(A*) Pr (A),(2.16)

N--- # (I-’V)

for A Qo, Qo 71Pi, Qo NPINP2, and A* Q, Q c) P, Q 71Pf OP2*,
respectively. Thus from (2.12) and (2.16) we obtain, letting N--+ ,
(2.17) Pr (Qo ("1 P1 f"l P2) Pr (Qo) --> Pr (Qo A P1) Pr (Qo (3 P2),

which is the same as (1.6). Theorem 2 is thus proved.
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AN ASYMPTOTIC SOLUTION OF INVENTORY LOT-SIZE MODELS
WITH HOMOGENEOUS TIME-DEPENDENT DEMAND FUNCTIONS*

MOSHE FRIEDMAN? AND JEFFREY L. WINTERS

Abstract. This paper considers a deterministic inventory lot-size model without backlogs with a con-
tinuous, time-dependent demand function of the form kt with k(>0) and r(> 2) known parameters and
t(>--to O) for time. Near closed-form expressions are developed for the asymptotic optimal replenish-
ment times and lot sizes as the time horizon tends to infinity. These expressions are easy to calculate and
give good approximations to the finite horizon problem. The results extend those of Barbosa and
Friedman (Management Sci., 24 (1980), pp. 819-826), where the considerably restrictive condition to 0
is required. An important special case of the present work is when the demand function is affine (r 1).

1. Introduction. This paper considers the classical deterministic inventory lot
size model with a continuous homogeneous time-dependent demand function. It
derives an asymptotic solution for the optimal replenishment schedule, or equiva-
lently for the optimal lot sizes, since backlogs are prohibited. The solution is easily
implementable, involves only very simple calculations, and is a very good approxi-
mation even for short time horizons.

The main thrust for taking up the problem is to solve it for the linear time-
dependent demand function kt + kl, with k, kl > 0 the known parameters, and

_-> 0 for time. A simple transformation, i.e., --+ k l/k, brings the linear function
to the form kt, >- to kl/k > 0. The condition to > 0 is crucial since it signifies a
general linear demand function versus the time-proportional one, with to 0, that
necessitates much simpler analysis. Since we essentially use the homogeneity prop-
erty of the demand function and not its linearity, we shall develop the solution for
general one-variable homogeneous functions ktr, k > 0, r > -2, _>- to > 0. More-
over, a general r may still represent viable markets for a commodity, and give mod-
elers greater latitude, like a vanishing market if r < 0, or a rapidly increasing one if
r>l.

The investigation of the impact of a dynamic demand function on the optimal
policy in inventory and production systems has constituted a considerable share of
both deterministic and stochastic mathematical inventory theory (see, for instance,
Hadley and Whitin [7], Naddor [8], and Veinott 12]). A well known approach is the
Wagner-Whitin [13] one, which addresses a periodic review problem with general de-
terministic demand. An alternative approach examines markets whose development
over time can be reasonably estimated by a linear (regression) function kt + kl. For
convenience purposes the classical inventory lot-size model has been chosen as a
framework.

Special cases of the latter problem have already been solved. The case k 0,
kl > 0, namely, constant demand with infinite time horizon, which in fact signifies
the advent of mathematical inventory theory, was solved in 1915 yielding the cele-
brated Wilsonian "square root law" (see, for example, Naddor [8]). It was further
extended to finite time horizons by Carr and Howe [4]. It should be emphasized that
the square root law has been extensively used as a rule of thumb in a variety of situa-
tions with average demand substituting the perceived fixed demand. Sasieni et al.

* Received by the editors November 13, 1978, and in final revised form April 18, 1980.
? Operations Research Center, Bell Laboratories, Holmdel, New Jersey 07733.
$ Department of Mathematics, Arizona State University, Tempe, Arizona.
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[10] is the earliest source where the case k > 0, k 0, namely, time-proportional
demand, was alluded to (see problem 2, page 80). Naddor [8, Chapt. 7], suggested
elaborate solutions under restrictive conditions, and also considered a good heuristic
solution which nonetheless is still not the optimal one. Resh, Friedman, and Barbosa
[9] gave the optimal solution for both finite and infinite horizons and established the
"cubic root law." Later on, Barbosa and Friedman [2], noting that the solution is
based upon the homogeneity property of the demand function, extended it to the
family ktr, k > O, r > -2, 0 <= <- T, of demand functions, and introduced the gen-
eral "(r + 2) root law," again for both finite and infinite horizons.

The real problem seems to be, however, with the demand function being off the
origin, i.e., when both k, kl > 0, or in the alternative setting, when both k, to > 0.
Until very recently it remained unsolved. Donaldson [5] suggested a good attack
method, and Silver [11] gave good heuristics. Barbosa and Friedman [3] established
the exact solution for finite time horizons and provided computational means for cal-
culating it. Friedman [6] extended these results to general time-dependent demand
and carrying cost rate functions. It turns out, however, that the application of the so-
lution is tedious, and that it is relatively insensitive to the length of the finite time
horizon. Furthermore, both Donaldson and Silver remark that a prescribed finite
time horizon is a very precarious piece of information. Hence, an asymptotic solu-
tion for the problem is of primary relevance for both the theorist and the practitioner.

The importance of the asymptotic solution is two-fold. It first provides a quick,
good approximation for finite time horizons, but beyond this it should be also con-
ceived as a rule of thumb that replaces the classical square root law. These two as-
pects of it will be further discussed in 3.

Section 2 formally states the problem, while 3 gives the solution in a concise
form, illustrates its rapid convergence, and suggests a general purpose usage of it.
Section 4 lists background material for finite time horizons. Sections 5 and 6 prove
existence and provide computational means for finding the asymptotic solution,
respectively, while 7 discusses other closely related cases. A heavily technical
proof of some uniform convergence can be found in the Appendix.

2. The problem. Consider a time-continuous inventory system with demand that
is deterministic and of the form b(t) kt, where k > 0, r > -2 are known con-
stants and stands for time, >_- to > 0, with to known. We shall assume that replen-
ishments are instantaneous and made by lot sizes, backlogs are prohibited, and
hence the pertinent costs are the carrying cost c dollars per unit per unit time and
the replenishment cost ca dollars per order. Note that the shortage cost is c2 .

It is easily shown that orders are made when the stock level falls to zero, and
that the first order is at to. The problem is to find the optimal asymptotic replenish-
ment schedule so as to minimize the total carrying and replenishment costs.

Mathematically the model is as follows: Let m be the number of replenishments
throughout the finite planning horizon [to, T], m l, 2, Let t, 0, l,
m- 1, denote the replenishment times where to, tm =-T are known and

to <- tl <- <- tin. The stock level at time Its, t+l) is given by

(1) y(t, ti+l) b(u) du,
Jt

and by definition the lot size quantity qi at time t is qi y(t, ti+l). Let (t, t+l)
denote the total inventory carried throughout the ith period, namely,
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ti+l
(2) ’(ti, ti+l) y(t, ti+l) dt.

3t

Hence, for an m-replenishment system, the total inventory is
rt--1

(3) Y(m, t(m)) (t, t+),
i=0

where t(m) (tl, tin-a). For the finite time horizon case the problem is to find
an integer m and a vector t(m) so as to minimize the total cost function

(4) C(m, t(m)) ca Y(m, t(m)) + c3m.

Suppose m* m*(T) is optimal for [to, T] and t(m*), 1, m* 1, is
the respective optimal replenishment schedule for m*. The problem to be tackled by
the manuscript is" Find t limr__, t (m*), 1, 2,

3. The solution. Let the sequence {cg} be defined as follows" For r 1,

(5) ci [(r + 2) (r + 1)oi_l]-1/(r+l), 1, 2,’’’

and forr= -1,

(6) c exp {-(1 c-1)}, 1, 2,

for some c0 [0, 1).
Intuitively, c t/t+l. The recursive relation in consecutive ratios of the op-

timal replenishment times is the exact place where the homogeneity property of the
demand function is employed. Note that so far the particular c0 is still unknown.

Let the functions Rm(co), Sm(ozo) be
m--1

i=0
Rm(oo) [Om_l- Om_2]l/(r+2)

(7)
m-1

i=0
Sm(oo) [OZm_ Olm_l]l/(r+2)

m 2, 3,

and let L(o) be

(8) L(c0) lim Rm(oo)-- lira Sm(oo).
m m

Rm(ce0), Sm(oo) should be conceived as elaborate lower and upper bounds for
the finite horizon solution. Their convergence to the same limit indicates that the
finite horizon solution does the same.

Let c0 be the unique solution to the equation

Then,

The solution is readily implementable since the sequences {c},H- cj, and the

function L(c0) are easily tabulated.
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As a matter of fact only t* is of practical relevance since demand will be esti-
mated afresh after each replenishment. Consequently, only s0 should be calculated,
via (8), from L(c0) tables according to the specific parameters of the problem.

To demonstrate the rapid convergence we shall give an extreme example, for a
very small m, considered first by Donaldson [5] and Silver [11]. Demand is over the
period [6, 17] with cost parameters c 0.1 and ca 9. Donaldson [5] finds that the
finite horizon optimal solution is m* 3 and t](3) 10.2. Now, the RHS of (9) is

x .1
0.9283. By the tables, L(0) 0.9283 yields 0 0.58167. Using

(10), t()= to/o 6/0.58167 10.3, a very close approximation. For bigger
m*’ s, t (m*) and t () are hardly distinguishable. Notice also the lack of almost any
computational effort compared to the tediousness of the iterative procedures
suggested by Donaldson [5] and Silver [11].

The classical EOQ formula (which is obtained as a special case of our model by
putting r 0) has provided a good rule of thumb for determining the optimal lot
sizes, namely, order the quantity (2kca/c) whenever the stock level depletes to
zero, where k is the average demand per unit time. Intuitively, this method is not rea-
sonable when demand reveals a strong upward trend. In this case our results put
forth a simple, easily implementable, rule of thumb for ordering the optimal lot sizes.
It renders insight and may be considered as a complement to Wagner and Whitin’s
approach. The rule is: estimate demand by a statistical linear regression technique,
determine 0 from the tables of L(0) via (9), compute t to/o, and order the lot
size quantity fkt dt k(t t). Repeat the procedure afresh when the stock
level falls again to zero, etc. Observe that the method tacitly assumes that the
variance around the regression function is small, to justify the deterministic ap-
proach.

We now proceed to formally prove the asymptotic solution.

4. Review of finite time horizon results. The proof relies heavily on the results for
the finite time horizon [t0, T]. This background material will be given here with some
of the proofs (originally given in [3]) to make the paper self-contained.

Let H denote the set of all homogeneous functions of two variables having a de-
gree of homogeneity r.

The next lemma is embedded in the entire analysis and hence should be explic-
itly stated. (Background lemmas are enumerated by Roman numerals, whereas the
new lemmas and theorems are enumerated by Arabic numerals.)

LEMMA I. Let b(t), y(aa, az) and (a, az) be related as in (1)-(2). Then the
following relations exist:

(11) {b(t) kt}{y(al, az) Hr+l}{(al, az) Hr+z}.

LEMMA II. Let the sequence {a} be defined by the recursion formula

(12) y 1,-- -_, i= 1, 2,-..,

with c0 E [0, 1), where y(al, a2) is given by (1) and b(t) ktr, k > 0, r > 2. Then,
c is a strictly monotone increasing concave sequence with limit 1.

Equation (12), which is a combined form for (5) and (6), is important since it
spares the need to give separate proofs for different values of r.

COROLLARY II.I. is strictly increasing with Co.
Let the function ym,(Co) be defined as
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m-1

(13) ]/m,i(O0) 1 c, i= 0, 1, 2,.’., m- 1; m 1, 2,

where the sequence {ci} is given in (12) for c0 [0, 1), and set

(14) )tm,m(Oo)-- 1.

LEMMA III. Thefunctions Tm,i(Ceo)are continuous and monotonically increasing
with o for every Co [0, 1). In particular this holds for Ym,o(Co), and note that
ym,o(0) 0, Ym,0(1) 1. (C0 is excluded from the analysis, however, ym,o(1) is
still defined.)

--1COROLLARY III.I. The function Ym,o(ao) has an inverse ym,o with domain [0, 1).
LEMMA IV. Let [0, 1) be an arbitrary number. Then, co(m, -) Tm,o(’r)-I

which solves the equation Tm,o(Oo) ’, has the following properties: ao(m, ’) is

unique for a given pair (m, -), Co(m, O) Ofor every m, ao(m, ’) is monotonically
increasing with m for every - (0, 1) and bounded by 1, limm co(m, ’) Co(r),
where co(0) 0 and o(’) for - (0, 1).

The optimal replenishment schedule, for a given m, is

(15) t(m, to, T) ym.(ao)T, 1," m 1,

with Co Co(m, to ya.o(to/T). Note that by the definition of Co, (15) holds also
for 0.

Let Y*(m, to, T) minm Y(m, t(m)), where Y(m, t(m)) is given in (3), and let
A Y*(m, to, T)= Y*(m, to, T)- Y*(m + 1, to, T). The following properties of
these functions will be needed.

LEMMA V. Y*(m, to, T) is strictly decreasing with m, A Y*(m, to, T) is strictly
increasing with T and strictly decreasing with m, meaning that Y*(m, to, T) is
strictly convex with m.

This lemma implies that the unique optimal m for [to, T] is the first m* that sa-
tisfies A Y*(m*, to, T) <- c3/cl.

LEMMA VI. The explicit form of Y*(m, to, T) is

k Tr+2(16) Y*(m, to, T)
r + 2 Pm

with

(17) Pm (1 Om-1) (to/T)r+2(1 -1),

where Co ao(m, to/T) -1Ym,o(to/T), Cm-a Cm-l(C0(m, to/T)) via (12),
1 0-1 =-- (1/k)y(1, (1/ao) (extending (12) to include the index -1).

Proof. Using (3), Lemma I (the homogeneity of ’) and (15) we obtain

and

(18)

where,

Y*(m, to, T) Qm Tr+2,

m--1

(19) Qm Z "(3tm,i(Oo)’ /m,i+l(O0)), m 1, 2,
i=0

with Co --- ao(m, to ]/m,o-1(to Noting that ]/m,m_l(O0) Otm-1 and using again
the homogeneity of " it follows that
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(20)

m--1

Z z(’)/m’i(o/0)’ ")/m,i+l(o/O))
i=0

m-2

(--O/+-21 Ii=0 (/m-l,i(o/O), ")/m-l,i+l(o/O))-{- 1,
o/m--1

and hence

(21) Qm o/n+--21 IQm-1 + (1, )] m 2, 3,
o/m-1

Notice that Qm, Qm-1, and o/m-1 in (21) are based upon the same c0(m, to If we
start our calculations with m then Qm-1 will be derived from o/0(m 1, to
and will have a different value.

Applying to (1, (1/O/m_l) the fundamental theorem of the homogeneous func-
tions, namely,

0 (al, az) 0 z(al, a.)
alOal Oa2

and employing the fact that

0 (al, a2)
-y(al, az) and

Oal

with (12), yields

kQm
r + 2 (1 O/m-l)

(22)

m-1

Applying (22) repeatedly implies

(23)

kQm
r + 2 (1 O/m-l)

az (r + 2) ’(al, az),

with

0 (al, a)
(902

r + 2 (1 O/m-2)

b(a2)(a al)

H O/’+2 Q1 (1 O/o)
=1 r+2

f’o (24) Q1 "(O/0, 1) ktl du dt,

and O/o O/0(m, to/T) "Ym,0-1 (to/T). Observing, via (13), that

m-1 r+2 T)r+2’ym,O (o/o) (to/1-I

noting (by the homogeneity of (1, (1/o/o))) that Q1/o/+2 (1, (1/o/o))- -y(1,
(1/o/o))/(r + 2) + k(1 O/o)/(r + 2)O/g+2 and using (12) to define O/-1 completes
the proof. QED

Equation (17) reads explicitly: For r 1,
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(25) Pm=(1-Cem-1) (t/T)r+2(lr+ 0+1 )
and forr= -1,

(26) Pm (I Om-) (to/T) In (1/Oo).

The unique optimal m* is determined by

(r + 2)c3(27) Pm*- Pro-+1 <= :- T+z <= Pro*-1 Pro*,

and the optimal replenishment schedule is given by (15) for rn m*.

5. Existence of the asymptotic solution. In this section we prove that the asymp-
totic solution exists. This will be shown by proving that limT_ c0(m*(T), to
a0 > 0 exists. Eq. (15), with m m*, implies that t (m*, to, T)/t+(m*, to, T)
c(m*, to If a0(m*, to converges to a strictly positive limit c0, then
t] to/co exists. The limiting c’s, 1, 2, are computed via (12), with the
limiting a0, due to the continuity, and the limiting t’s are sequentially generated by
t{ t-l/ci-1. Hence, if a limiting positive c0 exists the entire asymptotic solution
also exists.

The next lemma guarantees that there is an optimal m* for any c3/cl, as small as
it can be.

LEMMA 1. Let Y*(m, to, T) and A Y*(m, to, T) be defined as in 4. Then,

(28) lira A Y*(m, to, T) O.
m---

Proof Since Y*(m, to, T) decreases with m, AY*(m, to, T) > 0. Y*(1, to, T)
exists and i=a’ A Y*(i, to, T) Y*(1, to, T) Y*(m + 1, to, T) is increasing with

rn and bounded from above by Y*(1, to, T). It follows that limm--. m__ AY*(i,

t0, T) exists and hence limm Y*(m, to, T) 0. QED
The following lemma lists some properties of the sequences a that will be

needed later on.
LEMMA 2.
a. For a fixed m, ao(m, to is decreasing with T, and ao(m, to

ya,o(to/T) O.
b. lim (m(m + 1, to/T)- m-(m, to/T)) 0, where m(m + 1, to/T),

m-(m, to/T) are computed via (12)r o(m + 1, to/T), ao(m, to respectively.
c. o(m, to to/T.
d. o(m + 1, to < (to/T)(a a0-1, where the are computed via (12)for

0 O.
Proo
a. Follows from the definition of a0(m, to and Lemma II.
b. Let am be computed by (12) for a0 0. By Corollary II.I, am < am(m + 1,

to for every T, by a we can choose T large enough such that am-(m, to < am,
and combined we can choose T large enough so that m-(m, to am <
am(m + 1, to Since am-a(m, to decreases with T the result follows.

c. Follows from the definition of a0(m, to and the fact that a(m, to < 1.
d. By the definition, a0(m + 1, to (to/T)( a(m + 1, to-. Since,

by Corollary II.I and a, a < a(m + 1, to the result follows.
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The following lemma is needed for determining the behavior of m* as a function
of T.

(29)

A Y*(m, to, T)

30)

(31)

LEMMA 3. Let Y*(m, to, T) and A Y*(m, to, T) be defined as in 4. Then,

lim AY*(m, to, T)

Proo]i Consider first the case r 1. Using (16) and (25), AY*(m, to, T) is

k [ Tr+2(Cm(m + to Cm-l(m tor+2

t+2 {
r + ,(Co(m, tor+l (ao(m + 1, tor+l

Using Lemma 2 we shall now find a lower bound to A Y*(m, to, T).
By Part c of Lemma 2,

<= (T/to)r+l, r > -1,
(co(m, to/T)r+l >= (T/to) r+l, -2 < r < -1.

By Part d of Lemma 2,

(Co(m + 1, tor+l(32)

Combining (31) and (32) yields

> (T/to)r+l oi r > -1,

< (T/to) r+l ci -2 < r < -1.

1
(Co(m, tolT)) r+l

(T/to) r+l

(r/to/

Employing (33) in (30) implies

(c0(m + 1, tor+l

Oi) r+l )

(33)

(34)

r> -1

-2 <r< -1.

k [Tr+z(Cm(m + to/T)-A Y*(m, to, T) >
r + 2 Cem-l (m, to

t0 m r+l

Notice that the inequality in (34) holds for both r > 1 and 2 < r < 1 since the
term t+Z/(r + 1) takes care of the sign.

Now, the first term in the square brackets in the right-hand side of (34) tends to
infinity on order of Tr+z, since by Part a of Lemma 2, Om(m + 1, to
Cm-l(m, to is bounded away from zero, The second term tends to infinity on order
of Tr+l. Therefore, the difference, and thus A Y*(m, to, T), tends to infinity with T.

Take now the case r 1. By (16) and (26), A Y*(m, to, T) is

(35)
A Y*(m, to, T) k[T(am(m + 1, to Om-.l(m, to

to(In (1/Co(m, to/T)) In (l/ao(m + 1, to/T)))].



308 MOSHE FRIEDMAN AND JEFFREY L. WINTER

We shall again bound A Y*(m, to, T) from below. By Part c of Lemma 2,

(36) In (1/a0(m, to <= In (T/to).

By Part d of Lemma 2,

(37) In (/co(m + , to/r > In (T/to) o

Combining (36) and (37) yields

(38) In (1/o(m, to/T)) In (1/o(m + 1, t./rll < -ln

Employing (38) in (35) implies

(39) A Y*(m, to, T) > k T(m(m + 1, to m-a(m, to + to In a

Since, by Part a of Lemma 2, m(m + 1, to m-(m, to is bounded away
from zero, the lower bound in (39), and thus A Y*(m, to, T), tends to infinity with T.

COROLLARY 3.1. The optimal m, m* m*(T), is an increasing, unbounded step

function of T.
Proof. Follows from the definition of m*, Lemma V and Lemma 3.
The next theorem guarantees the existence of the asymptotic solution.
THEOREM 1. Let the unique m* m*(T) be determined by (27), and let

o(m*(T), to y;t.o(to/T). Then

(40) lim ao(m*(T), to/T) o > O.
T

Proof. By Corollary 3.1 there exists a closed interval ITS, T] such that m is op-
timal for It0, T] for each T ITS, T]. Observe that T T+a, meaning that at
this point both m and m + 1 are optimal. This happens when the left inequality in
(27) is satisfied as an equality. Let a;(m) a0(m, to/T) and (m) o(m, to/T).
By Part a of Lemma 2, for every T ITS, T]
(41) a(m) ao(m, to a;(m).

It therefore suffices to show that both ;(m), a(m) converge to the same limit; as T,
and thus m, by Corollary 3.1, tend to infinity.

Since m + is optimal for T+I, it follows by Bellman’ s inciple of Optimality,
that m is optimal for t(m + 1, to, T+I), and thus t(m + 1, to, T+I) ITS, T].
By the definition of 0(m, ), (13), and (15),

a;(m + 1) a0(m + 1, to/T+l)

to t0
(42) Tm+l,(0)T+ Tm,(o)m(o)T+

t0 t0
Tm,a(o)Tm+a,m(o)T+l Tm,(o)t(m + 1, t0, T+I)

ao(m, to/t*m(m + 1, to, T’m+)).

Combining (41) and (42), we obtain that

(43) c;(m + 1) _-< c;(m).

Similarly, c"(m + 1) Co(m + 1, to/Tin+a)" Ozo(m, to/t*m(m + 1, to, Tin+a))." Since,
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again by Bellman’s Optimality Principle, t*m(m + 1, to, Tn+l) [T, T’], it follows
that

"(m) < (m + 1)(44) c0

Combining (41), (43), and (44) yields

(45) c(m) _-< a(m + 1) _-< c(m + 1) _-< c(m).

(45) readily implies that limm a(m)-= a, and limm__. c(m)---c exist, since
c(m) and c(m) are monotone bounded sequences, but not necessarily that
OZ0 Olo.

because of (41) Lemma II and Corollary II.ISuppose Co Co. Since co < c0,

imply that 1-[J- cy < I-I- aj, or alternatively, that

i--1

(46) 1-[" ’"tcej/cj) > l,
j=0

where cj, c;.’ are computed via (12) for c, c, respectively Since ’"cj/aj > 1, the
product in (46) increases with i. Recall also that cj converges to with j. It is thus
possible to choose m large enough such that c IIm__- (cj/c) > 1, or alternatively,

that

m-10l’Jt"(47) 1-[ a; > 1-I
j=o j=o

Employing (43) and (44) yields

(48)

By (13) and (15),

t0/l cj(m

m m-1

[I c](m + 1) > I-I c;’(m).
j=o j=o

+ 1) Tn+l and
j=O

(48) then implies that T > T+I, which contradicts Corollary 3.1. Hence,
c0 c0 c0, which is obviously positive.

The convergence of c;(m), c(m) to c0 is illustrated in Fig. 1.
So far we have established the existence of the asymptotic solution. We do not

have as yet any computational means to calculate it, however. This; namely, the
determination of a0; is the subject matter of the next section.

6. Calculation of the asymptotic solution. Isolating T in (27), using (17) to put
lower and upper bounds on T, and using these bounds in (15), for 1, implies

[ ] 1/(r+2)(r + 2)C3 + /+2(O_l(m, o_l(m* 1)) fm*(Oo(m*), Co(m* I))kc

<- (t(m*, to, T)
(49)

[ ] 1/,r+2,
< .(r + 2)ca + t+2(a_a(m, + 1) a_l(m*))

"gm* (ao(m* + 1), ao(m*));

here
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ao(m)

ao

m T:Tin +’ T +:T’m+
FIG. 1. The convergence of a(m), a(m) to a.

(50) fm(o, #o)
i=1 1=1

[Om_l #m_2]ll(r+2), gm(O, #0) [OZ.m #m-1Ill(r+2)

are defined on the compact region 0 _-< flo -< ao -< 1 e, for e > 0, and ci, fii are
defined via (12) for Co, /3o, respectively. Note that m c,, (Co(m* + l, to
Om*-i---Cm’-a(ao(m*, to/T)), Om*-2 ---Om*-2(OO(m*- 1, to/T)), Ot-l(m*-k-1)-
Ce_l(tx0(m* + 1, to/T)), C-l(m*) Ot_l(Ot0(m*, to Ot-l(m* 1) Ot_l(tx0(m* 1,
to Since from now on we shall deal only with m* m*(T) that is optimal on
[to, T], for the sake of notational convenience the dependence of T and the"*" will be
suppressed.

Letting T tend to infinity in (49), while employing Corollary 3.1, Theorem 1 and
the continuity in (49) and (12), implies

(51)
lim fm(ao(m), ao(m 1))
m---

+ 2)c 7 ’/(+z)

gm(ao(m+l) Co(m))r|(r+2)c|1/(r+z)<t < lim
m---, L C;

provided that the limits in (51) exist. We shall now proceed to prove not only that
these limits exist but that they are also equal.
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The limits offm(so(m), so(m 1)), gm(so(m + 1), s0(m)) are obfuscated by the
intricate dependence on m. The functions themselves as well as the arguments de-
pend on m. Since we know already that so(m) converges, uniform convergence of
fm(So, flo), gm(So, flO) of (50) will allow us to write limmfm(so(m),
so(m 1)) limmfm(SO, SO), where So limm s0(m 1) limm__,o so(m),
and the same for g (see, for instance, Apostol [1]).

The following lemma guarantees the uniform convergence of fm(So, flo),
gm(So, [30) of (50).

LEMMA 4. Let the function h(x) be given by

(52) y(1, 1/h(x)) x,

for x [0, 1), where y(al, a2) is given by (1) and b(t) ktr, k > O, r> -2,
>-_ to > O. Let si h(si_i), h(i-1) and let fm(So, o), gm(So, [30) be given by

(50) for the compact region 0 <= flo <- So <- 1 e for e > O. Then, fm and gm cort-

verge uniformly as rn tends to infinity.
The proof of Lemma 4 is given in the Appendix.
The investigation culminates in the following theorem.
THEOREM 2. Let So limm so(m), and f(so, flo)= limmfm(SO, 0),

g(s0, /30) limm gin(So, fl0), where fm(So, flo), gm(So, [30) are given in (50).
Then,

(53) t*
(r + 2)c3 1/(r+2) (r + 2)c3
c7 f(so, So) -c7 g(so, So).

Proof. By (51) and Lemma 4,

[ f(so So) < tl* < .(r + 2)c 1/(r+2)

c go, o,

where s0 limm_, so(m- 1)= limm_ so(m)= limm so(m + 1). It is left to
show that f(so, s0) g(so, So). Take the ratio

fm(So, Oto) Sm Sm-1
gm(So, So) Sm-1 Sm-2

(5)

[.h(cm-1) h(sm_2) 11/(r+2) -- (h’(1))1/r+z) h(1)
Sm-1- Sm-2 m--)

and the result is obtained. QED.
Combining (53) and t to/so yields the following equation for. s0,

0/[ I 1/(r+2)

(56) s0f(so s0) (r + 2)c

Notice that the function s0f(s0, So) vanishes for So 0 and is strictly increas-
ing to infinity as s0 approaches 1. Consequently, (56) has always a unique solution.

The best way to summarize the results is given in 3. The convergence rate of
the asymptotic solution as well as its usage as a general rule of thumb were also dis-
cussed in 3.

7. Discussion. This paper is basically written for linear functions with a positive
slope, and for inventory settings. If the regression line has a negative slope, i.e.,
kit TI , or the limits of the integral in (1) are switched to read fib(u) du, to repre-
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sent a waste disposal case for example (the mirror image of the currently treated
system), the solution looks as follows. For r 1, let

r+l
(57) i i= 1, 2,...r+ 2- Rr+l’

and for r 1, let

(58) exp {1/ -1

Define

1}, i= 1,2,

m--1

(59) m,i(O) I-I 8J, O, 1,... m 1; m 1, 2,...

with aYlfm,m(O) 1. Let

(60) 3o o(m, to -1aYlm,O (to/T),

and

(61) Pm (1/m 1) (to/T)r+2(1/8o 1), rn 1, 2,....

The optimal rn is uniquely determined by

(r + 2)ca
(62) Pm Pm+l <= :-1T+2 <= Pro-1- P,,

and the optimal times are

(63) t qm,i (80) T, 1, 2,’’" rn 1

where rn is optimal.
The asymptotic solution of this problem will be identical, mutatis mutandis, to

that of the previous one. Theorem 2, for instance, will read

(64)

where i0 limm__, 0(m). Tables may be easily produced also here.
The solution relies heavily on the homogeneity of the function kt, namely, on

the utilization of the sequence c t/t+l. Note that the convergence of ci to is
not retained if r =< -2, and consequently m* is bounded when T tends to infinity.
This makes the analysis for infinite horizons uninteresting.

Asymptotic solutions or algorithms for a general demand function b(t) are yet
unavailable, and are currently under study by the authors.

Appendix.
Proof of Lemma 4. From its first two derivatives it follows that h(x) of

(52) is strictly increasing and convex and h’(x) (h(x))+2. Therefore,
h’(x2)(x2 Xl) > h(x2) h(Xl) for x2 > Xl. It follows that O/rm+2(Om_l m-2) >
O/m /m-1 or Olm(Olm_ m_2)l/(r+2)/(Olm m_l)1/(r+2) > 1. Thus,

(65) fm+l(oo,/0) --fm(Olo, [0) Olm(Olm-1 [m-2)1/(r+2)
(Olm Olm_l)l/(r+2) > fm(Oo, 0)"
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By the definition, fm(ao,/30) -< fm(ao, a0). It was proven in [2] that limm f(0, 0)
exists. We shall now show that limm_ fm(ao, ao) exists for any ao [0, 1). Let
a be computed for the given ao and a 0, respectively. Since lim,oo a 1, it is
possible to choose such that a < a;. Then, aj+l < aj+ by Corollary II.I. Conse-
quently, H I---Ira+i--1 since {ai} isj=l aj < l .[j--i aj, and also am am-1 am+i-1 am+i-2,

concave by Lemma II. Hence,

(66) Jam- am-l]l/(r+2) <

which yields

[a+i_ a+i 2]l/(r+2)

(67) fm+(aO, a0)< fm+(0, 0)\] aj

f(a0, a0) is thus bounded from above by a convergent sequence. By (65), fm(ao, ao)
is also increasing with m, so limm fm(ao, ao) exists. It follows that fm(ao, rio) in-
creases with m and is bounded from above by a convergent sequence, and hence
limm f(ao, rio) exists and equals f(ao, rio), say.

We still have to prove that the convergence is uniform. For this end we shall
prove thatf(ao, rio) is continuous. This will be accomplished by considering the par-

r(x) dai/da- (x -’)i’{dai+l..___/gao dai/daol,\
ai \ ai+l ai !

(71)
x[i,i + 1),i= 1,2,....

Since (daffdao)/ai decreases and goes to zero with i, r(i) (daffdao)/a, and r(x) is
linear on [i, + 1), it follows that limx_ r(x) 0. Let

s(x) exp r(u) du x [i -, + ), 1, 2,....

function

1 )--(r+3)/(r+2) dam-1
m-1

(68)
r + 2 (am--i im--2 dao Hi=i ai

da-[- (am_ m_2)-l/(r+2)

Employing (12), (52), and h’(x) (h(x))+ brings aboutdffd_ r+. Applying
the chain rule and (50) implies

d(69) o = ;+= (f,+(o, o))+(- -1),
j=l

which, substituted in (68), yields

Of(ao, o) - dai/dao
(7o) o r + 2 (fAro, o))+ + faro, o) .

i=l

By (69), daffdao decreases with i, because a+z< 1, and goes to zero since
lim (f+a(ao, flo)) +z exists and limi (a- fl_a)= 0. a increases with i, so
(da/dao)/a decreases with i. To show that ia(dai/dao)/ai exists, define the

tial derivatives off(ao, /30).

Ofm(ao, o)
0ao
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Since limx__,= r(x) 0, also limx_+= fr(u) du 0, where x [i 1/2, + 1/2). Thus,
limit= s(x) limi__) ai 1. Note also that s’(x)/s(x) r(x). Finally,

da/dao < r(x) dx (s’(x)/s(x)) dx
i=2

(72)
[ln s(x)] In In s(1) -ln SI.

Eq. (72) asserts the finiteness of _,il(dsi/doo)/S. This implies, via (70), that

limm_, (Olin(so, 0)/0so) is finite and in particular

(73) < M(so, o),

for some constant M(s0,/30). In a similar manner it can be shown that also

(74)
Ofm(Oo, ,0) < K(so,/30,

for some constant K(so,/30). By the continuity of the upper bound in (73) with
respect to (So, fl0), it may be easily deduced that both partial derivatives of
fro(so,/30) are uniformly bounded for all rn and (So,/30). This immediately implies
(see Apostol [1]) that a Lipschitz condition holds for all rn and hence that
limm_,= fm(S0, /30) f(s0, /30) is continuous with respect to (s0,/30). Dini’s theorem
now applies (see Apostol 1] again) and the convergence offm(s0,/30) to f(s0,/30) is
uniform. The proof for gm(so, flo) is accommodated along almost identical lines.
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SINGLE FACILITY /v-DISTANCE MINIMAX LOCATION*

z. DREZNER AND G. O. WESOLOWSKY$

Abstract. We discuss the problem of locating a new facility among n given demand points on a plane.
The maximum weighted distance to demand points must be minimized. The general/v-norm (p -> 1) is
used as distance measure. The method is quite fast computationally: for example, a 3000 demand point
problem in l. is solved in half a second.

Introduction. The minimax location problem has been treated extensively in re-
cent literature. A survey is presented in the book by Francis and White [5]. More re-
cent examples are [3] and [4]. In this paper, we present a fast method for locating a
single facility on a plane according to the minimax criterion for general or/v-dis-
tances. It should be noted that single facility location can be used as a component in
multiple facility location; we intend to pursue this approach in a later paper. Related
problems, but defined on a network, appear in [6], [7], and [8]. A similar approach to
ours, but for the special case of the/T-norm, was discussed by P. M. Dearing [2]. We
will refer to his work further. A related methodology for a network was given by
Handler [8].

The general lv formulation for the single facility problem is:

(1) min F(x, y) max {w[lx al + ly blv]l/v}
X,Y

where: (at, b) is the location of demand point j,

w is the weight factor associated with demand point j;
it converts the distance from the facility to demand point j into cost,

p -> is the parameter of distance definition.
Note that when p l, the distance is rectangular, and when p 2, the distance is
Euclidean. We will discuss separately the cases p 1 and p > 1.

The Case p > 1. We now present theorems that will be used to prove the con-
vergence of an algorithm for solving (1).

DEFINITION. p-circle. A p-circle with a given center and radius is the set of all
points such that the/T-distance between them and the center is less than or equal to
the radius.

It is easy to show that p-circles are convex sets, and, in fact, are strictly convex
(in the sense that there are no linear segments on the borders) for p > 1.

THEOREM 1. Suppose that three or more p-circles (p > 1) with radii Ri > O,
1, n, possess only one common point. Then, one or more subsets ofexactly

three of these p-circles have only that point in common.
Proof. In contradiction to the theorem, suppose that every three circles possess

more than one point in common and hence by convexity, a region of common points.
Construct p-circles with radii Ri e for e > 0. If every three p-circles with radii R
possess a region of common points, then for e > 0 small enough, each three p-circles

* Received by the editors January 26, 1978, and in final revised form December 21, 1979. This re-
search was supported in part by the National Research Council of Canada.

? School of Management, University of Michigan-Dearborn, 4901 Evergreen Rd. Dearborn, Mi-
chigan 48128.

$ Production and Management Science Area, Faculty of Business, McMaster University, Hamilton,
Ontario, Canada L8S 4M4.
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with radii R e will have a common point. By the Helly theorem (see [1]), if every
subset of three convex sets possess a common point, then all 1;he convex sets possess
a common point. Thus, all the p-circles with radii R e will possess a common
point, in contradicti6n to the fact that all the p-circles with radii R have only one
common point. Note that it is possible that only two p-circles define the common
point. For the purposes of the theorem any other p-circle can then be chosen as the
third.

THEOREM 2. For any p > 1, there is a subset of three demand points such that
the optimal solution to (1), with only these points, is the same as the optimal solution
when all points are included.

Proof. The solution to the problem is the minimal R for which p-circles with
centers at demand points and radii R/w have only one common point. The proof
follows by Theorem 1.

THEOREM 3. Consider the solution point for a given triplet ofpoints (p > 1). If
the weighted distance between a new point and the solution point is greater than the
maximum weighted distance between the points of the triplet and the solution point,
then one ofthe triplets, consisting ofthe new point and two out ofthe original triplet,
possesses a higher value of maximum weighted distance.

Proof. It is clear that the four point solution possesses a higher value of max-
]mum weighted distance. By Theorem 1, there is a triplet out of the four with the
same solution. It is not the original triplet, so it must be one of the others.

Outline of the Algorithm. Our algorithm for solving the I, problem is essentially
simple: except for the choice of starting point, it is the same as the one proposed by
Dearing for 12 distances.

1. Choose a starting point (x<), y<0)). We propose

(2) x’
] w*?xi

y0,_
wyi

Zw, ’
which is the center of gravity of the demand points when weights are w.

2. Find the three points that have the greatest weighted distance from (x, y0).
3. Solve the minimax location problem for the three points.
4. If the weighted distance to all other points is not greater, stop.
5. Otherwise, find the weighted-furthest point from the solution point, and from

among the resulting four points find a new triplet that has a higher maximum
weighted distance.

6. Return to step 3.
Since there is a finite number of triplets, and since we do not "pass" any triplet

twice because the objective function is increasing, the algorithm must finish in a
finite number of steps.

The essential ingredient of the algorithm is step 3. We now turn to solving the
three-point problem for p > 1.

The Three-Point Problem. We first check if any two points define the solution.
As can easily be verified, the solution (x0, Y0) for any two points (xl, Yl), (x2, Y2) is
found by taking weighted averages as follows"

W1X1 -- W2X2 WYl + w2Y2(3) x0 Y0
W -+- W Wl + W2

The maximum weighted distance is then
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(4) F(xo, Yo) w, w2 [xa + lyl y2lv]
W +

If the weighted distance from (x0, Y0) to the third point of the triplet (x3, y3) is less
than or equal to F(xo, Y o), then (x0, Y0) is the minimax solution point for the triplet.
We can thus check all possible pairs of the triplet. If no pair gives a solution, then we
have to find a point inside the triangle of points. This point possesses equal weighted
distances to the three vertices of the triangle.

Triplets with/v-distances (p > 1). As suggested by Dearing [2], the locus of equal
weighted distances from two points in l, is a straight line in the equal weights case,
and a circle when weights are not equal. The solution to the problem is the intersec-
tion between these lines or circles. Explicit formulas appear in Appendix A for refer-
ence.

We will now prove that in the lv (p > 1) case, there can be only one point inside
the triangle with equal weighted distances to the three vertices.

LEMMA 1. For p > 1, an infinitesimal change in the site of a point inside a trian-
gle will increase at least one of the/v-distances to the vertices of the triangle.

Proofs. Suppose that x is any point in the interior of the triangle and that y is an-
other point such that, in contravention to the lemma its distances from the vertices
of the triangle are less than or equal to these distances between x and the vertices.
Extend the line segment from y through x until it meets the boundary of the triangle
at some point z. By the convexity of the/v-norm, z is at least as far from all three ver-
tices as x. Consequently, z cannot be one of the vertices. Suppose it lies on the edge
joining vertex and vertex 2. Via the triangle inequality, the distance from to 2,
which equals the distance from to z plus the distance from z to 2, is less than (since x
is interior) the distance from to x plus the distance from 2 to x. But, this is impos-
sible if z is at least as far from both vertices 1 and 2 as is x. Consequently, the as-
sumption that y has all distances from the vertices less than or equal to the corre-
sponding distances from x to the vertices is untenable.

THEOREM 4. When p > 1, there is at most one point inside the triangle with
equal weighted distances to the vertices.

Proof. Such a point is a local minimum by Lemma 1, because the maximum dis-
tance increases in any direction. Since F(x, y) in (1) is convex, if there are two dis-
tinct local minima, F(x, y) has the same value on the line connecting them; this con-
tradicts Lemma 1.

The following lemma is trivial.
LEMMA 2. The global minimum ofthe maximum weighted distances is inside the

closed triangle.
Different computational methods for finding the optimum of a three demand

points problem were described in [3]. We now give a very fast heuristic iterative
method for solving this problem. Actually, for practical purposes, the method is opti-
mizing. The main idea is based on the fact that when the ratio between lv- and/-dis-
tances is close to 1, it is relatively insensitive to changes in the site of the facility. Re-
call that the lz solution can be computed very quickly (formulas in Appendix A). We
incorporate this solution in the following iterative method for finding the minimax
point for an lv triplet.

We are grateful to the editor in charge of our paper for suggesting this proof; it is shorter than one we
presented originally.
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Define (x(k), y(k)) as the kth iteration,

(5) ,p

Then, the algorithm can be expressed as follows:
1. Choose a starting point (x(), y(0)). We suggest the use of (2). Let k 0,

X 1, n(X) 0 for all X.
2. Compute

(6) de)lA, if- 0, thenWk)
Wi ",pl’.’,z *,z

3. Solve the three-point problem in l. with weights we by the method of Ap-
pendix A to obtain the solution (x*, y*). Let x(+1 Xx* + (1- X)x(e and
y(+l) Xy* + (1 X)y(k. Let n(X) n(X) + 1 for the current X.

4. If {Ix(k+l) x(k)]2 -- [y(k+l)_ y(k)]2}1/2 % e for a given e, then take
(x(e+l), y(+l)) as the solution, declare convergence, and stop. If n(X)> 50, set
X X/2. Set k k + 1. If X < k, stop, declaring nonconvergence. Go to step 2.

If the algorithm converges, the following theorem guarantees optimality.
THEOREM 5. If lime_= (x(), y()) (x, y) then (x, y) is the optimal solution.
Proof. In the limit,

(7) w=)d3 wid,

As (x, y) is the solution to 12 problem with weights ofw=) there are two possibilities:
(a) The point is on an edge of the triangle and hence two weighted distances

are equal to each other while the third is smaller. Then by (7), the same condition
holds for the original weights and/p-distance.

(b) w(i=)’(=)1,2 w(=)d(), w)d,) then by (8), WI,I,pf]() wz d,) wa d,),
Applying Lemma 2 to the lz solution gives that (x, y) is inside the closed triangle.
Then, since the point is inside, it is the global optimum for l, by Lemma 1 and
Theorem 4. This algorithm may not always converge" an example is given in Ap-
pendix B of nonconvergence for X 1. While the sequence (x(), y()) is bounded in-
side the triangle, oscillations between points can occur, as is shown in Appendix B.
We can not guarantee that instances of nonconvergence for a reasonable number of
h’s in the sequence l, 1/2, 1/4, - will not occur. As will be seen in the computa-
tional results section, we did not find any such examples. If nonconvergence does
occur, the "guaranteed" method presented in [3] could be used for the triplet. How-
ever it takes about 100 times longer.

The Minimax problem with p = 1. As is shown in [5] we can (by the T trans-
formation given there) separate the problem into two subproblems, each of which is
a one-dimensional problem. It is easy to see that instead of triplets, as in the p >
case, we deal here with pairs on each axis. The algorithm is otherwise the same.

Computational results. Table explores the solution of 5000 "triplets" for each
of 7 different values of p. The points were uniformly generated within a unit square,
and the weights were uniformly generated on the interval [0, 1]. Note that approxi-
mately 87% of the triplets had "two-point" solutions and that all converged before
X was reached. The convergence constant, e, was 10-4. The average run time for
p 1.78 was about .01 seconds on the CDC 6400.

Table 2 gives the results of computational examples with rectangular distances.
Four examples were generated randomly for each n (number of demand points).
Table 2 gives the worst run time of each four.

Table 3 gives computational results for/1.8-distances, as well as the 12 case for
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TABLE
Solution of lp triplets

p 1.1 p 1.2 p 1.5 p 1.78 p 2.5 p 3.0 p 4.0

% 2-point 87.30 87.06 86.90 86.76 86.52 86.76 87.08
% solved h 11.48 12.08 13.08 13.24 13.48 13.24 12.58
% solved h 1/2 1.14 .82 .02 .00 .00 .00 .34
% solved h 1/4 .08 .04 .00 .00 .00 .00 .00

Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0

h
aver. # iter. 8.23
max. # iter. 49

h 1/2 { aver. # iter. 55.89
max. # iter. 63

h 1/4 { aver. # iter. 105.50
max. # iter. 111

av. time rel. to p 1.78 1.8

7.11 5.03 3.66 4.24 5.32 6.40
48 37 7 9 40 44

55.02 55.00 53.41
67 55 57

104.00
105

1.5 1.1 1.0 1.1 1.3 1.4

TABLE 2
Problems with rectangular distances

# Demand Points # Iterations Time (sec.)

1000 4 O. 11
2000 3 O. 17
3000 3 0.26
4000 3 0.35
5000 3 0.43

TABLE 3
Results for p 2 and p 1.78

p 2 p 1.78

# Demand Points Iterations Time (sec.) Iterations Time (sec.)

1000 0.10 0.86
1500 2 0.19 2 1.91
2000 2 0.26 6 5.98
2500 5 0.57 4 5.38
3000 3 0.48 2.59
3500 2 0.45 4 7.48

comparison. Longer times result when p 1.78 mainly because quantities must be
raised to the pth power.
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Appendix A.
1. For W W 14;

Let"

m2

lxl Ya
1 x2 Y2

x3 Y3

Xl + y
x+y
x + y

1 X

x2
1 x3

Yl
Y2
Yz

x+ yx+y
x+y

Then"

A A
(A.1) x0 2A’ Y0 2A"

2. If the weights are not equal, there exists at least one weight, say W1, such that
W1 W2, W1 / W3.
Compute the following:
For 2, 3,

WX WX wy- WlYl
Xil W- W Yil W- W

(A.2)

Then

WIWiRi -- [(x xi) -4- (Yl[W Wi[ yi)2]l/2

(A.3) X" X31 X21 Y31 Y21,

A [(R2 + Ra)2 (.2 + y2)][..2
_

22 (R2 R)2]/4,
(A.4)

B (X + y2_R + R)/2.

If A < 0, there is no solution for the triplet. In this case the solution is defined by a
pair of points. There are two possible solution points from which we have to find the
one with the smaller objective function,

(A.5) x0 x21 + NB
_
:X/ yB w-

22 + 2 Y0 Y21 -k-
.2 + 2

Note that the sign in x0 is opposite to that in Y0.

Appendix B. The following is an example of a problem for which the lv triplet
procedure does not converge for X 1 and 1 <- p < 2.
Find 0 (0 < 0 < 1) such that

202
(B.1) 0v > (1 02)

We then construct the following problem. Choose e > 0 small enough such that
O(e2) in the computation below will be negligible.
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The problem:

xi Yi Wi

-1
0 e

13

2 0 e

0
1+8

(1 + 0P)TM

Computation yields:

Iteration

2

x(i)

w
(w + 2132p) OX(o)

13(1 + 02)
0(13

w7 + 0(13)

/32

w) + 0(13’)

132

132

w])(1 + 02)1/2 -{- O(132)

1+13

13[-(1 02)0’-2 2]
(1 + 0v)

The solution oscillates between iterations 1 and 2, while the optimal point is (O(s2),
S(1 "-I- OP)Iop-1 "21- O(S2)).
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THE CONNECTION PATTERNS OF TWO COMPLETE
BINARY TREES*

F. R. K. CHUNG AND F. K. HWANG?

Abstract. We consider the class of channel graphs which can be viewed as compositions of two
copies, right and left, of a complete binary tree with terminal nodes of the right tree connected to distinct
terminal nodes of the left tree. We study the connection patterns of the two binary trees to minimize the
blocking probability of the resulting channel graphs. We show that the connection patterns given by Ikeno
are not optimal in general and in fact no optimal connection patterns exist for such graphs with more than
9 stages. We present new connection patterns which uniquely possess certain optimal properties.

1. Introduction. We consider the class of graphs which consist of two copies,
right and left, of a complete binary tree with terminal nodes of the right tree con-
nected to distinct terminal nodes of the left tree. If the complete binary trees have n
levels and 2n-1 terminal nodes, then there are (2n-1)! possible ways to connect these
two trees, though some of them might be isomorphic. In Fig. there are two noniso-
morphic graphs, each of which is formed by combining two binary trees having three
levels. In general such a graph can be viewed as a 2n-stage network having the roots
of the two complete binary trees as the source and sink of the network. We call such
a graph a binary channel graph or a binary graph. We note that a binary graph is a
special case of multistage channel graphs, also called linear graphs, which are often
used in studying the blocking performance of switching networks [3]. A channel
graph can be viewed as the union of all paths connecting a specified pair of input and
output terminals in a switching network. In an m-stage channel graph, all vertices
are partitioned into a sequence of m subsets, called stages; edges, called links, exist
only between vertices in adjacent stages. The links between stage and stage +
are referred to as the ith stage links, and we assume that each ith stage link has prob-
ability pi of being occupied. The vector (pl, Pm-1) is called the link occupancies
of the channel graph. The blocking probability of a channel graph is defined to be
the probability that every path from the source to the sink contains at least one oc-
cupied edge. Two channel graphs of the same number of stages can be compared in
the following way. We say one channel graph is superior to the other if the blocking
probability of the former never exceeds that of the latter for any given link occu-
pancies. A 2n-stage binary graph is said to be optimal if it is superior, to any other
2n-stage binary graph.

The problem of determining the connection pattern of the two binary trees to
minimize the blocking probability of the resulting binary graph is not only interesting
on its own fight but also useful in designing effective switching networks (see [3]).
Ikeno [1] investigated this problem and suggested the following simple and elegant
connection: Assign binary numbers to terminal nodes of the right and left trees in an
orderly fashion and connect two terminal nodes such that the digits of the corre-
sponding binary numbers are inversions of each other. For example, the connections
in the graph in Fig. l(b) are (0, 0) to (0, 0), (0, 1) to (1, 0), (1, 0) to (0, 1) and (1, 1) to
(, ).

It can be easily verified that the Ikeno graph is optimal for n 3. However, the
optimality for Ikeno graphs for n > 3 has not been previously determined in the past,

Received by the editors October 4, 1979.
? Bell Laboratories, Murray Hill, New Jersey 07974.
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FIG.

though there has been a general willingness to believe it (see Neiman [3], for ex-
ample). In this paper, we show that the optimal binary graph is not the Ikeno graph
for n 4, and for n > 4 no optimal binary graphs exist. We will give a connection
pattern for 2n-stage binary graphs which uniquely possess certain optimal properties.

2. Labelings and connection functions for binary graphs. We first give a labeling
for the set of vertices of a binary graph. This labeling is useful in specifying the struc-
ture of a binary graph, in particular, in determining whether two binary graphs are
isomorphic. Let T be a binary tree in (n + 1) levels. We label the set of vertices of T
except the root as follows:

(i) The set of vertices in the level k + 1, k _>- 1, are labeled by the set of k-tuples
with entries either 0 or 1, i.e., {l(u): u is a vertex in level k + in T} {0, 1}k.

(ii) Let u be a vertex in level k / 1 adjacent to a vertex v in level k. Then, the
label of u, l(u), is either (l(v), 0) or (l(v), 1) for k _>- 1.

For a given 2(n + 1)-stage binary graph, we label both the left tree and the right
tree satisfying properties (i) and (ii). Then this binary graph can be characterized by a
function f: {0, 1}n -- {0, 1}n such that

f(al, an) (bl,""", bn)

implies that the vertex with label (a l, an) of the left tree is connected to the
vertex with label (bl, bn) of the right tree.fis called the connectionfunction of
the binary graph. For example, the connection function of the graph in Fig. l(a) is
fl(a,b) (a, b). The connection function of the graph in Fig. l(b) is
f2(a, b)= (b, a). Also, the 2(n + 1)-stage Ikeno graph has connection function
f(al, an) (an,’’’, a 1).

It is easily verified that f is a bijection (one-to-one and onto). For any given bi-
jection f: {0, 1}n -- {0, 1}n, we can construct a binary graph having f as its connec-
tion function. There are (2n)! such bijections. However, two binary graphs con-
structed by using two different connection functions might be isomorphic. Thus, we
need some methods for determining whether two binary graphs with distinct connec-
tion functions are isomorphic or not. We first introduce some terminology.

Let C be a vector of 2 elements; i.e., C {Cis: S C_ {1,- 1},
-< =< n}, where Cis {0, 1}.

Let C denote the following function from {0, 1}n to {0, 1}n, such that the ith coor-
dinate of C(Xl, xn) is xi + sc 1,...,i-1} Ciszr(S), where r(S) denotes the prod-

uct of all x in S, and zr(S) if S is the empty set. We note that the numbers in the
proceeding expression are in {0, 1} reduced modulo 2.

LEMMA 1. Two binary graphs, G1 and G., having connection functions f andfz
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respectively, are isomorphic if and only if there exist two (2" 1)-vectors C, D such
that

Cfl f2D.
Proof. Suppose Cfl f2D for some vectors C and D. We define a map c from

the vertex set of G1 to the vertex set of G2 as follows:
Let u be a vertex of the left tree in G1 with label (al, a). Then we define

c(u) to be the vertex of the left tree in G2 with label D(al, ai).
Let v be a vertex of the right tree in G1 with label (bl, b). Then we define

a(v) to be the vertex of the right tree in G2 with label C(bl, bi).
Moreover, the roots of the left tree and the fight tree of G1 are mapped to the

roots of the left tree and right tree of G2 respectively.
It is easily seen that c is one to one and onto. By straightforward verification

based on the fact that Cfl f2 D, it can be shown that for u, v V(G1), u is adjacent
to v if and only if c(u) is adjacent to c(v) in G2. Thus c is an isomorphism, and the
two graphs G1 and G2 are isomorphic.

Now, we assume G1 and G2 are isomorphic, fl and f2 can be viewed as connec-
tion functions determined by two labelings 11 and 12 of the same binary graph G. Let
us first define another labeling 13 of G such that 13 (u) 11 (u) for any u in the left tree
of G and 13(v) 12(v) for any v in the right tree of G. Let f3 denote the connection
function of G determined by the labeling 13.

CLAIM. f3 Cfl for some (2" 1)-vector C.
Let us first consider all the labelings of G with vertices in the left tree labeled as

in 11. There are exactly 22"-1 ways to label the right tree. However, for any vector
C {Cis: S C_ {1, 1}, <= <- n, Cs {0, 1}}, we can define a labeling of
the vertices in the right tree of G as follows"

lc(v) C(bl, bi),

where ll(v) (bl, b).
We note that all labelings lc, C {0, 1}z"-I are distinct. Thus {lc: C {0, 1}2"-1}

are exactly the set of all labelings of vertices in the right tree of G. Therefore, there
exists a vector C such that 13(v) lc(v) for any vertex v in the right tree.

Thus, for a terminal vertex u in the left tree which is adjacent to a terminal
vertex v in the fight tree, we have

fl(|l (H)) |1

f3(13(u)) 13(v) lc(v) Cll(V) Cf(ll(//)).

Since i1(u) 13(u) for any u in the left tree, we have

f Cf.

In a similar way it can be shown that f3 f2 D for some vector D. Thus we ob-
tain Cfl f2 D and the lemma is proved.

Lemma is, in fact, equivalent to the following.
COROLLARY. Two 2(n + 1)-stage binary graphs, G1 and G2, having connection

functions fl and f2, respectively, are isomorphic if and only if there exist two

(2" 1)-vectors C and E such that

A CfE.
Proof. It suffices to show that the inverse function of the linear transformation D
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is of the form E for some vector E. This, however, can be done by straightforward
calculation to find values of eij, 1 =< j -< -<_ n such that DE I where I is the iden-
tity transformation.

Let fl, f2 be two bijections from {0, 1}n to {0, 1}n. We say fl is equivalent to f2 if
there exists two (2" 1)-vectors, say C and D such that

CAD.
We note that two connections functions derived from different labelings of a

binary graph are equivalent.

3. The optimal 8-stage binary graph. It can be easily verified that the Ikeno
graph is an optimal 2n-stage binary graph for n 1, 2 and 3. However, as an immedi-
ate result of the following theorem the Ikeno graph is not optimal for n 4.

THEOREM 1. The optimal 8-stage binary graph G8 is isomorphic to the binary
graph determined by the connection function f(al, a, a) (a, a + al a, al) as
shown in Fig. 2.

Before we prove Theorem 1, we state a result of Takagi [6]. Let T denote the
class of 4-stage channel graphs where there are k each of the second-stage and the
third-stage vertices, and each second-stage (third-stage) vertex is connected to two
third-stage (second-stage) vertices.

THZOZM (Takagi). A graph in T is optimal if and only if the 2k middle-stage
links form a cycle.

Proofof Theorem 1. Let Li denote the set of/th stage links. It suffices to show
that in each of the following four cases, the blocking probability of G8 achieves min-
imum (since the four cases are mutually disjoint and exhaustive).

(i) Both links in L1 and both links in Lr are idle. In this case, an 8-stage binary
graph is not blocked if there exists a path from any second-stage vertex to any sev-
enth-stage vertex. Therefore the graph can be viewed as a 6-stage graph by elimi-
nating the first and last stage and combining vertices in stage 2 and stage 7. By
shrinking a graph from stage to stage j we mean replacing every path between the
two stages by a link. When all these paths are edge disjoint, then by simply defining
the probability of the new link being busy as the probability of the path being busy,
the blocking probability of the shrunken graph is the same as the blocking probability
of the original graph. By shrinking the reduced G8 from stage 2 to stage 5, we obtain a
4-stage graph in T4. Fig. 3 shows such a T4 obtained from G8"

FI6. 2
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FIG. 3

Note that the eight middle-stage links in this graph form a cycle. Theorem 1 follows
immediately from the Takagi Theorem.

(ii) Both links in L1 and one link in L7 are idle. Gs is reduced to the 6-stage
graph in Fig. 4. It is straightforward to verify that this is the best reduction.

(iii) One link in L1 and both links in L7 are idle. Same as (ii).
(iv) One link in L1 and one link in L are idle. We have to consider the set of four

reduced graphs corresponding to the four possible combinations of idle links. There
are three possible sets for 8-stage binary graphs. A Type A set consists of two graphs
of four paths and two empty graphs. A Type B set consist of two graphs of three
paths and two graphs of one path. A Type C set consists of four graphs of two paths.
The reduced G8 is a Type C set and it is straightforward to verify that the sum of
blocking probabilities of the four graphs in a Type C set is minimal.

From (i), (ii), (iii) and (iv), we conclude that Gs is an optimal 8-stage graph. It is
straightforward to verify that Gs is indeed the unique optimal 8-stage graph up to iso-
morphism since there are only a few distinct connections to check. We omit the de-
tails here.

The 8-stage Ikeno graph Is is illustrated in Fig. 5. It can be easily seen that Gs is
superior to the 8-stage Ikeno graph Is since the blocking probability of G8 is less than
or equal to the blocking probability of Is in case (i); and the blocking probability of Gs
is equal to the blocking probability of 18 in case (ii), (iii) and (iv) for any given link oc-
cupancies.

4. Some preliminary results on binary graphs. In a channel graph G, let u be a
vertex in stage and v a vertex in stage j where j > i. The channel subgraph deter-
mined by u and v in G is defined to be the union of all paths of lengthj connecting
u and v in G. A maximal channel subgraph of G is a channel subgraph of G having
the number of stages one less than the number of stages in G. A maximal channel
subgraph is usually determined by a vertex in the second stage and the sink (the
x/ertex in the last stage) or the source (the vertex in the first stage) and a vertex in the
stage next to the last.

FIG. 4



CONNECTION PATTERNS OF TWO COMPLETE BINARY TREES 327

FIG. 5

We say a maximal channel subgraph of a 2n-stage binary graph is optimal if it is
isomorphic to an optimal 2(n- 1)-stage binary graph after shrinking from stage
n 1 to stage n + or from stage n to stage n + 2.

LEMMA 2. All the maximal channel subgraphs of an optimal 2n-stage binary
graph are optimal.

Proof. Let G’ be a maximal channel subgraph determined by a vertex in stage 2
and the sink in the optimal 2n-stage binary graph G. Let H be a 2n-stage binary graph
such that all its maximal channel subgraphs determined by a vertex in stage 2 and the
sink are, after shrinking from stage n to stage n + 2, isomorphic to a given arbitrary
2(n 1)-stage binary graph H’. To be precise, letfdenote the connection function of
a 2(n 1)-stage binary graph. We can then construct H with the connection function
f* to bef*(al,. a,_) (b, b,_), wheref(a2,.. a,_) (b,
bn-2) and al bn. Now we consider the link occupancies pa, p,_ where p
is extremely small compared with pi, 1. Then the blocking probabilities of G and
H can be approximated by the product of p and the blocking probability of G’ and
H’, respectively. Since G is an optimal binary graph, G’ must be optimal.

COROLLARY. If no optimal 2n-stage binary graph exists, then no optimal 2m-
stage binary graph exists for rn >-_ n.

In a later section we will show that optimal 10-stage binary graphs do not exist.
Thus optimal 2n-stage binary graphs, n >_- 5, do not exist. It is then of interest to in-
vestigate binary graphs with certain optimal properties.

We note that the optimal 2n-stage binary graphs, for n _-< 4, have the symmetric
property, i.e., the connection function f satisfies the following:

f(al, a,,_a) (bl, bn-1), if and only if

f(bl,’’’, b,,_a) (al,""", an-l).

In other words, the connection functionfis idempotent, f f-a. Symmetry might be
a desirable property for practical considerations since it facilitates the construction
and the control of the network.

We define G8 to be an HS-optimal 8-stage binary graph (it is in fact optimal). For
n _-> 5, a 2n-stage binary graph is said to be hereditary if all its maximal channel sub-
graphs, after shrinking, are 2(n 1)-stage HS-optimal binary graphs. We call a 2n-
stage binary graph HS-optimal if it is both hereditary and symmetric. The main result
of this paper is to prove that for n => 5, there exists a unique HS-optimal 2n-stage



328 F.R.K. CHUNG AND F. K. HWANG

binary graph. In this section, we give a set of lemmas concerning HS-optimal 2n-
stage binary graphs.

From the definition of HS-optimal binary graphs, the following observations are
immediate.

LEMMA 3. Let f be the connection function of an HS-optimal 2(n + 1)-stage
binary graph. We define the function fal {0, 1}n-1 -- {0, 1}n-1 by the following:

faa(az, a,) (b, b,_a),

where f(al, a2, a,) (bl, b,). Then fal is the connection function ofthe
maximal channel subgraph determined by the sink and the vertex ofthe left tree with
labeling (al). Similarly (f-1)b is the connection function of the maximal channel
subgraph determined by the source and the vertex ofthe right tree with labeling (bl).

LEMMA 4. A 2(n + 1)-stage binary graph having connectionfunction fis heredi-
tary if and only iffa and (f-1)b,for a, b {0, 1}, are equivalent to connection func-
tions of an HS-optimal 2n-stage binary graph.

Proof. This follows from the definition of hereditary.
LEMMA 5. Let f be the connection function of an HS-optimal 2(n + 1)-stage

binary graph G. Then f is equivalent to the following function g"

g(al, a,) (Ll(a2, a,), al).

Proof. It suffices to show that we can choose a proper labeling of G with connec-
tion function g. Because G is HS-optimal, for any labeling of G the two vertices with
labeling (bl, b,-1, 0) and (bl," b,-1, 1) are connected to two vertices in
stage n + with distinct first components, i.e.,

and

f(al,’’’ a,) (b 1,’’" b,-1, 0)

f(a, a,) (bl, b,-1, 1)

imply al # al.
Thus we consider a labeling 1’ of G such that a vertex v with l(v)=

(bl, b,-1, b,) will be labeled as l’(v) (bl, b,-1, bn + 1), if al
and i’(v) (bl,’’’ b,) otherwise, where f(al," a,) (bl,’’’ b,). We
note that the connection function g under the labeling 1’ can be written as follows"

g(al,’’’, an) (fl(a.,""", a,), a).

Since f and g are connection functions of G in two labelings, we know f and g are
equivalent from Lemma 2.

Thus Lemma 5 is proved.
LEMMA 6. Let x be a number depending on a where x, a {0, 1}. Then x can be

written as follows:
x awl + wz (mod 2),

where wl, w are some constants in {0, 1}.
Proof. It is easy to find wl, wz by solving two equations for a 0 or 1. Namely,

wz x(0), W x(1) x(0).
For any vector C {cis} we let Ca denote the linear transformation determined

by {cisa}.
LEMMA 7. Let C be a (2" 1)-vector {cs: S C_ {1, 1}, 1, n}

where cs’s depend on a. Then the linear transformation C can be written as follows:



CONNECTION PATTERNS OF TWO COMPLETE BINARY TREES 329

C DE FG

where E and F are (2n 1)-vectors (independent of a) and D Da, G Ga.
Proof. The values of elements of E, and D can be obtained by using Lemma 6

and solving the n(n + 1) linear equations derived from C DE. The values of ele-
ments of F and G can be obtained similarly.

LEMMA 8. Let G be a 2(n + 1)-stage hereditary binary graph. There exists a la-
beling of G such that the connection function can be written as follows:
(*) f(al,’’’, an) (MalgNal (a2, an), a 1),

where g is some connection function of an HS-optimal 2n-stage binary graph, and
hi, O, for 1,... n 1.

Proof. Let h be the connection function of a 2(n + l)-stage hereditary binary
graph G. From Lemma 5 we may assume

h(al, an) (bl,""", bn) (hal(a2,’’" an), al).

Since G is hereditary, we know that, by Lemma 4, ha(a2,’’’, an)=
(bl, bn-a) is a connection function of the 2n-stage HS-optimal binary graph.
By the induction assumption, we have ha RgS where the elements ofR or S depend
on a. Therefore, by Lemma 7, we have

R UMa,

and

S NV,

where elements of U and V are independent of a. We define U’ and V’ such that
Ut(X1, Xn) (U(x1, Xn-1), xn) Vt(x1, xrt) (x1, V(x2, Xn)),
and we note that we can find a (2’- 1)-vector W such that W(Xl,’’’, xn)=
(x, Wx(x2’ xn)) and N Nal W, where hi, 0 for 1, n.

It is easy to verify that

U’fWV’ h,

where f(a, an) (MagNal(a2, an), a). Therefore, Lemma 8 is
proved.

From now on, for any HS-optimal binary graph, we will only consider its con-
nection functions in form as described in Lemma 8. We note that several examples of
connection functions we give in this paper are in this form.

LEMMA 9. A 2(n + 1)-stage binary graph G is HS-optimal ifand only if the con-
nection function of G is equivalent to f satisfying

f(al, an) (MalgNal(a2, an), aa)
(i)

(an, (N,.)-g-l(M,,)-l(a, an-l)),

where g is a connection function of the optimal 2n-stage binary graph and M and N
are two (2n 1)-vectors.

Proof. Since G is symmetric and hereditary, we have (1) from Lemma 8. Now,
suppose G has a connection function equivalent to f. It follows immediately G is
symmetric. By Lemma 3 and 4, G is also hereditary. Thus G is HS-optimal.

Now we consider a set of connection functions P {pi" 1, 2, } where
pi" [0, 1] -- [0, 1]’. We set
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p(a, a) (a, a),

p3(al, a2, a3) (az, a. + a laz, a l) (mod 2).

The pi for -> 4, will be defined in 5, 6.
We note that p, pz are connection functions for optimal 6- and 8-stage binary

graphs. The set P denotes the set of the connection functions for HS-optimal binary
graphs.

5. 10-stage binary graphs. For 10-stage binary graphs, we will show the follow-
ing.

THEOREM 2. The HS-optimal lO-stage binary graph has connectionfunction (up
to isomorphism)as follows (see Fig. 6)"

p4(al, a, az, a4) (a4, a3 + aa, az + alaz + ala2a4, al) (mod 2).

We remind the reader that all calculations are in Z. We will, from now on, omit
the notation (mod 2).

Proof. It is straightforward to verify that p4 is idempotent.
The function p4 can be written as

p4(al, a., aa, a4) (L,p(az, aa, a4), al)

(a4, P:3 La4 (al, a., az)),

where

La(Xl, x2, xa) (xl, x, xa + axz)

(L,)-l(xl, x, xz).

It follows from Lemma 9 that the binary graph having p4 as the connection function
is HS-optimal.

Now, suppose G is an HS-optimal 10-stage binary graph having connection func-
tion f. From Lemma 9 f satisfies the following

(2)

3)

f(al, a2, a3, a4) (nap3Na(a2, a3, a4),

(a4, (Na4)-lp8 (na4)-l(al, a2, az)).

FIG. 6
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To simplify the notation we denote the sets {1}, {2}, {1, 2} by 1, 2, 12, respectively.
Equating the values in the first coordinates of (2) and (3), we obtain

a4 a4 + a az na, + a aa nz,z + a a a: n:,l + aim16,

for any a{0, 1}, 1--<i--<4.

Thus, we have ml, ha,1 rt:, rl:,l O.
Suppose we replace a4 by 0. The value of the second coordinates in (2) and (3) is

a3 a3 q- m2,I, al nt- //2,1ala2

Therefore m2+ n2,1 0 and N is then the identity function. Let us write

M(xl, xz, x:) (xl, x + mz,lxl, x: + mz4, + m3,1x1 + m3,2x2 + m3,12xlx2).

Then we have

M-l(Xl, x2, x3) (Xl, x2 + m2,1x1, .,173 -[--

+ (ma,1 + mz,lma,2 + m2,1m3,1z)x1 + m3,zx + m3,12xlx2).

We consider the value of the second coordinates in (2) and (3). We have

az + aza4 + m2,1ala4 az + ma4, a4 + (ma,1 + mz,lma, + m,lmz,l)a4al

+ ma,2aza4 + m:,lalaa4.

Therefore we have m,l ma6 m,lz 0, ma, 1.
Now we consider the third coordinate in (2) and (3). We have a + axaz

alaza4 ag, + mz,lala4 + ala: h- alaza4. Therefore we have m,l 0, M L
and f P4. Theorem 2 is proved.

It should be noted that the 10-stage HS-optimal binary graph is not optimal since
in the case that p pz p8 Pa 0, then the graph can be reduced and shrunken
to a 4-stage graph in T8 (similar to what we did to G8 in the proof of Theorem 1).
However, the 16 middle-stage links form two cycles instead of one. Since there does
exist a 10-stage binary graph which, after similar reductions and shrinking, yields a
graph in Ta with the middle-stage links forming a cycle, then by Takagi’s Theorem
the HS-optimal 10-stage binary graph is not optimal. Furthermore, it can be shown
(by straightforward arguments) that there exists only one (up to isomorphism) hered-
itary graph which is not symmetric. Again by using Takagi’s Theorem it can be seen
that this graph is not optimal. However, by Lemma 2, an optimal 10-stage binary
graph must be hereditary. Therefore, no optimal 10-stage binary graph exists.

ing.
6. 2n-stage binary graphs for n >_- 5. The main result in this paper is the follow-

THEOREM 3. The HS-optimal (2n + 2)-stage binary graph has the connection

function (up to isomorphism)as follows:
Pn (aa, an) (bl,

where

61 an,

bi an+i-1 -+- an-ibi-1

’’, bn),

(mod2),fori= 2,. ,n- 1,

bn al.
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Proof. First we define

L(x1, xi) (Xl, Xi_l, x + Xi_l).

It can be verified by induction that

pn(al, an) (LalPn-l(a2, an), a l)

(an, Pn-lLa.(al,’" an-l)).

The binary graph determined by p, is thus symmetric and hereditary.
Now we consider a connection function g of HS-optimal 2(n + 1)-stage binary

graph G. From Lemmas 8 and 9, g is equivalent to anfwhich has the following form

(4) f(al,..., an) (MalPn-xNal(a2,’’’, an), a l)

(5) (an, (Na.)-apn-a(Ma.)-l(aa, an-)).

We want to show by induction on n that:
(,)" iff can be written in the form of (4) and (5), then N is the identity mapping

and M L.
(,) is true for n 4 from Theorem 2. Suppose (,) is true for all n’ with

4 _-< n’ < n. We will prove that (,) holds for n.
The value in the first coordinates in (4) and (5) is

an an + , c,,sTr(S), for all ai {O, 1}, 1_-< i=< n.
S_{0,...,n-1}

Thus we have cn.s 0, for all S.
We consider, M’, N’ and H to be mappings from {0, 1}n-z -- {0, 1}n-z such that

M(0, x2, Xn-) (0, M’(xz, Xn-a)),

N(x, xn-) (N’(x1, Xn-2), Xn-1),

H(x.a,-’’, x,_) (xl + m91, x2 + m31,""", xn- + mn-a.a).

It is easy to see that

M(x, Xn-) (xl, HIM’(x2, Xn-1)),

M-I(x, Xn-) (x, M’-IHx(X2, xn-)),

N-l(x1, Xn-1) (N,-l(x1, Xn-2), Xn--1).

By induction Pn-I(XI, Xn-I) (Xn-1, Pn-2Lx_ (xi, Xn-2)). Therefore (4)
is equal to the following:

((Uai(an, Pn-2L%NI(a2, an-i))), al)

(an, Haa,,MiPn-zLa,N(a,’’’, an-i), ai).

On the other hand, (5) is equal to the following:

(an, N:I(Lapn-:MiHaa,,(a:, an-i), a))

(an, NiLalPn-:M’a-Hala,(ag. an-i) ai)

Therefore we have

(6) I-I... Mpn-LNI Na-1Lapn-M- l-lalan.



CONNECTION PATTERNS OF TWO COMPLETE BINARY TREES 333

By setting an 0 in (6), we have

From the above equality and the definition of pn- and L we define f’ as follows:

je’(Xx, Xn-1) (M;lPn-zNI(X2, x.-1), Xl)

(Lp._(xz, x._), x)

(x._, p._L._, (x," x._))

(Xn_ -1 t-1

By the induction assumptions, we have M; L and N is the identity mapping.
Therefore N is the identity mapping and (6) is equivalent to the following:

(7) Haaa. LaPn-2L LalPn-2 L.. H.
By setting 1 a in (7), we have

HLp._L Lap.-zLH,

Lp._z LaHL Lp._z.

Now we consider f" as follows"

f"(Xl, Xn-1) (H/1Lxipn-2L/1Hx Lx (x2, Xn-i), XI)

(LxlPn-z(xz, Xn-1), Xl)

(X._l, p._L,,_ (x, ,.
(Xn-1, L._ H._ L.,_, p._ L._ H._ (Xl, x._)).

As before, we have, by the induction assumptions, HL. L and L.HL is the
identity. This implies H is the identity and M L. Therefore we have

f(ax, an) (LaPn-l(az, an), a) (an, P.-1L..(al, an-l))

(bl," b.).

Theorem 3 is then proved.

7. Construction of switching networks with prescribed channel graphs, We will
present several constructions of switching networks with prescribed channel graphs.

2n INPUT
TERMINALS

FIG. 7
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D4

FIG. 8

Let us first consider a 2n-stage network N2n consisting of 2 2 switches. Let D1
denote a 2 2 switch and Dn be the network built recursively as shown in Fig. 7.
The 2n-stage network N2n consists of 2 copies ofDn denoted by D1, D together with
2 copies denoted by D and D4, of the mirror image of Dn as shown in Fig. 8.

The linking pattern between the middle two stages is determined by the con-
nection function of the channel graph
or Dz is connected to the jth input switch of D or D4 if and only if and j
have the binary expressions (al,’’’, an-l), (bl,’’’, b-l) respectively, and
Pn-l(al, an-l) (bl, b-l).

It can be easily verified that the channel graph of Nz, is the HS-optimal binary
graph

Let us now consider networks with an odd number of stages. We note that a
binary graph of 2n + 2 stages can be viewed as a binary graph of 2n + 1 stages by
shrinking the two middle stages. We can then derive HS-optimal binary graphs G2,+1
from the HS-optimal graphs Gzn+z. For example G is as shown in Fig. 9.

Now, we want to construct a 2n + stage network with channel graph Gzn+l.
Gzn+l consists of a copy of D,,+I together with two copies, denoted by Dz, D4 of the
mirror image of Dn as shown in Fig. 10.

The linking pattern between stage n + and stage n + 2 is determined by pn.
Namely, the ith output switch of Dn+l is connected to thejth input line ofDz or D4 if
and only if i- andj- have the binary expressions (al,... an), (bl,’’"
b,), respectively, and p,(al,’’’, an)= (bl,’’’, b,). It is easily verified that
N2,+1 has channe| graph

8. Concluding remarks. We can generalize the ideas in this paper and consider
the connection pattern of two t-ary graphs. A (2n + 2)-stage Ikeno graph is the
t-ary graph determined by the connection function f(xl, x,) (Xn, Xl)

FIG. 9
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Dn+l

D4

FG. 10

where the leaves of the left and right t-ary trees are labeled by elements in
{0, 1}. Again it can be shown that the Ikeno graph is not optimal for >= 3,
n -> 3 by considering an alternative connection function defined in a similar way as
we defined p, in previous sections. The connection patterns of t-ary graphs are prob-
ably more complicated than the binary case.
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PLANAR LEAST-SQUARES INVERSE POLYNOMIALS.
PART II: ASYMPTOTIC BEHAVIOR*

PH. DELSARTE,? Y. GENIN,? AND Y. KAMP?

Abstract. This paper contains a study of the limit function a(za, z2) of the PLSI polynomials relative
to a given H2-function b(za, z). It is shown that a(za, z) is analytic in the unit bicylinder, and that
b(za, z) admits a canonical weakly inner-strongly outer factorization if and only if a(za, zz) enjoys a well-
defined property of stability. The theory is illustrated by a detailed example.

1. Introduction. A preceding and companion paper [2] has been devoted to a
study of the algebraic properties of the planar least-squares inverse (PLSI) polyno-
mials ak,(zl, z2) relative to a given polynomial b(Zl, z2). These ak,g appear as solu-
tions of doubly Toeplitz systems built on the Fourier coefficients of [b(e, ei*)12. The
aim of the present paper is to discuss the convergence of the PLSI polynomials when
both degrees k and tend to infinity; thus to show the existence and to study the
properties of the function a(zl, z) a,oo(Zl, 22). In fact, the Hardy class H2 pro-
vides the natural setting for the problem, so that b(zx, z2) is herein allowed to be any
element of H2 (not necessarily a polynomial as usual).

This asymptotic PLSI problem, which turns out to be very difficult, is of pri-
mary importance both for theoretical and for practical reasons as explained
hereafter. For the purpose of stabilization in two-dimensional digital filtering,
Shanks, Treitel, and Justice [15] have made the conjecture that the PLSI polyno-
mials are always stable, i.e., devoid of zeros in 1z1,2[ --< 1. (Throughout this paper, a
notation like IZl,2l -< stands for [Eli and Iz2[ _-< 1.) However, this property has
been proved to fail [6] (although it holds for one-variable polynomials). Further anal-
ysis has led to weaker conjectures [2], [12], the weakest and most tractable of which
seems to be the following: the limit function a(Zx, z2) has no zeros in [zL2[ < 1.

Let us now turn to more theoretical aspects. In the one-variable situation the
asymptotic solution of positive definite Toeplitz systems is directly related to the
spectral factorization problem, both in the scalar case [7] and in the matrix case 1],
[18]. It is not known, however, in what form these results might extend to the
two-variable situation. In particular, as the classical inner-outer factorization [10],
[17] of a one-variable function b(z) H2 can be obtained from the asymptotic solu-
tion of the corresponding least-squares inverse problem, the question naturally
arises of a possible extension of this property in two dimensions.

The above remarks put into light the fact that the study of PLSI polynomials
tackles fundamental unsolved questions in the theory of two-variable functions. It
should be observed that the subject dealt with is closely related to the factorization
problem for bivariate spectra recently introduced by Strintzis [16], but reduces
neither to the "halfplane factorization" of Helson and Lowdenslager [9] nor to the
"four factors factorization" studied by Ekstrom and Woods [5] in the context of
two-dimensional recursive filtering. Another topic which is connected to the present
study is that of the invertibility of quarterplane Toeplitz operators [3], [4], [13]; the
results obtained in this framework have a high degree of generality but do not seem
to yield answers to the specific questions of the convergence and asymptotic stability
of the PLSI polynomials.
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Let us now briefly summarize the content of this paper. Some classical material
from the theory of two-variable functions of class H2 is given in 2. The PLSI
problem relative to a given function b(21,22) H2 is described in 3; the minimizing
polynomials ak,z(zl, z2) are defined and characterized. The main result of 4 is a
proof of the convergence of the ak,l(Zl, Z2) towards a function a(21, z2) analytic in the
bicylinder Izl,2[ < 1. In 5, the significance of the concept of strongly outer functions
(in the sense of Helson [8]) is emphasized; b turns out to be strongly outer if and only
if a equals b-1. A "dual" definition of weakly inner functions is introduced and dis-
cussed in 6; it is shown that the product ab is weakly inner provided it is bounded.
These concepts are used in 7, where the function b(zl, z2) is proved to admit a ca-
nonical weakly inner-strongly outer factorization if and only if the corresponding a(zl,
z2) enjoys a well-defined property of stability. As an illustration, a two-parameter
class of first degree polynomials b is studied in 8; the desired canonical factoriza-
tion is proved to exist and explicitly obtained, except for a small region of the whole
parameter space where the question remains open.

As a conclusion, it is fair to say that this paper gives only partial answers to the
many questions it raises. Nevertheless, the authors think that their contribution at
least provides an adequate mathematical setting for the difficult problem of asymp-
totic PLSI stability and shows the primary importance of this problem in connection
with canonical factorization of H2-functions.

2. Definitions and preliminaries. To start with, let us recall certain standard con-
cepts and results from the theory of analytic functions in two variables [14], [19]. Let
H0 denote the vector space of the complex functions f(zl, z2) analytic in the unit bi-
cylinder [zl,2[ < 1. The subset of H0 consisting of the functions f satisfying

If(r1 eiO, r2ei)[ dO dcb < ,
0=<rl,z<l 0

is classically denoted by Hz. In fact, Hz is a linear subspace of H0 and, for the defini-
tion (1) of the Hz-norm, it has the structure of a Banach space. Thus any Cauchy se-
quence out of Hz converges in H. Note that the H-convergence implies the usual
H0-convergence on every compact subset of the unit bicylinder; this immediately
follows from the Poisson inequality,

(2) [f(z z)l< Ilfl[ + [zal 1 + Izl
 -Iz l  -Iz l"

Let P denote the space of all polynomials in z, zz. A fundamental property of the
space Hz is the fact that P is dense in H. Indeed, for anyf Hz, the truncated Ma-
claurin expansion fm,, converges to f.

By the Fatou theorem, every function f in H has a radial limit almost every-
where (a.e.) on the torus Zl e, zz e6; thus

(3) f(e, e) lim f(rle, r2e i6)
rl,2---> 1-

exists a.e. Moreover, f(e, e) is square integrable on the torus. In view of this
property, a scalar product can be defined in H2 by

(4) f, g) 47r2 f(ei, e4") g*(e, e4’) dO dch,

for all f, g H2. It is well known that the norm attached to (4) is the same as (1),
i.e., Ilfll (f, f)’. Let us also recall that log Ill is integrable on the torus providedf
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is not identically zero. The notation f +/- g will be used to mean that the functions f
and g are orthogonal, in the sense that their scalar product (4) vanishes.

The space H is defined to consist of the functions f H0 which are bounded in
the unit bicylinder, i.e., satisfy

(5) g(f) sup ]f(Zl, Zz)] < oe.
IZl,21<1

It is clear from (1) and (5) thatH is a subspace of Hs, with Ilfll -< N(f), enjoying the
properties HH H and HH2 Hz. In fact, the supremum norm (5) gives H
the structure of a Banach algebra (for ordinary multiplication).

3. The PLSI problem. The planar least-squares inverse polynomial problem can
be stated in the following form. Given a nonzero function b(zl, z) of class Hz, it is
required to minimize the norm Ill pbll, i.e., the distance between 1 and pb, for
p(zl, z) varying over the space Pk, consisting of all polynomials of formal degree k
in z and in zs. It can be easily shown that this problem has a unique solution
p(Zl, Z2) denoted by ak,(z, z) in the sequel. In fact, the coefficients of ak,t appear
as the solution of a linear system, the matrix of which is the positive definite doubly
Toeplitz matrix built on the Fourier coefficients of Ib(e, e*)l. For details, the
reader is referred to [2]. (Only the case b P is treated there but the generalization
to b H is straightforward.)

As pointed out in [2], the minimizing polynomial a,t is characterized by the
orthogonality of the function 1 ak,zb to the space of functions pb with p P,t,
i.e.,

(6) a,b 2_ P,zb.

Geometrically, this property says that a,zb is the nearest point to 1 in the space
P,tb, i.e., the orthogonal projection of 1 onto that space. An immediate conse-
quence of (6) is the Pythagoras identity

(7) -pbl} I1 a,bl[ / II(ax,z- p)bl[,
for all p(za, zz) P,t. Note that a,t(Zl, zz) is identically zero when b(0, 0) vanishes
(which means +/- b). Henceforth we shall exclude this case, and always assume
b(O, O) # O.

Let tk,(b) be the squared distance between 1 and the space P,b, i.e., by deft-
nition,

(8) ,z(b) -Ill a,bll.
From (7) and (8) one deduces/x,(b) _-< Ila xbll for all constant X. Since Ps, is a
subspace ofP, for s _<- k and t =<- l, one has Ixk,z(b) <-_ txs, t(b), which proves that the
double sequence [/x,t(b)] is monotonically decreasing and hence convergent. The
limit value will be denoted by/z(b). By definition,

(9) /z(b) lim k,(b) inf II1 ubll
k,1---> uP

Thus/z(b) appears as the residual squared error in the polynomial inverse approxi-
mation of b.

4. Convergence of the minimizing polynomials. Let us first study the con-
vergence properties of the double sequence of functions g, H2 defined by

(10) gk,l(21, 22) ak,l(21, zz)b(za, zz).
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The following theorem is an almost immediate consequence of the fact that H2 is a
Banach space.

THEOREM 1. The double sequence [gk,(zl, z2)] has a limit g(za, zz) in Hz, satis-
fying II1 gl] t(b).

Proof. Let k s >- 0 and >_- -> 0. Applying (7) with p as,t, one deduces
from (8) and (10) the identity

(11)

Since [tzk,t(b)] converges, the right member of (11)can be made arbitrarily small for
k, 1, s, and sufficiently large. As a consequence, the double sequence [g,] has the
Cauchy property; hence it converges (for the Hz-norm) to a well-defined function
g H2. Then/z(b) II1 gll immediately follows from taking the limit in (8). E]

THEOREM 2. The function g lim g,t enjoys the following property: 1 g is
orthogonal to every product vg with v polynomial, i.e.,

12) g +/- Pg.

Proof. Let //(Z1, Z2) be a polynomial. From (6) one derives gk,t +/- ub, pro-
vided P,t contains u; hence g +/- ub in the limit. Specializing this to u vag,t for
a given vP, one has 1-g +/- vg,t and finally 1-g +/- vg by letting s,
--> w. D

As a direct consequence of (12), one deduces I[1 g[[Z 1 g(0, 0). In view of
Theorem 1, this yields

(13) /z(b) 1 g(O, 0).

We next prove the convergence of the minimizing polynomials ae,t. It should be
noted that the property is weaker than for the gk,; in general, [ae,t] is not H-
convergent.

THEOREM 3. The double sequence [ak,t(zl, zz)] converges in the unit bicylinder
[Zl,2[ < 1 to an analytic function a(zl, z2) @ Ho, satisfying a(za, zz) b(za, zz)=
g(z 1, Z2)"

Proof. The argument consists in showing that, for any fixed ga, with Igl] < 1, the
double sequence [a,t(ga, zz)] is uniformly convergent on every closed disk
]z] _-< r2 < 1. Hence the limit a(ga, z) is analytic in Izz] < 1. Since the dual result
holds for [aa(z, gz)] with ]gz] < l, it then follows from the Hartogs theorem [11]
that a(zl, z) is analytic in the domain IZl,[ < 1.

For the given gl there exists a function b’(Zl, zz) in H2, satisfying ]b’(e, z2)]
[b(ei, z2)] a.e., such that b’(gl, zz) is not identically zero in zz. (This results from a
well-known one-variable property.) Using (11) and the one-variable version of the
Poisson inequality (2) one readily obtains

(14)
[b’(Zl, ei6)[at,l(Zl, e i6) as,t(Zl, ei6)]] d6

--< --[Z, 11 [Js’t(b)- [Jk’l(b)]"

Next, let f(z2) be a function of class H, devoid of zeros in Izz[ < 1, satisfying
If(e*)[ [b’(gl, e*)[ a.e. (cf. [10]). Applying (14) with za gl and again the Poisson
inequality, one deduces
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[f(z2)[2[ak,l(l, Z2) s,t(l, Z2)[
(5)

Since [f(z.)[ is bounded away from zero in [z[ r(< 1), it follows from (15) and
from the Cauchy criterion that the double sequence [a,(l, z)] is uniformly con-
vergent on [z[ r. As explained before, this leads to the desired conclusion.

5. Outer functions. A function f(zl, z) @ H, with f(0, 0) fi 0, will be called
strongly outer if it satisfies (f) 0, i.e., if it can be inversely approximated by
polynomials with arbitrarily small error. This concept coincides with the definition
of an outer function as given by Helson [8]: a function f H is (strongly) outer if
and only if the space Pf is dense in H.

It is known that, iff is strongly outer, then log ]f(e, e)[ has nonzero Fourier
coefficients in the first and third quadrant only. Moreover, f can be written as

f(zx,z) yexp
ei- Zl)(ei*- zz)

(16)
log [f(e, ei*)l dO

for [Zl,] < 1, where y is a constant of unit modulus [14]. In the sequel a function
f H is called weakly outer if it satisfies (16); this is what Rudin calls an outer func-
tion 14].

In the one-variable setting the definitions of strongly and weakly outer functions
are equivalent [8]. This property is lost in the two-variable situation. In fact, Rudin
has given an example of weakly outer functions which are not strongly outer [14,
p. 76].

As a direct consequence of (16), a weakly outer function is devoid of zeros in the
unit bicylinder. The following weak converse of this result holds true: iff H and
f- H, then f is strongly outer. Indeed, one has (f) N(f)[[f-1 u[[, for all
u P, and [[f- u[[ can be made arbitrarily small, so that (f) vanishes. For ex-
ample, any polynomial f(zl, z) devoid of zeros in ]Zl,z[ 1 is a strongly outer func-
tion. On the other hand, it is known that a polynomialfdevoid of zeros in [z.z[ < is
weakly outer 14]. It would be interesting to know whether, in the latter situation, fis
strongly outer. Let us finally point out an obvious consequence of Theorem 1.

THEOREM 4. A given function b(Zl, z) is strongly outer if and only if g(z, z)
identically equals 1.

6. Inner functions. A function g(za, z) Hz, with g(0, 0) 0, will be called
weakly inner if it is bounded (i.e., g H) and satisfies

(17) 1 g L Hzg.

In view of the characterization (6) of PLSI polynomials, this property can be formu-
lated as follows: a function b H is weakly inner if and only if all minimizing
polynomials relative to b reduce to a. 1 or, equivalently, if and only if (b)
equals 1 b][ z. Thus weakly inner and strongly outer functions have opposite prop-
erties: they make (b) respectively maximum (= [[1- b[[) and minimum (=0).
Note that the only weakly inner polynomial is the constant b 1.

A function g(z, z) H, with g(0, 0) 0, will be said to be strongly inner if it
satisfies ]g(e, e*)[ g(0, 0) a.e. So, within a constant factor, g is an inner func-
tion in the usual sense [14]. A strongly inner function obviously is weakly inner. In
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the one-variable situation both definitions turn out to be exactly equivalent. How-
ever, this is not true in the two-variable problem; as indicated in 8, there do exist
weakly inner functions which are not strongly inner. The product of a strongly inner
function by a weakly inner function clearly is weakly inner, but examples show that
the product of two weakly inner functions is generally not weakly inner.

The importance of the concept of weakly inner functions in the present study is
clear. Indeed, when g belongs to H, the condition (17) is equivalent to 1 g _1_ Pg,
so that Theorem 2 can be formulated as follows.

THEOREM 5. The function g lim ak,tb is weakly inner if and only if it is
bounded.

7. Canonical factorization ofH2-functions. The celebrated Beurling theorem says
that any nonzero one-variable function b(z) H2 can be canonically written as
b(z) f(z)g(z), withfouter and g inner [10]. In addition, when b(0) 0, it is known
that f-1 is the limit of the minimizing polynomials relative to b (see [7]). The next
theorem tackles the problem of a possible extension of these properties to the
two-variable situation.

THEOREM 6. A function b(21, 2z) H, with b(O, O) O, can be expressed as
the product of a strongly outer function by a weakly inner function if and only if the
limit a of the minimizing polynomials ak,, relative to b has a strongly outer inverse
a- H and, in addition, makes the product g ab bounded. In this case, the
strongly outer and weakly inner factors of b are uniquely determined as a-1 and g,
respectively.

Proof. Let us first assume b fh withfstrongly outer and h weakly inner. Since
1 h is assumed to be orthogonal to the space Hzh, one immediately obtains the
identity

(18) II1 ubll: II1 hll + Ilh ub[I,
valid for all functions u of class Ho. Applying (18) successively to u ak,, and to
u any re,, Pe,,, one has

(19)

as a consequence ofll a,zbll I1 v,bl[ and h Ho. Taking for v, the mini-
mizing polynomial relative to f, one deduces IIh g,ll -<- N2(h)lx,(f) from (19).
Therefore, since/xk,t(f) tends to zero, g, converges to h, which yields g h; thus
afh h, i.e., a f-1.

Conversely, let us assume a- to be strongly outer and ab to be bounded. Define
f a- and g ab, hence b fg. Since g belongs to Ho, it is weakly inner on the
strength of Theorem 5. This completes the proof. []

Thus the question of the appropriate "Beurling factorization" of b is equivalent
to that of the "stability" of a (relative to b) defined as follows: a -1 strongly outer
and ab bounded. It is then natural to ask whether any b H2 admits a factorization
of the required type. Unfortunately, the answer to this question is negative for the
simple reason that there exist functions b H for which it is impossible to find any
nonzero function h Ho0 vanishing at the zeros of b in the unit bicylinder [ 14, p. 60].
In particular, g ab is not bounded in this situation. Moreover, although this is gen-
erally conjectured to be true at least for b P, the fact that a is devoid of zeros in
the unit bicylinder is still today an open question.

On the basis of these rather disappointing observations, one is led to the follow-
ing problem: to characterize the subclass ofH for which the canonical factorization
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exists. The example studied in the last section not only shows the difficulty of the
problem but also reveals the interest of the present approach.

8. Example. For arbitrary complex numbers c and/3 let us consider the follow-
ing two-variable polynomial:

(20) b(Zl, z -Ji- o* z -Jl- fl o -- Z Z

Since a change of variables zl - eiuzl, z2 -- eiVz2 on b induces the same change on
the minimizing polynomials ak. relative to b, it is sufficient to treat the cases where
and/3 are real and nonnegative.

Case 1. 0 < a < 1, 0 </3 =< 1. Except for/3 1, the polynomial (20) is devoid
of zeros in IZl, l --< l, since b(___ 1, +__ 1) > 0 holds, so that b is strongly outer. It turns
out that this conclusion is still valid when/3 1. As a consequence, one deduces

(21) a , g 1, /z(b) 0.

Case 2. 0 < c< 1, /3->_ 1. The reciprocal b(zl, z2) =/311 +
Zl)Z2] of b is strongly outer and has same modulus as b on the torus. Hence the re-
suits of Case can be used to yield

b
(22) a

/3/’
g

/3/’ /x(b)
/32

with the help of (13). Thus here, as well as in Case 1, the functions a-1 and g ob-
viously are strongly outer and strongly inner, respectively.

Case 3. c > 1, 0 </3 < 1. Both b and/3 have zeros in the unit bicylinder, so that
the function a is not obtainable by a direct argument. Using the approach contained
in [2] one can explicitly determine a,(Zl, z2), and then let tend to infinity in the re-
sult. Due to the particular form of the polynomial b, the matrix spectral factorization
involved in this method can be easily performed. After somewhat tricky but elemen-
tary computations one finds

(23) a Z O/ O--1/2- qt- (l }2t)z O -- }2t--lz 2 O + }2t+lz2j
t=l

/32t-2 1
(24) g-- -(c2- 1)(1 fi2)., o- o-lfl2t+ (1 2t)z O-- 2t--lzt=l

(25) /2t-2
t=l

The functions a and g clearly are analytic in IZll < ce, Iz l < /. Hence g is weakly
inner in view of Theorem 5. But g is not strongly inner, as shown by direct numerical
computation. Because of the lack of appropriate tools to localize the zeros of a series
like (23), it is not easy to study the properties of a-1. However, it can be shown that
a(Zl, Z2) is devoid of zeros in IZ1,21 1, hence that a-1 is strongly outer, provided
c >=/32 /1 + /32 holds; the argument is explained in the Appendix. In the small part
of the region/3 < 1 < c where c </32 -v/1 + /32 holds, a-1 is "likely" to be strongly
outer as well, for this is true on.the boundaries c 1 and/3 (see Cases 5 and 6).
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Case 4. 0/> 1, /3 > 1. By considering the polynomial/ instead of b, one can
apply the results of Case 3 and obtain the formulas

/2t-1 fl-1 ( 1 )(26) a Z 0//2t 0/-1 _. (-_ 1)Z1 0//2t-1 _[_ 22 0//2t+1
_

22t=l

/2t--1(27) g-- --(0/2- 1)(/ l)Z 0//2t 0/--1 _[_ (]2t 1)21 0//2t+1 + Z2t=0

/2(28) /x(b) (0/2 1) /2 t0 0/2/ 1"

The main conclusions are that g is always weakly inner, and that a-a is strongly outer
when 0//3 => /1 + /2 holds.

Case 5. c > 1,/3 1. The solution can be obtained by the method sketched for
Case 3. The results turn out to be rather simple:

[ a2- llog(1 + b )](29) a 1 b 0/2

0/2- llog(1 + b )(30) g 1-
b a2- 1

(31) hi(b) (0/2 1) log
0/2

In fact, although this is not obvious, the above formulas are the limits of (23)-(25)
and of (26)-(28) for/3 -- 1. Note that a and g are analytic in Izl,2] < 0/. The function g
is readily seen not to be strongly inner, but g is of course weakly inner in view of
Theorem 5. On the other hand, it is not difficult to establish that a(zl, z2) is devoid of
zeros in IZl,21 _-< 1, so that a-1 is strongly outer. To see this it is sufficient to observe
that the equation log (1 + x) x has no complex root other than x 0. This means
that a can only vanish at the zeros of b. But b 0 yields a 1/2(0/2 1) 0, so
that a has no zeros.

Case 6. 0/= 1, 0/= O, and/3 0. The remaining situations are degenerate be-
cause b is either a one-variable polynomial or a product of such polynomials, so that
the well-known results of the one-variable theory apply [2]. For instance, 0/= 1,
/3 -<_ 1 yields a b- (1 + Zl)-1(1 q- jZ,2)-1, hence g 1, /z(b) 0.

To sum up, it has been shown that the canonical weakly inner-strongly outer
factorization of the polynomial (20) exists in the whole parameter space (0/, fi), with
the exception of a small region defined by I0/I > 1, I/31 1, I0/I < 1/312 x/’l + 1/312 and
I0//331 < %/1 + ]/3] In this region, the canonical factorization has not been estab-
lished but its existence is firmly conjectured by the authors,

Appendix. Let us outline the argument showing that the function a(z,, z2) de-
fined by (23) is devoid of zeros in the closed unit bicylinder for 0/>_-/32 N/1 + /32
(with 0 </3 < 1 < 0/). Instead of a we shall consider the function

(A.1) a’(Zl, z2) [0/2 ]2 q_ 0/(1 /2)Zl](0/ -}- fi3z2)a(za, z2),

which has the same zeros as a(zl, z2) in ]z,2] _-< 1. Defining the one-variable func-
tions
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(A.2)

0/2 /2 ..[_ 0/(1 /2)Zft (Z 1) 0/2 /2t _[._ 0/( /2t)Z

a + /3az2gt(z2)
(0/ q_ ]32t_az2)(O/ 4- /2t+lz2)’

one can write (A.1) as follows:

(A.3) a’(zl, z2) 0/2(1 /32) /3-(1 ’)f(zOg(z).

The proof then consists in establishing that each term of (A.3) has a positive real part
in IZl,21 <= 1, which immediately leads to the desired conclusion. As can be verified
after elementary but rather tedious calculation, the inequality

(A.4) Imill" Im gt] < Re ft" Re gt

is satisfied in [Z1,2[ 1, for all _-> 1, provided 0/_-> f12 x/’l + f12 holds. Now (A.4)
yields Re (ft gt) 0, and hence Re a’ > 0.
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CHARACTERIZATION OF DISTRIBUTIONS BY RANDOM SUMS*

LUDWIG BARINGHAUS?

Abstract. Let N, X1, X2, be independent random variables with X1, X2, being nonnega-
tive and identically distributed. Let N have a power series distribution. Considering the random sum
S v=l Xi, the present paper gives a characterization of the distributions of N and Xi by means of the
property that, up to a scale parameter, S has the same distribution as Xi. If the expectation ofX is finite,
one obtains a characterization of the gamma distribution.

1. Introduction. It is known that a geometric sum of independent identically dis-
tributed (i.i.d.) exponential random variables is exponentially distributed. Arnold
(1973) proved that if for every p (0, 1), p times a geometric (p) sum of independent
i.i.d, nonnegative random variables has the same distribution as the individual
random variables, then the random variables are exponentially distributed. A more
general characterization problem is as follows. Suppose that X1, X., is a se-
quence of i.i.d, nonnegative random variables. Let N be a random variable inde-
pendent of the Xi’ s and having a power series distribution. Then we ask for the distri-
butions of X1 and N for which up to a scale parameter the random sum S EiN=I X
has the same distribution as the individual random variables. We give the complete
solution of this problem by determining the Laplace transform and the generating
function ofXI and N, respectively. Assuming that XI has a finite expectation, we ob-
tain that X has a gamma distribution.

2. A functional equation. Let (z)= E(exp (--ZXl)), z 0, be the Laplace
transform of X1 and let

(2.1) 3 {Po; Po({x}) c(O)OXh(x), x 0, 1,. 0 < O < /91}, L > 0,

be the power series family containing the distribution of N. Note that h(x) >= 0, and
c(O) ( k=o h(k)Ok) for 0 < O < O1. If Go denotes the generating function of

Po 3, we obtain Go(t)= Goo(Ot/Oo)/Goo(O/Oo), It[ _-< 1, for parameters O,
O0 (0, O1). It is easily seen that the radius of convergence of Go is greater or equal
to O1/O. Assuming that N has the distribution Po 3, O (0, 00, the Laplace
transform of the random sum S ]v=1Xi is given by Go((z)), z >- O. Hence, for

any O (0, 00, the distribution of S differs from that ofX1 only up to a scale param-
eter iff there exists a real valued positive function g on the interval (0, O1), such that
the equality

(2.2) Go(p(z)) (g(O)z)

holds for all z -> 0 and all O (0, O1). Now for some fixed O0 (0, O1) we can write
(2.2) in the form

(2 3) Goo(Oqv(z)/Oo)
Goo(O/Oo) (g(O)z), z --__ 0, L (0, LI).
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Putting G Goo, tg/v90, h(t) g(tgot), we get the functional equation

G(t(z))(2.4) G(t) (h(t)z), z >- 0, (0, 1],

where G is a probability generating function with a radius of convergence greater
than 1, and where h is a real valued positive function on (0, 1]. In the following we
assume that the distribution of N and X1, respectively, is nondegenerate. Then it
follows from (2.4) that limz (z)- 0, and so G(0)- limt_0 G(t)= 0. Putting
z exp (-y), F(y) (exp (-y)), y(t) log h(t) for - < y < +w, (0, 1],
we obtain from (2.4),

G(tF(y))
F(y + y(t)) - < y < + (0 1].(2.5)

G(t)

This functional equation occurs in a different connection in Baringhaus (1979). The
general solution given there is as follows:

( ptk
(i) G(t) (1 p)t p (0, 1), k a positive integer;

(ii) F(y) (1 + exp(-ay + b))-1/, a >0, -w < b < +;

(iii) y(t) - log (1 (1 p)t).

Note that G(t)= tG*(t), where G*(t)= (p/(1- (1- p)t))1/ denotes the gen-
erating function of a negative binomial distribution. From (ii) we obtain

(ii)’ (z) (1 + OZa)-l/k, Z > O,

with c exp (b), a > 0. However, this is the Laplace transform of a probability dis-
tribution on [0, ) iff a _-< 1, because 9(z) must be completely monotone (see Feller
(1971)). We obtain that

E(XO lim
d

is finite iff a 1.

3. The result. Summarizing the results of 2 we can state the following
THEOREM. Let N, X1, X2, be independent random variables with
nonnegative and identically distributed. Let the distribution ofN belong to the

power series family 3 {Po; 0 < v9 < v91} vql > 0. The distributions pN of N and
pxl of X1 are assumed to be nondegenerate. Then for any 0 (0, 01)with pu Po
there exists a positive number g(O) such that the random variables =1 Xi and

g(/9)X are identically distributed iff
(a) 9(z) E(exp (-zXO) (1 + oza)-1]k,- ( -P)
(b, Go(t, E(tN,

(0)--P) t

z>=O,

1/k

where c > 0, a C (0, 1], p C (0, 1), vq0 C (0, 01), vq0 ->- /91(1 p)l/k, and k is a posi-
tive integer. Moreover, E(XI) is finite iff a 1.
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Hence, for random variables X with a finite expectation E(Xi), the theorem
given above yields a characterization of the gamma distribution. As a consequence
of our theorem we have the following.

COROILARY. Let N, X and be as in the theorem. Suppose that X has a finite
expectation and that the random variable N takes on the value 2 with positive proba-
bility. Then for any 0 (0, 00 with pu Po, there exists a positive number g(O)
such that the random variables iu=a X and g(O)Xa are identically distributed iff Xa
is exponentially distributed and N has a geometric distribution. In this case 3 is a
family of geometric distributions.

For the proof of the corollary it suffices to note that the random variable N takes
on the value 2 with positive probability iff the integer k specified in the theorem is
equal to 1.

Remark. Distributions with a Laplace transform of the form (z)
(1 + cza)-1, c > 0, a (0, 1], occur as limit distributions of normalized sums of a
random number of positive independent random variables (see Gnedenko (1972)).
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SINGLE COMMODITY REPRESENTATION OF
MULTICOMMODITY NETWORKS*

Y. SOUN? AND K. TRUEMPER?

Abstract. An efficient algorithm is described that transforms a directed multicommodity flow network
to an equivalent single commodity network, provided such a transformation is possible.

Introduction. This paper establishes necessary and sufficient conditions under
which the linear constraints of a multicommodity flow problem can be transformed
to those of a single commodity network. An efficient algorithm tests whether or not
the conditions are satisfied. If the answer is affirmative, the equivalent single com-
modity network is then efficiently constructed. Transformability requires that the
constraint coefficient matrix of the multicommodity flow problem be unimodular. It
is shown that the latter property is not sufficient to induce transformability; in fact,
an elementary scheme constructs all nontransformable problems with unimodular
coefficient matrix. In matroid terminology (see Welsh [13] for definitions) this con-
struction establishes an infinite class of connected regular matroids that are neither
graphic nor cographic.

The only previous work addressing the transformation problem for general
directed multicommodity networks is due to Evans [4]. He shows that the transfor-
mation is possible if the underlying graph observes a recursively defined condition.
In a related survey [5] Evans shows that his condition is not necessary for transfor-
mability. This is also demonstrated by the example problem presented below.

Tutte [11], [ 12], Iri [6], Bixby and Cunningham [2], as well as several others (see
[2], [6] for surveys) have investigated the problem of transforming an arbitrary
matrix to the node-arc incidence matrix of a directed graph. The four references
present efficient algorithms that establish whether or not such a transformation is
possible. The procedure given here for settling the transformation question for the
multicommodity problem as well as the method of construction of the equivalent
single commodity problem are substantially faster than the general methods of
[2], [6], [11], [12]. For example, the transformation question is resolved in O(n)
additions/subtractions, where n is the number of arcs of the underlying graph.

The remainder of this section introduces definitions and preliminary results. We
will consider multicommodity min-cost flow problems of the form

(1) max" E (ai)twi’
i=1

(2) s.t. Eawi= dia, i= 1,2,...,k,

3) w + s c,
i=1

(4) wi->0 Vi; s->0,

where Ea is the node-arc incidence matrix of the underlying directed graph G with
finite node and arc sets. All vectors are column vectors of appropriate dimension. In

* Received by the editors March 3, 1978, and in final form January 10, 1980. This paper is a revised
version of part of [7].

t University of Texas at Dallas, P.O. Box 688, Richardson, Texas 75080.
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particular, w represents flow of commodity i, so (1)-(4) involves k commodities.
Equation (2) enforces flow conservation for each commodity, while (3) represents
the capacity restriction for each arc of G. We assume] (d) 0, /i, since else (2)
does not have a solution.

If we collect the a (w) into vector a (w), and the a and c into vector b, then

(1)-(4) can be written as

(5) max: atw,

(6) s.t. M b,

(7) w,s >=0,

where

(8) M

contains k copies of Eo.
If columns of a matrix B are independent, and if they span all columns of a

matrix A, then B-I{A} will denote the solution Z of BZ A. Let B now be a basis
of M, and define 3/to be B-1{37/}, where/f/consists of the nonbasic columns of M.
Assume (5)-(7) is brought into basic (feasible or infeasible) form

(9) max: dtx,

(10) s.t. 2/x _-</,
(11) x _-> O,

with related dual problem

(12) min" /ty,

(13) s.t. (- l(/l y <-_ (-

(14) y ->_ O.

We will say that (1)-(4) is transformable to a single commodity network problem (or
simply: (1)-(4) is transformable), if [I ]/f/] or[I _/f/t] is equal to T-I{F}, where Fis
the node-arc incidence matrix of a directed graph, and T is a basis of F. Transforma-
bility implies that (9)-(11) or its dual (12)-(14) may be solved by very efficient net-
work flow methods (see [3] for survey). One can easily prove that transformability
holds for every basis ofM if it holds for a particular basis, so the definition does not
depend on the choice of B. Further, the definition agrees with conclusions by Iri [6]
regarding transformation of a general linear program to a (single commodity) net-
work problem. Iri’s test for existence of such a transformation includes a scaling of
variables if the updated coefficient matrix (corresponding to/f/here) is not a {0, +_ 1}
matrix. Such scaling is never needed for (1)-(4), since M always contains a basis B
such that B-a{/f/} is a {0, _+ 1} matrix (see [9]).
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A matrix is totally unimodular if every square submatrix has determinant 0 or
_+ 1. It is unimodular if every basis B satisfies g.c.d. {det B} 1, where the B are
the maximal square submatrices of B.

LEMMA 1. M of (8) is unimodular if (1)-(4) is transformable.
Proof. In [9] it is shown that M always has a unimodular basis B. Under transfor-

mability 3/or (-/f/t), defined via B-I{/f/}, is a submatrix of T-I{F} for a node-arc in-
cidence matrix F with basis T. Matrix T-I{F} is totally unimodular, so h/is totally
unimodular. Then M B [I I/f/] is unimodular since B is unimodular. Q.E.D.

All graphs considered here are directed and may have parallel arcs (i.e., arcs
with the same endpoints). Cycle refers to a simple cycle whose arcs have arbitrary
directions. A graph is defined to be 2-connected if it is connected, and if every pair of
arcs is contained in at least one cycle. A 2-connected graph is called a suspension
graph if it contains a node such that removal of that node and its incident arcs re-
duces the graph to a tree. We will say that nodes and j without connecting arc are
identified when the two nodes are to be considered as just one node, say 1. Thus any
arc with or j as endpoint becomes incident at 1.

In the description of the algorithm and the proof of validity we will always as-
sume that graph G underlying (1)-(4) is 2-connected, since this assumption greatly
simplifies the presentation. In the final section results are then extended to the gen-
eral case. By the above definition G consisting ofjust one arc and its two endpoints is
2-connected. The corresponding problem (1)-(4) is trivially transformable, so we
will always suppose that G has two or more arcs.

Following Whitney 14] we define two graphs to be 2-isomorphic if there exists a
one-to-one mapping b between the arc sets such that each cycle of one graph corre-
sponds to a cycle in the other graph. This correspondence includes the relative orien-
tation of arcs of each cycle. The following two lemmas are an immediate conse-
quence of this definition.

LEMMA 2. Let G and H be 2-isomorphic, and assume arc e ofG corresponds to
arc e’ ofH under mapping 49. Then the two graphs derivedfrom G andH by (a) or (b)
below, are also 2-isomorphic.
a) Replace arc e (e’) by two parallel arcs land g (f’ and g’) in G (H). Relative orien-
tation offand g to e is the same as that off’ and g’ to e’.
b) Replace e of G (e’ of H) by a simple path with two arcs land g (3"’ and g’). Let
C (C’) be the cycle defined by arcs e, f, and g (e’, f’ and g’) and their endpoints.
(Note that C (C’) is not a subgraph of G (H) since e (e’) is no longer present in
G (H)). Relative orientation offand g to e in C must be the same as for f’ and g’ to
e’ in C’. (The simple path in G (H) introduces an additional node ofdegree two into
G (H), having f and g (f’ and g’) incident).

LEMMA 3. Suppose Ea and EI are node-arc incidence matrices of 2-isomorphic
graphs G and H, where columns ofEI are ordered in the same way as columns ofEa
under mapping 49. Let T be a basis ofE, and TI be the corresponding basis ofEt.
Then Ta{Ea} TIa{EI}. For given da suppose Ea z da has a solution z. Then
Ea z da and EI" z di have same solution set iff dn TI Ta{da}.

The next section presents the algorithm that transforms (1)-(4) to a single com-
modity network problem iff such a transformation is possible. The final section es-
tablishes validity of the algorithm.

Transformation algorithm. The algorithm consists of two parts. The analysis
part (step 1) checks whether or not (1)-(4) can be transformed. This step is taken
from [8], where it is used to test a k-commodity version ofM for unimodularity, for
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k _-> 3. At the time work on [8] was completed, it was not recognized that this step
may also be employed to test M for transformability (regardless of the number of
commodities).

Suppose now that step does indicate transformability. The synthesis part first
constructs a suspension graph H that is 2-isomorphic to G (step 2), then derives the
desired single commodity network problem via graph H (step 3). In [4] Evans proves
that (1)-(4) is transformable if graph G observes a certain recursively defined condi-
tion. It is easily seen that 2-connected G satisfies Evans’ condition iff G is a suspen-
sion graph. In a recent survey paper [5], Evans also mentions this relationship. It is
also easily demonstrated that the algorithm given below can be simplified to Evans’
transformation rules [4] if G is a suspension graph.

STEP 1 (Analysis). Initially all arcs of G, the underlying graph of (1)-(4), are
marked nonspecial. Repeatedly apply the following rules (in any order), starting with
graph G.
a) If two arcs are parallel, replace them by a single special arc with same end points

and arbitrary direction.
b) If the graph has a node of degree two, and if at most one of the two arcs incident

at that node is special, then remove that node and merge the two incident arcs
into a single arc of arbitrary direction. The resulting arc is marked special if one
of the two arcs just merged was special.

Once G has been reduced to a cycle with two arcs, go to step 2. If G has been re-
duced to a graph that is not a cycle of two arcs, and if no further reduction via a) or
b) is possible, then (1)-(4) cannot be transformed.

STEP 2 (Synthesis" 2-isomorphic graph H). Let G Go, G, G2,’’’ GR
(= cycle with two arcs) be the graphs obtained in step by repeated application of
rules of step la), lb). Construct a sequence of suspension graphs H H0, H, H2,

HR as follows:
a) Let HR be the same graph as G, but mark both arcs as special, and designate

one of the nodes ofH as v. Each arc ofH corresponds to an arc of GR by the
isomorphism between the two graphs.

b) For n R, R 1, derive Hn-1 from Hn, G, and G,_ as follows:
ba) If step la) reduced G,_a to G,, i.e., two parallel arcs land g of Gn_ were

replaced by special arc e of G,, then replace the corresponding special arc
e’ of H, by two arcs f’ and g’ with the same end points as e’. Direction of
f’ (g’) is selected such that relative orientation off’ (g’) to e’ agrees with
that off (g) to e. Mark both f’ and g’ as special. For subsequent steps f’
(g’) corresponds to f (g).

bb) If step lb) reduced G,_ to G,, i.e., two arcs land g incident at a node of
degree two were merged into arc e, then replace the corresponding arc e’
of Hn by a simple path with two arcs f’ and g’. (This introduces an addi-
tional node of degree two as well). As in Lemma 2b let C (C’) be the cycle
defined by arcs e, j; and g (e’, f’, and g’) and their endpoints. Direction of
f’ (g’) is selected such that relative orientation off’ (g’) to e’ in C’ agrees
with that off(g) to e in C. For subsequent steps, f’(g’) corresponds to
f (g).
Special markers for f and g (if any) are determined as follows:
bba) If e’ is not special, then f’ and g’ are not special.
bbb) If both e and e’ are special, then one offand g must be special. Mark

the correspondingf’ or g’ as special. Without loss of generality sup-
pose f’ is now marked special. Iff’ is not incident to node
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(15)

(16)

change it with g’ so that f’ becomes incident to v. This exchange is
done in such a manner that the relative orientation off’ (g’) to e’ (as
defined above via C’) remains unchanged.

bbc) If e’ is special and e is not, one of the arcs f’, g’ must be incident at
node v. Mark that arc as special.

S:EP 3 (Synthesis" Single Commodity Network).
a) Let N and A be node and arc set of H, and Av be the set of arcs incident at node

v. Order columns of E, the node-arc incidence matrix of H, such that columns
of arcs ofA v are listed first. If necessary, rearrange (1)-(4) so that columns ofE
and elements of vectors a, c, w are ordered in the same way as columns of Eit
under the correspondence of arcs determined in step 2. Below, the notation

"c" will refer to element cxu of c in (3), where xy is the arc of G corresponding
to arc jl of H. Analogous relationships hold for vectors a, w, and s of (1)-(4).

b) Select an arbitrary basis T/ from E/, and let T be the corresponding basis of
E. Compute d Tit. T-dl{dc}, 1, 2, k. Delete from E (d, 1,
2,-.., k) the row (element) representing node v, getting E’it (dit, 1,
2, k) Define d by 0(dH)j Zlu[Cjl Clj] Z//=1 (d/H)j, j U {v}.

c) Let [a,] [a[ matrix L be equal to [JI 0], where the columns correspond to arcs
ofA as in Ez. J is drived from the identity by replacing some + 1 entries by 1.
Specifically, J, is + (- 1) if the arc ofA corresponding to column is vj (jr),
some j N. Finally let h be a vector of length [A,I. Element h represents the
same arc of A, as column of L, and it has value c, (- c,) if that arc is vj (jr).

d) (1)-(4) is then equivalent to the single commodity network problem
k

max: (ai)tw,
i=1

s.t. EHW dii-I, 1, 2," k,

(17) its

(18) Lw + Ls h,
i=1

(19) w*=>0 ’i; s->0.

We briefly examine the computational complexity of the algorithm and discuss
an example, deferring the proof of validity to the next section. We count as one com-
putational step addition or subtraction of two real numbers that are part of the input,
or that are generated by additions or subtractions from the input by the algorithm.
Assume (1)-(4) with k commodities is specified by the node set (with rn nodes) and
the arc set (with n arcs) of graph G, and by vectors a, c, and d, 1, 2, k.
Steps and 2, suitably implemented, involve O(n) steps. Computation ofd, 1,

k for (15)-(19) in step 3 requires O(k m) steps since Tit T-d{db} is of order
O(m). Finally, d/is found in O(n) steps (assuming =1 d is computed along with

Tit Tl{d}), and L and h are determined in O(m) steps. Hence overall complexity is
O(max {k. m, n}).

The following observations result in a minor improvement of the algorithm. It is
easily seen that a suspension graph.H with rn nodes and no parallel arcs has at most
2m 3 arcs. Now G and H of steps 1 and 2 have the same number of arcs and nodes,
and one of these graphs has parallel arcs only if the other graph has such arcs as well.
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Suppose for the moment that G has no parallel arcs. By the preceding arguments
n _-< 2m 3 is a necessary condition for transformability, and overall complexity of
the algorithm becomes O(k. m) once this test on n is added to step 1. A similar
refinement is possible if G has parallel arcs. In that case one first applies step a until
all parallel arcs have been eliminated. Suppose that the graph at that time has n arcs,
of which n2 arcs are marked special, and that (1)-(4) is transformable. If we disre-
gard parallel arcs, then H of step 2 will have na arcs, of which at least n2 arcs will be
special and incident at one node. Thus inequalities n _-< 2m 3 and n _-< m
must be satisfied, and we should verify this before proceeding with step 1. However,
this change does not improve the order of complexity, which remains as
O(max {k. m, n}). It seems instructive to compare the latter formula with the com-
plexity of general methods (e.g., the ones cited in the Introduction). Every method
published to date requires M of (10) as input. For arbitrary m, transformable
problems exist where M averages about m nonzero entries per column, so any gen-
eral method that uses //has complexity of at least O(k. m. (n m)), which is
larger than O(max {k m, n}), the order of the algorithm presented here.

We conclude this section with presentation of an illustrative example involving
two commodities. Fig. displays graph G and all relevant data of (1)-(4). Note that
G is not a suspension graph, so this problem cannot be transformed by the method of
[4]. The pair (d, d) next to a node specifies that di units of external inflow of com-
modity must occur at that node for 1, 2. The triple [co0, cos, o] alongside an arc
establishes co0 as capacity of that arc and oi as cost per unit of flow of commodity
i, for 1, 2. The letters a, b, alongside arcs are labels that allow easy identifi-
cation of the reductions and expansions in steps and 2. The latter steps produce
graphs Go G, G, GT, and HT, H6, H0 H. Fig. 2 displays a represen-
tative subset of this list of graphs. For example, arcs e and d of Go are replaced by
arc m of G3. For clarity we have used the same arc labels in H as in G, for allj. Spe-
cial arcs are designated by the symbol (.

We now turn to step 3. Some convention is needed to assign external flows ofH
to entries of dh and d. It seems simplest to assign external flow at nodej to entry j,
and with this convention we have db TI-I" T- {db} (-2, 2, -3, 6, -3) and
d (- 13, -2, 9, -5, 11) t, where we used arc set {a, e, g, h} in G and H to define

To and Tn. Since v 1, deletion of the first entry in dh and d gives db and d,
respectively. Then d (1, -2, 1, 1) by the formula of step 3b). The equivalent

c

FIG. 1. Graph G and data of example problem.
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FI. 2. Graphs of steps and 2.

single commodity problem (15)-(19) is now easily found since En, L and h are
uniquely determined by H. The corresponding network is shown in Fig. 3. Here
each number next to a node specifies the external inflow into that node, and a Greek
letter on an arc denotes the cost per unit of flow on that arc. Equation (16) generates
nodes 2.i, 3.i, 4.i, and 5.i, for 1, 2, while (17) results in nodes 2.0, 3.0, 4.0,
and 5.0. Nodes a, b, e, g, and h arise from (18). Flows in the network of Fig. 3 are
easily related to flows in G with the aid of the cost coefficients. For example,

FIG. 3. Equivalent Single Commodity Network Problem.
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the arc with endpoints 5.1 and h in Fig. 3 has cost coefficient 1; hence its flow corre-
sponds to the flow of commodity on arc h with endpoints 3 and 5 of G in Fig. 1.

Validity of the algorithm. First it is proved that the algorithm does transform
(1)-(4) to a single commodity network, provided underlying graph G is reduced to a
cycle with two arcs in step 1. For ease of exposition we define the following arrays.

(20) E(EI-I)"
,b.

derived from Ec(EI-I) by deletion of an arbitrary row (of row v).
derived from M of (8) by replacing each copy of Ea by a.
Deletion of related elements of b produces .

Problem (1)-(4) can obviously be transformed to a single commodity network
problem if one finds a matrix D with independent columns such that D_ is the
node-arc incidence matrix of a directed network. VectorD specifies external flows
for that network. Let Ea and En be the matrices of step 3; i.e., columns of Ea are or-
dered in the same wav as those of E/ (under the correspondence of arcs of G and H
as determined in step 2), and columns of arcs in Av, the set of arcs incident to v in H,
are listed first in E/. Define to be a basis of and / to be the corresponding
basis of/, where Ec and /are defined by (20). Using K 1 and L of step
3, let

(21) D 0

0 L

where D contains k copies of K. With the aid of the following lemma we will show
that D has independent columns, and that product D is defined and leads to the
desired node-arc incidence matrix. As in step 3, N denotes the node set of H.

LEMMA 4. H ofstep 2 is 2-isomorphic to G of (1)-(4). Further, every special arc
ofH is incident at node v and vice versa, while the nonspecial arcs form a tree that
spans nodes ofN- {v}.

The proof of Lemma 4 is easily achieved by induction, using the sequence/-/,
H_I, H0 of step 2 and Lemma 2. So let H have m nodes, and suppose r IAvl
arcs are incident at node v of H. By Lemma 4, E is (m 1) x (r + m 2), and the
last m 2 columns, which correspond to nonspecial arcs, are linearly independent.
Then D of (21) is(r + (k+ 1). (m- 1)) x (r + (k+ 1). (m- 1)- 1) andhaslin-
early independent columns. Moreover, product D. is defined, since is
(r+ (k+ 1).(m 1)- 1) x ((k+ 1). (r+ m- 2)), and

(22) D/
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The definition of L and En implies that D. is the node-arc incidence matrix of a
single commodity network. D] is also the constraint coefficient matrix of (16)-(18).
The right-hand side of the latter equations is easily seen to be equal to Db. We con-
clude that the algorithm achieves the desired transformation of (1)-(4) as claimed.

Now suppose that (1)-(4) is transformable, but that step 1 of the algorithm does
not reduce G to a cycle with two arcs. By Lemma 1, M of (8) must be unimodular. In
[8] it is demonstrated that under these conditions (1)-(4) involves k 2 commodi-
ties, and that G contains a subgraph that is homeomorphic to (i.e., isomorphic to,
within nodes of degree two) a graph constructed as follows.

One starts with a cycle C having between three and six arcs. Then one parallel
arc is added to each of three distinct arcs of C, such that the resulting graph has no
node of degree two. Thus ( is either the graph of Fig. 4 (where each dashed line rep-
resents a simple path with one or more arcs), or it is obtained from that graph by re-
moval of one or more paths of {e, f, g} and identification of the endpoints of any path
so removed.

II \

FiG. 4. Subgraph J of G.

The following easily established lemma reduces the potentially large number
of graphs that must be examined to just one graph.

LEMMA 5. Let (1)-(4) with underlying graph G be transformable. Then (1)-(4)
with graph G’ is also transformable, where G’ is obtainedfrom G by one of the fol-
lowing operations.

(i) Change direction of an arc.
(ii) Delete an arc.
(iii) Delete arc ij and all arcs parallel to it, then identify nodes and j.

By repeated applications of steps (i)-(iii) of Lemma 5, we conclude that transforma-
bility of (1)-(4) with graph G and subgraph t of Fig. 4, implies transformability of
(1)-(4) with graph t of Fig. 5. Let B be the following basis of M of (8) arising from
k 2 commodities and graph t: For commodities one and two select columns of

FIG. 5. Graph (7,.
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arcs b’ and c’, then use all columns of slack vector s. Let/f/consist of the nonbasic
columns of M. With these definitions/f/= B-l{/f/} is

a a’ b c a a’ b c

(23) Q
-1

-1

co"’"dity.L..,, commodity
1 2

Let D (D2) be the submatrix of//of (23) defined by columns 1-5 (1, 3, 5, 7), and
rows 1, 2, 5-7 (1, 3, 5, 7, 9). That is,

-1 0 0 0 0

1 -1 0 1 0 0 0 -1

DI= 1 -1 0 D2
-1

1 0-1 11 0 1 011 0 0 0 0 1 0

Let K3,3 denote any complete bipartite graph with three source nodes and three sink
nodes, regardless of the directions of arcs. Then [1 (D1) t] (Ba)-1 E, where E is
the node/arc incidence matrix of a graph consisting of K3,z and one additional arc,
and where B is a basis ofE1. Similarly [I Dz] (BZ)-1 Ez, where this time E cor-
responds to just Kz,z. By Tutte’s characterization of graphic matroids [10], the con-
clusions about D and D imply that (1)-(4) with graph is not transformable. By
Lemma 5 this holds as well for (1)-(4) with graph G, which contradicts the initial as-
sumption. It follows that reduction of G to a cycle with two arcs in step of the
algorithm is achieved iff (1)-(4) is transformable.

We briefly relate the above results to the theory of regular matroids (see Welsh
.[,13] for definitions). In [8] it is proved that Mwith k 2 commodities may be unimod-
ular even if step does not reduce underlying graph G to a cycle with two arcs. By
the results of [8] such matrices form an infinite class, and any member of that class
can be efficiently constructed. Matrix 3/of (10) corresponding to such M is totally
unimodular, so by the above discussion the linear independence matroid defined
from [I 2f/] is connected and regular, but not graphic or cographic. To our knowl-
edge (1)-(4) so far is the only known combinatorial problem of practical significance
that gives rise to an infinite class of such matroids. However, one should not attach
too much importance to this claim. It seems likely that a number of practical com-
binatorial problems have the same property--they just have not been discovered as
yet.

The following theorem combines the above conclusions with results of [8].
THEOREM 1. The following statements are equivalent for problem (1)-(4)with

underlying graph G.



358 Y. SOUN AND K. TRUEMPER

(i) (1)-(4) is transformable.
(ii) The algorithm transforms (1)-(4) to (15)-(19).
(iii) G is 2-isomorphic to a suspension graph.
(iv) Every k-commodity version ofM is unimodular, for k >- 2.
Proof. Equivalence of (i) and (ii), as well as (i) (iii), follow from the above dis-

cussion. To show (iii) (i), let G be 2-isomorphic to suspension graph H. Matrices
D and D/ are easily determined via Lemma 3 such thatD/ DI{M} M’, where
each copy ofE ofM has become a copy ofE in M’. A trivial inductive proof estab-
lishes that step 1 of the algorithm must reduce H to a cycle with two arcs, so step 3
finds the equivalent single commodity network problem. Hence (1)-(4) has been
shown to be transformable. Finally, equivalence of (ii) and (iv) is a consequence of
results of [8]. Q.E.D.

Finally we address the general case of (1)-(4) when G is connected but not 2-
connected. In that case G can be decomposed into its 2-connected components, say
G1, G2, Gr, in O(n) steps, where n is the number of arcs of G (see [1, p. 185]).
We then separate (1)-(4) with G into r multicommodity flow problems of type
(1)-(4), where the jth problem has G as underlying graph. External flows are found
as follows One of the G, say G must be joined to the remaining t3 G at ex-j=2

actly one node, say at x. We now separate G into G and (. External flows at nodes
not equal to x are those of G. External flows at x of G (G) are chosen so that external
flows for that graph sum to zero for each commodity. Proceeding iteratively, we re-
move one G at a time from G until r multicommodity flow problems have been deter-
mined. It is trivial to show that each such subproblem is transformable if the original
problem is transformable. The converse statement follows from theorem 1.

Aeknowledgrnent. We thank the anonymous referees for the time and effort they
devoted to the evaluation of the paper. In addition one referee suggested several
changes that resulted in an improved exposition.
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A GRAPH THEORETICAL APPROACH TO HANDICAP
RANKING OF TOURNAMENTS AND PAIRED COMPARISONS*

KENNETH A. BERMAN?

Abstract. In this paper, the players in a tournament T are ranked according to the number of out ar-

borescences rooted at the vertices of a digraph D associated with T. This ranking is shown to be equivalent
to handicap ranking of tournaments. The tournaments considered in this paper may involve any number of
games or no games between particular pairs of players and thus are more general than round-robin tourna-
ments. In fact, these tournaments can be interpreted in statistics as systems of paired comparisons.

1. Introduction. By a "tournament" we will mean a competition involving
players P1, P’, Pn where all games are between two players. The outcome of a
game between two players Pi and P is one of three possibilities: (i) Pi defeats P (ii)
P defeats Pi (iii) draw. In a tieless tournament the third possibility is not allowed. A
tieless tournament T corresponds to a digraph D where multiple directed edges are
allowed but no loops; the vertices of D correspond to the n players of T and a
directed edge ofD joins a vertex to a vertex j for each game of T in which player P
defeats player Pj. A tournament with draws may be transformed into a tieless tour-
nament by replacing each game in which P defeats Pj by two games in which P de-
feats P and replacing each draw between P and P with two games, one in which Pi
defeats P and the other in which P defeats P.

The vertices of digraph D are partitioned by the strongly connected compo-
nents. (A strongly connected digraph is a digraph such that there is a dipath from
every vertex to every other vertex. A strongly connected component of D is a max-
imal subdigraph which is strongly connected.) It is easily shown that these compo-
nents can be ranked such that every player in a component of higher rank defeats
every player in a component of lower rank. Now by ranking the players in each com-
ponent we obtain a ranking of all the players. Thus, the problem of ranking tourna-
ments reduces to the problem of ranking strong tournaments, that is, tieless tourna-
ments whose associated digraph is strongly connected.

In the papers of Moon and Pullman [3], [4] and the independent paper of Daniels
[1] equitable systems of handicapping are devised for the players. In one method,
discussed in these papers, each player P pays the amount s (i 1, 2, n) to the
winner of every game he loses, where s is a positive real number. A fairness condi-
tion is imposed on the payoff vector s (Sl, s2, sn). Payoff vector s is fair if
each player has a net gain of zero. The component si of s can be thought of as the
"strength" of player P. The players of greater strength are ranked above those of
lesser strength.

An out arborescence at a vertex of D is a spanning tree such that there is a di-
path in the tree from to every other vertex. The arborescence vector is the vector
a (al, a2, an) where a is the number of out arborescences at vertex ofD. In
this paper, we show that for a strong tournament the arborescence vector a is a fair
payoff vector and every fair payoff vector is a scalar multiple of a.

In 2 we prove this result and in 3 we obtain, as a corollary, a result on the
existence of nowhere-zero k-flows.
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2. Handicap ranking and the arborescence vector. In this section we prove the
following main theorem.

THEOREM 2.1. Let T be a strong tournament with associated digraph D. Then,
the arborescence vector a ofD is a fair payoffvector and everyfair payoffvector is a
scalar multiple of a.

Since D is strongly connected, ai > 0 for all i. To prove the first part of the
theorem we must show that

(1) aidi a

for each i, where d denotes the in-degree of and the sum is over all directed edges.-..of the type tj m D.
Let us define a (,)-graph as any spanning subgraph ofD in which each vertex has

in-degree one and which contains exactly one cycle. (It is the converse of what is
sometimes called a connected functional digraph.) Let S(i) denote the set of (,)-
graphs ofD in which vertex belongs to the cycle. If from any graph G in S(i) we re-
move the (unique) cyclic edge/-fdirected away from i, we obtain an out arborescence
at vertex j. This process is clearly reversible, and it follows readily that

On the other hand, if from G we remove the (unique) cyclic edge directed
towards i, we obtain an out arborescence at vertex i. Each such arborescence is ob-
tained d times when this process is applied to all graphs G in S(i). Again, it readily
follows that IS(i)l ad.

Thus the two sides of equation (1) are equal because they are simply two dif-
ferent expressions for the same thing, namely IS(i)l. This proves the first part of
Theorem 2.1.

To prove the second part, suppose b (b, b,. b) is any fair payoff
vector. Then, for every vertex i, b > 0, and

(2) bid b.
D

Since all the a’s are positive there exists a real number r such that c ra bi >= 0
for each and c 0 for at least one vertex k. Combining (1) and (2), we obtain

(3) cj= cd O.

D
Since all the c,’s are nonnegative it follows that c 0 for each vertex j such that

k- D. Since D is strongly connected we have that c 0 for every vertex i, i.e.,
b=ra.

This proves Theorem 2.1.
Theorem 2.1 can be easily generalized to weighted tournaments, that is, tourna-

ments in which each game is assigned a positive real weight. A ranking is obtained in
terms of the weighted arborescences where the weight of an arborescence is the
product of the weights on its edges. Weighted tournaments can be employed to rank
a set of players where the probabilityp that player P, will defeat P is given for some
(or all) pairs of players P,, P. In the associated weighted tournament there corre-
sponds a game in which Pi defeats P for each probability Pu and this game is given
weight p.

3. Nowhere-zero k-flows. Let G be an undirected graph with vertex set V and
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edge set E. Assign an orientation to the edges of G. Aflow ch in G over a ring R is a
mapping from E into R such that the sum of the values of b over the edges directed
into each vertex equals the sum over the edges directed out of that vertex. (If a dif-
ferent orientation of G is used we replace b(e) by b(e) for each edge e whose direc-
tion is reversed.) If no edge is mapped onto zero then b is a nowhere-zero flow. A
k-flow is a flow over the integers mod k.

Let c be the map which maps edge e E onto the number of out arborescences
at the head of e. By Theorem 2.1, c is a flow over the integers and c (mod k) is a
nowhere-zero k-flow if the number of out arborescences at each vertex is not divisi-
ble by k. Hence we have the following theorem.

THEOREM 3.1. A graph which can be oriented so that the number ofout arbores-
cences at each vertex is not divisible by k has a nowhere-zero k-flow.

Now, a planar graph is face k-colorable iff it contains a nowhere-zero k-flow.
(See [5].) Thus we have the following result.

COROLLARY 3.2. A planar graph G is face k-colorable (k 2, 3, 4) if G can be
oriented so that the number of out arborescences at each vertex is not divisible by k.

Tutte conjectured in [5] that every graph without bridges contains a nowhere-
zero 5-flow. It can be easily shown that the existence of a nowhere-zero k-flow im-
plies the existence of a nowhere-zero m-flow for all m > k. Jaeger has proved that
every graph without bridges has a nowhere-zero 8-flow [2]. The following problem is
proposed: Which graphs can be oriented so that the number of out arborescences at
each vertex is not divisible by 5?
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DYNAMIC-PROGRAMMING ALGORITHMS FOR RECOGNIZING
SMALL-BANDWIDTH GRAPHS IN POLYNOMIAL TIME*

JAMES B. SAXE?

Abstract. In this paper we investigate the problem of testing the bandwidth of a graph: Given a graph,
G, can the vertices of G be mapped to distinct positive integers so that no edge of G has its endpoints
mapped to integers which differ by more than some fixed constant, k? We exhibit an algorithm to solve
this problem in O(f(k)Nk+l) time, where N is the number of vertices of G andf(k) depends only on k. This
result implies that the "Bandwidth

_
k" problem is not NP-complete (unless P NP) for any fixed k,

answering an open question of Garey, Graham, Johnson, and Knuth. We also show how the algorithm can
be modified to solve some other problems closely related to the "Bandwidth k" problem.

1. Introduction. The subject of this paper is the computational complexity of a
problem on graphs. To speak precisely of the problem, we will need the following no-
tation and definitions.

NOTATION. Let u and v be vertices of a graph G. We will say "u--v in G" to
denote that {u, v} is an edge of G. Where G is clear from context, we will write sim-
ply "u--v".

DEFINITIONS. Let G be a graph with vertex set V, and let N IVI. A layout of G
is a one-to-one mapping, f, from V onto {1, N}. The bandwidth offis defined as
the maximum distance between the images underfof any two vertices that are con-
nected by an edge of G. That is,

bandwidth(f) max {flu) -f(v)lu--v}.
The Bandwidth of G is defined as the least possible bandwidth for any layout of G.
Thus,

Bandwidth(G) min {bandwidth(f)] fis a layout of G}.

PROBLEM "(Bandwidth minimization)." Given an arbitrary graph, G, and a posi-
tive integer, k, determine whether Bandwidth(G) -< k.

Note that the notion of graph bandwidth is equivalent to the more familiar no-
tion of matrix bandwidth in that Bandwidth(G) =< k iff there exists a permutation ma-
trix P such that (PCP-1)i,j 0 whenever li Jl > k, where C is G’s connection ma-
trix. For any particular positive integer k, we can define a restricted version of the
bandwidth minimization problem as follows:

PROBLEM "(Bandwidth k)." Given a graph, G, determine whether Band-
width(G) -< k.

Papadimitriou [1976] has shown that the general bandwidth minimization
problem, in which k is specified in the input, is NP-complete. The problem was later
studied by Garey, Graham, Johnson, and Knuth [1978], who found a linear-time
algorithm for the problem "Bandwidth 2", and also improved on Papidimitriou’s
result by showing the problem for general k to be NP-complete even when G is
restricted to be a tree with no vertex of degree greater than three. A number of ques-
tions are left open by their work, however. One such question is whether there exists
a polynomial-time algorithm for the problem "Bandwidth : 3". In this paper, we
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will answer this question affirmatively by exhibiting an algorithm which solves the
problem "Bandwidth = k" in polynomial time for any fixed k. Section 2 of this
paper introduces the fundamental concepts and assumptions we will use in describ-
ing our algorithm. In 3 the algorithm is described and its performance is analyzed.
In 4 we discuss some modifications of the algorithm to solve related problems. Fi-
nally, in 5, we discuss some remaining open problems.

2. Fundamental concepts and assumptions. Throughout the following we will as-
sume that G denotes a graph with vertex set V and edge set E, that k denotes a partic-
ular positive integer, and that we wish to determine whether G has any layout of
bandwidth _-< k. We let N denote the cardinality of V. Note that if G is not connected
then G has a layout of bandwidth _-< k iff each of its components has such a layout.
Also, it is clearly impossible for G to have such a layout if G has any vertex of degree
greater than 2k. We therefore assume, without loss of generality, that G is a con-
nected graph having no vertex of degree greater than 2k. Note that an arbitrary graph
can be partitioned into its connected components by depth-first search in
O(max (n, e)) time, where n is the number of vertices and e is the number of edges,3

and that this is O(n) if a fixed bound is given on the degree of any vertex. Moreover,
an obvious modification to the depth-first search algorithm allows it to detect the
presence of a vertex with degree greater than a fixed bound in time which is propor-
tional only to the number of vertices and not to the number of edges.

We now introduce the key notion of a partial layout.
DEFINITIONS. A partial layout of G is one-to-one function, f, from some subset

of V onto {1, M}, for some M such that 0 _-< M -< N. We say thatfis feasible if
it can be extended to a (total) layout, g, such that bandwidth(g) _-< k. The bandwidth
offis the maximum distance between the images of any two edge-connected vertices
of G which are in the domain off. If umv and u is in the domain offand v is not, then
the edge {u, v} is said to be dangling from f.

Consider a partial layout, f, of size M. Clearly, f cannot possibly be feasible
unless

1. bandwidth(f) _-< k, and
2. whenever u and v are vertices of G such that f(u) < M k and umv, v is

also in the domain off.
Iffsatisfies both these conditions, thenfis said to be a plausible partial layout. The
sequence (f-l(max(M-k+l, 1)),..., f-l(M)), taken together with the set of
dangling edges off, is called the active region ofj We now come to the theorem on
which our principal algorithm depends.

THEOREM 2.1. Let land g be two plausible partial layouts of G having identical
active regions. Then,

1. land g have identical domains, and
2. f is feasible iff g is feasible.
Proof. Since G is connected, the domains offand g must each consist precisely

of those vertices which are path-connected to vertices in the active region by paths
not including any dangling edges. Thus, (1) holds. To see that (2) holds, we need only

More correctly, a class of algorithms, one for each value of k.
When using the "big-oh" notation, we will regard k as fixed and therefore omit factors that depend

only on k.
See, for example, Aho, Hopcroft, and Ullman [1974, Chapt. 5].
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note that any assignment of the remaining vertices which extends either f or g to a
total layout of bandwidth -< k must also extend the other to such a layout. []

Finally, we define the notion of a successor of a plausible partial layout (or ac-
tive region), which will be necessary to explain our algorithms.

DEFINITION. Let fbe a plausible partial layout of G. Then a successor off is a
plausible partial layout, g, which extendsfby precisely one element. In this case, the
active region of g is also said to be a successor of the active region off. We also say
that (the active region of)f is a predecessor of (the active region of) g.

3. The algorithm. Theorem 2.1 allows us to say that two plausible partial layouts
are equivalent if they have identical active regions. The algorithm we present is es-
sentially a breadth-first search over the space of all the induced equivalence classes
of plausible partial layouts, where each such equivalence class is uniquely character-
ized by the active region of its representatives. Alternatively, we may think of the
algorithm as a dynamic-programming search over the plausible partial layouts. Each
active region consists of at most k vertices and each vertex has no more than 2k
edges, each of which may or may not be dangling. Thus the number of equivalence
classes is bounded above by4

o_ k

Our algorithm uses the following two data structures:
1. A (fifo) queue, Q, whose elements are active regions.
2. An array, A, which contains one element for each possible, active region.

Each element, Air], of A consists of a Boolean flag, A[r].examined, telling
whether the active region r has already been considered in the search and a
list, A[r].unplaced, of vertices which is intended to list all vertices NOT in
the domain of each plausible partial layout with active region r.

At the start of our algorithm, Q is initialized to contain the single element repre-
senting the active region (henceforward denoted ) of the empty partial layout, b.
The flag A[].examined is set to TRUE and A[].unplaced is initialized to list all the
elements of V. The remaining A[r].examined are initially FALSE, and the remaining
A[r].unplaced are uninitialized. The algorithm now proceeds as follows:

ALGORITHM B (Bandwidth testing).
1. Extract an active region, r, from the head of Q.
2. From A[r].unplaced, determine the successors of r.
3. For each successor, s, of r such that A[s].examined is FALSE, perform the

following steps:
a. Set A[s].examined to TRUE.
b. Compute A[s].unplaced by deleting the last vertex of s from A[r].un-

placed.
c. If A[s].unplaced is the empty set, then halt asserting that Band-

width(G) _-< k.
d. Insert s at the end of Q.

As we will mention in 5, the coefficient on this bound is quite loose.
For each vertex, v, in A[r].unplaced, we must consider the possibility of using v as the next vertex in

any plausible partial layout which has r as its active region. For any v this will either (1) yield a new plau-
sible partial layout whose active region is uniquely determined by r and v or (2) yield an implausible partial
layout regardless of the particular plausible partial layout being extended by v (provided that it has r as
its active region).
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4. If Q is empty, then halt asserting that Bandwidth(G) > k. Otherwise, go to
Step 1.

The space required by this algorithm is clearly O(Nk+l). To determine the run-
ning time, we note first that since there are O(N) possible active regions, each of
Steps through 4 will be executed O(N) times. The individual executions of Steps
and 4 each take only constant time, so the contribution of these steps to the total run-
ning time of the algorithm is O(N). Since any active region, r, has at most N suc-
cessors (zero or one for each element of A[r].unplaced), each execution of Step 2
takes O(N) time. The contribution of Step 2 to the total execution time is therefore
O(N+I). Determining the contribution of Step 3 is (a little) trickier. During a single
execution of Step 3, Steps 3.a through 3.d may be executed as many as N times, and
the amount of computation in Step 3.b may be O(N). Thus it appears possible that
Step 3 may contribute O(N+2) to the total execution time. If we look more carefully,
however, we see that 3.a through 3.d are executed at most once for each active
region. Thus the total contribution of Step 3 is O(Nk+I). Adding the contributions of
all the steps gives us the following result.

TIEOREM 3.1. Let k be any positive integer. Then there is an algorithm which
solves the problem "Bandwidth k" using O(Nk+) time and O(N+) space.

Proo) To test the bandwidth of G, we first perform an O(N)-time depth-first
search which either

(1) determines that G has some vertex of degree greater than 2k, or
(2) partitions G into connected components none of which have any vertex of

degree greater than 2k.
In case (1), we know immediately that Bandwidth(G) > k. In case (2), we apply
Algorithm B to the connected components of G. 1

While Algorithm B will tell us whether G has a layout of bandwidth =< k, it does
not actually produce such a layout. In order to allow such a layout to be recovered,
we may associate with each active region, s, an additional field, A[s].predecessor.
When s is appended to Q in Step 3.d., we make A[s].predecessor point to a prede-
cessor of s (namely, the r we chose in Step 1).6 If the algorithm finds an active region,
t, such that A[t].unplaced is empty, it is a simple matter to recover a layout by trac-
ing back through the predecessor fields.

4. Modifications for related problems. Another question left open by Garey,
Graham, Johnson, and Knuth [1978] is whether there exists a polynomial-time
algorithm to count the layouts of a graph having bandwidth <= k, even for k 2. We
now give an affirmative answer to a closely related question by exhibiting a class of
polynomial-time algorithms (one for each positive integer k) for determining the
number of bandwidth k layouts of any connected graph.

Our algorithm for enumerating layouts of bandwidth =< k is a slightly modified
form of Algorithm B. The data structures are the same as those for Algorithm B, with
the following additions:

1. Each entry, Air], of A has a third field, A[r].count, which will hold the
number of (so far discovered) plausible partial layouts whose active region
is r.

Note that this pointer need only name the single vertex (if any) which is contained in r but not in s.
Note that the number of bandwidth -< k layouts of an arbitrary graph is not uniquely determined by

the numbers of bandwidth <= k layouts of its connected components because the topologies of the compo-
nents impose constraints on how the various layouts may overlap. The algorithms cannot be applied
directly to nonconnected graphs because they depend on Theorem 2.1.
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2. There is a variable, Total, which will hold the number of (so far discovered)
layouts of bandwidth =< k.

At the start of the algorithm, Total and all the A[r].count are initialized to zero, ex-
cept for A[].count, which is initialized to 1. The remaining variables are initialized
as for Algorithm B. We then proceed as follows.

ALGORITHM E (Enumerate layouts).
1. Extract an active region, r, from the head of Q.
2. From A[r].unplaced, determine the successors of r.
3. For each successor, s, of r, perform the following steps:

a. If A[s].examined is TRUE, go to f.
b. Set A[s].examined to TRUE.
c. Compute A[s].unplaced by deleting the last vertex of s from A[r].un-

placed.
d. If A[s].unplaced is the empty set, then increase Total by A[r].count and

go to Step 4.
e. Insert s at the end of Q.
f. Increase A[s].count by A[r].count.

4. If Q is empty, then halt. Otherwise, go to Step 1.
Study of this algorithm gives us the following result.
THEOREM 4.1. Let k be any positive integer. Then there exists an O(Ne+l)-time,

O(Ne+l)-space algorithm which, given any connected graph, G, computes the
number of layouts of G having bandwidth <= k.

Proof. We claim that Algorithm E (preceded by a depth-first search to ensure
that no vertex of G has degree greater than 2k) has the desired properties. By an
analysis similar to that for Algorithm B, Algorithm E will run in O(N+1) time. We
must now show that it correctly counts the layouts of bandwidth =< k. To do this, it
suffices to show that by the time that any plausible partial layout, r, is selected in
Step 1, A[r].count contains the total number of plausible partial layouts whose active
region is r. This in turn may be shown inductively if we can only show that no active
region, r, is chosen in Step until every predecessor of r has been chosen. This last
follows at once from the fact (which may be established by induction) that the active
regions proceed through the queue in nondecreasing order of their lengths, where the
length of an active region, r, is defined to be the number of vertices in the domain of
any plausible partial layout whose active region is r. []

We may view bandwidth minimization as the problem of finding a layout with
minimax edge length. We will now look at the corresponding minisum problem.

DEFINITION. Let G be a graph with edge set E, and let fbe a layout of G. Then
the total edge length off is given by the sum

{u,v} E

where each edge, {u, v}, contributes precisely once to the sum (rather than once as
u--v and once as

PROBLEM (Optimal Linear Arrangement.) Given a graph, G, and an integer, t, de-
termine whether there is a layout of G having total edge length less than or equal to t.

The Optimal Linear Arrangement (O.L.A.) problem was found to be NP-
complete by Garey, Johnson, and Stockmeyer [1976]. However, Shamos [1979] has
pointed out that the methods of the present work can be used to provide
polynomial-time algorithms for a class of restricted versions of O.L.A. For every
positive integer, k, we define a restriction of O.L.A. as follows.
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PROBLEM. (O.L.A. for bandwidth <- k). Given a graph, G, determine the minimal
total edge length of any layout of G having bandwidth -<_ k or determine that no such
layout exists.

Applying the methods used above, we obtain the following result.
THEOREM 4.2. Let k be any positive integer. Then there exists an algorithm

which solves O.L.A. for bandwidth <= k in O(Nk+l) time and O(N+) space.
Proof. An algorithm having the desired properties when applied to connected

graphs with no vertex having degree greater than 2k may be constructed by a slight
modification of Algorithm E: instead of maintaining with each active region a count
of the partial layouts having that active region, we maintain an indication of the min-
imum sum of the lengths of all edges whose endpoints are in the domains of all plau-
sible partial layouts having that active region. The details are left to the reader. For
arbitrary graphs we first perform a depth-first search which either detects the pres-
ence of a vertex with degree greater than 2k (implying that Bandwidth(G) >_- k) or
partitions G into its connected components, taking linear time in either case. We
then compute the minimal total edge length for G by finding and summing the min-
imal total edge lengths for the connected components.

We note that the previous result remains valid if we consider edge-weighted
graphs and the "total edge length" is taken as a weighted sum. For connected
graphs, we can also use the method of Algorithm E to obtain a count of the layouts
with minimal total edge length for bandwidth _-< k.

Finally, all the previous results extend to "directed" versions of bandwidth
minimization and O.L.A., in which G is a directed graph and a layout, f, is accept-
able only iff(u) < f(v) whenever (u, v) is an edge of G.

5. Open problems. The most obvious problem left open by this work is that of
improving the performance of Algorithm B. Although the expense of this algorithm is
"only polynomial" in the size of the examined graph, it is still sufficiently expensive
(particularly in terms of space) to render it impractical for all but the smallest cases
(consider, for example, determining whether Bandwidth(G) -< 5, where G is a graph
of forty vertices). The fact that Garey, Graham, Johnson, and Knuth [1978] have a
linear-time algorithm for "Bandwidth <_-’ 2", while Algorithm B takes cubic time
for the same problem, offers some hope that the degree of the polynomial can be re-
duced for higher values of k as well. Indeed, is conceivable (even if P NP) that
there are linear algorithms for all values of k, with coefficients growing exponentially
in k.

One approach to improving the performance is to attempt to reduce the number
of active regions examined, and this can indeed be done to some extent. For ex-
ample, we may prune the search by noting that, while a plausible partial layout may
have O(k2) dangling edges, such a partial layout cannot actually be feasible if those
edges lead to more than k distinct vertices. Unfortunately, graphs of the form

VlV2 VN_IVN

supply an existence proof that the number of equivalence classes of plausible partial
layouts of bandwidth -< k can in fact be O(N).

In Algorithm B, we reduce the search space from the set of all plausible partial
layouts to the much smaller set of equivalence classes of partial layouts. To look at it

A good starting point for the reader who is interested in learning more about bandwidth minimiza-
tion, O.L.A., and their variations is Appendix A1 of Garey and Johnson [1979].



GRAPH BANDWIDTH RECOGNITION 369

another way, given two partial layouts, land g, if we recognize (by equality of active
regions) thatf is feasible iff g is feasible, then we feel free to search for completions
of only one of the partial layouts. The algorithm of Garey, Graham, Johnson, and
Knuth cuts down the search space by methods which are similar but more sophisti-
cated. In particular, they can avoid searching for completions of a partial layout,gf, by
choosing to search for completions of a layout, g, such that g is feasible wheneverf
is feasible, but not necessarily only when f is feasible.

It is interesting to note that "worst-case" numbers of feasible active regions
seem to arise precisely in circumstances where large pieces of the graph can be laid
out in bandwidth much less than k. We define a maximal graph of size N and band-
width k as a graph whose edge set is {{v, v} ]li j] _-< k}, where {v 1 _-< -<_ N} is
the vertex set. TM The algorithm of Garey, Graham, Johnson, and Knuth relies heavily
on the fact that if all the even-numbered vertices or all the odd-numbered vertices are
deleted from a maximal graph of bandwidth 2, the induced graph on the remaining
vertices is a maximal graph of bandwidth 1. For testing higher bandwidths it is pos-
sible that similar use may be made of the fact that deleting every kth vertex from a
maximal graph of bandwidth k leaves a maximal graph of bandwidth k 1.

Another potentially fruitful course of investigation would be to look for efficient
algorithms for approximate bandwidth minimization. For example, given a graph, G,
we may wish to produce a layout for G whose bandwidth is no more than, say, twice
the minimum possible. To the author’s knowledge it has not yet been determined
whether this problem (when phrased as a language recognition problem) is NP-
complete.
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AN O((n log p)2) ALGORITHM FOR THE CONTINUOUS
p-CENTER PROBLEM ON A TREE*

R. CHANDRASEKARAN? AND A. TAMIR$

Abstract. This paper considers the problem of locating p facilities on a tree network in order to mini-
mize the maximum of the distances of the points on the network to their respective nearest facilities. An
O((n log p)2) algorithm for a tree network with n nodes is presented.

Introduction. In this study we consider center location problems on undirected
tree networks. Let T T(N, A) be an undirected tree, with N and A denoting the set
of all nodes and the set of all arcs respectively. With each arc is associated a positive
number called the length of the arc. We assume that T is embedded in the Euclidean
plane, so that the arcs are line segments whose endpoints are the nodes, and arcs in-
tersect one another only at nodes. (Any tree with positive arc-lengths can be so em-
bedded in R2. See [6].) Using this embedding we can then talk about points, not nec-
essarily nodes, on the arcs, and denote by d(x, y) the distance, measured along the
arcs of the tree, between any two points x, y of the tree T.

In addition, a set, D, of points on T is specified. D, which may be finite or infinite
in cardinality, represents the set of demand points. Assume that supply centers can
be located anywhere on the tree. Given a number, p, the objective is to find locations
for p supply points on T, such that the supremum of the distances of the demand
points in D to their respective nearest supply centers is minimized.

Two special cases of the above model have been treated in the literature. The
first corresponds to the case where demand occurs only at the nodes of T, i.e.,
D N. Whenever [D[ < w, one can also associate weights with the demand points
and consider minimizing the maximum of the weighted distances to the nearest
supply centers. Efficient, polynomially bounded algorithms when D N are given
in [13], [3] for general p, while further specializations when p -<_ 2 are discussed in
[6], [83, [9], [10], Ill], [143.

The second special case of the general model is the continuous case when
D T; i.e., each point of the tree is a demand point. This model is studied in [2],
where it is solved in polynomial time.

The general model introduced above is related to the following p-center disper-
sion problem. A set, S, of points on the tree T is specified. Given an integer p, the ob-
jective is to locate p facilities at points in S such that these p facilities are as far from
each other as possible.

In this study we focus on the case when the sets D and S in the center location
and center dispersion problems, respectively, are identical and equal to the entire
tree. Theorem 1 below, (due to Shier [14]), shows a duality result between the p-
center location and (p + 1)- center dispersion problems, when D S T. It is con-
venient for the statement of the theorem to let U,--{ul,’’’, u,} and V,+I
{vl, vp+} denote any finite subsets of T of cardinalities p and p + 1 respec-
tively, and to define

() fz(Up) max {min d(x, u)},
xU_D=T uiUp
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and

(2)

(3)

g(gp+l) min {d(v, vj)/2 1 <= < j <- p + 1}.

THEOREM 1. [14]. Let D S T. Then

min {fD(Up) Up T, Io l p}

max {g(Vp+l) gp+l

we mention that the proof in [14] can be modified to validate the above duality
result for the general case when D S and D is any subset of T with IDI > p. (One
would have to replace the min and max operations of (1) and (3) by inf and sup,
respectively, and also omit the equality of S and D to T in (1) and (3).) Another spe-
cialization of the general case, i.e., D S and p < IDI < oc, is proved in [3], using the
equality of the maximum anticlique and the minimum cardinality clique cover in per-
fect graphs.

Focusing on the subject of this paper, i.e., D S T, we show that for a given
p the minimum value of the objective function of the p-center location problem is
equal to d(i, j)/2k, where d(i, j) is the distance between some pair of nodes, and j,
of T, and k is an integer satisfying _-< k _-< p. This result is then used to improve the
algorithm of [2], yielding the bound of O((n log p)2) for the continuous p-center loca-
tion problem, i.e., D T, on a tree T(N, A) with n nodes. (Logarithms are taken to
the base 2.) We also indicate how to improve the O(n log n) bound of the algorithms
of [13], [3] for the discrete p-center location problem, i.e., the case when D N, to
obtain an O(n) time algorithm.

The continuous p-center problem. In this section we consider the problem of lo-
cating p facilities on a tree network in order to minimize the maximum of the dis-
tances of the points on the network to their respective nearest facility. Using the no-
tation presented above, we want to find r(p) such that

(4) r(p) min {fr (Up) Up T, p},

and also the locations for facilities that achieve this value.
Given a point x on T and r > 0, we define Nr(x), the r-neighborhood of x, by

Nr(x) {y T: d(x, y) <= r}. The location problem is then to find the minimum r
such that p r-neighborhoods will cover the entire T. Similarly, given r > 0, we con-
sider the reverse problem of covering the tree with a minimum number of r-
neighborhoods. This number is denoted by M(r). It is clear that M(r) is a monotone,
nonincreasing, step function, which is continuous from the right, r(p) is, therefore,
the smallest r such that M(r) <- p.

The algorithm of [2] for finding r(p) is based on an O(n).subroutine for finding
M(r) for an arbitrary r > 0. (n is the number of nodes in T.)

In this section we show that r(p)= d(i, j)/2k, where d(i, j) is the distance
between some pair of tips, and j, of T, and k is an integer satisfying 1 _-< k _-< p. (A
tip is a node of degree 1.) The latter property combined with the monotonicity of
M(r) will imply that the O(n) routine for finding M(r) is to be applied at most O(np)
times, before r(p) is found.

To prove our claim on r(p) we will need the algorithm of [2] for finding M(r).
Thus, for the sake of completeness we describe it here as well.

ALGORITHM 1. Suppose that the tree is rooted at some node and arranged in
levels. Define the level of a node as the number of arcs in the unique path connecting
the node with the root. Node is a son of nodej ifj is the immediate predecessor of
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on the path connecting with the root. We also say thatj is the father of i. Consider a
maximal set of tips having the same father, say node s. If all sons of s are tips we call
such a set a cluster, and denote it by C(s).

The algorithm will successively eliminate clusters from the tree, where at each
iteration it will find the minimum number of supply centers, (r-neighborhoods), re-
quired to cover the cluster under consideration.

We start by motivating the first step of the Cluster Elimination Routine. If the
length of any arc (s, i)--i being a tip--is greater than 2r, a facility must be located on
(s, i). Without loss of generality, that facility can be established at a point on (s, i)
whose distance from the tip is r. (Note that this facility covers only points on (s, i).)
One can then reduce the length of the arc by 2r.

The Cluster Elimination Routine.
Step O. Choose a cluster, C(s), of the initial tree, (possibly one of the highest

level).
Step 1. Let {(s, i)}, C(s), be the set of arcs connecting the tips to their

predecessor s.
For each let d(s, i)= ki(2r)+ bi, where k is a nonnegative integer and

0< b=<2r.
Set d(s, i) b for C(s).

(At this point k facilities have already been established on arc (s, i), with the dis-
tance between two adjacent facilities being 2r. Also note that the trimmed arcs have
positive lengths.)

Step 2. Let c min {d(s, i)" d(s, i) > r} d(s, i),
i C(s)

and

fl max {d(s, i) d(s, i) <= r} d(s, i).
i c(s)

In case of a tie i’ (i’) can be chosen as the smallest index for which the minimum
(maximum) is attained. Also, if c(fl) is defined on an empty set it is set equal to
+ o(-o). (Note that at least one of c, fl is finite.)

(i) If c + fl > 2r, then for each such that d(s, i) > r, locate a facility on (s, i)
at a distance r from the tip (of the reduced cluster obtained in Step 1). Remove each
arc (s, i) in C(s) except (s, i).

If s is the root of the tree, locate a facility at s and terminate. Otherwise remove
node s so that we have the case shown in Fig. 1, and go to Step 3.

(ii) If a + fl _-< 2r, then for each fi i1" with d(s, i) > r, locate a facility on (s, i)
at a distance r from the tip i. Remove all the arcs (s, i) except (s, i1").

If s is the root of the tree, locate a facility on (s, i1") at a distance r from i1" and
terminate. Otherwise, remove node s as shown in Fig. 1, and go to Step 3.

Step 3. Choose a cluster of the remaining tree (possibly one of the highest level),
and return to Step 1.

It is clear that the above algorithm takes O(max (n, M(r))) time, if the output is
to be the M(r) facility locations. However, the following method of recording the
output reduces the time bound to O(n). On an arc, if there are k facilities to be lo-
cated at a distance 2r from each other, the location of only the first one and their
number may be output.

THEOREM 2. Let r(p) be the solution to the continuous p-center problem, i.e.
r(p) is defined by (4). Then r(p) d(i, j)/2k, where d(i, j) is a distance between a
pair of tips, and j, of the tree T, and k is an integer, 1 <= k <= p.
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d(s,i) > r

d(s, i) <-_ r

+ /3> 2r/ +/3_<2r
s is removed (

F6.

i1"
s is removed

Proof. Let S {Xl, xp} be the set of points on T at which the p optimal
supply centers are located. Define D {y :y T, minl__<=<p d(y, x) r(p)}, and let
S’ be the subset of supply points serving the members of D, i.e.,

S’ {x x S, d(x, y) r’(p) for some y D}.

First we claim that without loss of generality it can be assumed that each
member of S’ is the midpoint of a simple path of length 2r(p), connecting two points
ofD. Suppose that x S’ does not have the above property. Then, the supply center
there can be slightly perturbed to x’ such that the optimality is not affected; all points
y in D served by x satisfy d(x’, y) < r(p), and no additional points are added to D.
Therefore, x can be omitted from S’ and all points y in D served by x can be omitted
from D. Note that the minimality of r(p) ensures that the set S’ remaining after this
process is not empty.

To complete the proof of the theorem we show that each member ofD which is
not a tip of T must be the midpoint of a simple path of length 2r(p), connecting two
points of S’.

Let y D. Then there exists x S’ with d(y, xi) r(p). If y is not a tip there
exists z y, z T, and y is on the simple path between z and xi. Considering only
the subpath connecting z and y, we observe that all points on this subpath but y are
not served by x, since they are at a distance greater than r(p) from x. So, let xk be
the point in S, closest to y, and serving at least one point which is not y, on the above
subpath. Clearly d(y, xk) r(p), since y is in D, and therefore x is in S’.

Moreover, since d(x, u) <- r(p) for some u # y on that subpath, y is the only
intersection point of the path connecting y and x and the path connecting y and x.
Hence y is on the simple path between x and x with d(y, xi) d(y, xk) r(p).

Using the above properties satisfied by the members ofD and S’, we start with x
in S’ and consider the path of length 2r(p), which connects two points ofD and has x
as its midpoint. If at least one of these endpoints is not a tip, the path can be ex-
tended by 2r(p) such that the new path will still connect two members of D. Contin-
uing this process, the no-cycle property of a tree ensures that we find a simple path of
the tree connecting two tips and having total length of 2kr(p), 1 <-_ k <= p. This com-
pletes the proof.

The above theorem implies that r(p), the solution to the p-center problem, can
be found by applying Algorithm 10(n2p) times, thus yielding an O(nap) bound for
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solving the continuous p-center problem. Next we show a reduction of this bound
which is based on the nature of the O(n2p) possible values for r(p).

Due to the monotonicity property of M(r), found by Algorithm 1, it is clear that
if M() =< p then r(p) <- , and one can ignore all values of r greater than . Similarly,
if M() > p we have r(p) > . Let R be the set of possible values for r(p) as specified
by Theorem 2. We start by finding the median of R, say rl, and then applying
Algorithm to find M(rl). Comparing M(rl) and p we then eliminate half of the
members of R from further consideration, leaving the subset R 1. We then continue
by finding the median of R1, say r2, computing M(rz), and so on. Let ri denote the
median found at the ith iteration and let R be the respective subset of R that we are
left with at this iteration. Next we show that the total effort of evaluating the se-
quence of medians {rl, r, } is O(n log p).

First, an effort of O(n2) yields the distances between all tips of T. For each such
distance d(i, j) the sequence {d(i, j)/2k}, k 1, p, is a monotone decreasing se-
quence. One can then apply the methods of [7], [12] to find rl in O(n log p) time.
Applying Algorithm to rl (for O(n) time), we can then use’ a binary search on each
one of the sequences {d(i, j)/2k}, k 1, p, to find R1. Since there are nz se-
quences, this effort amounts to O(n log p). In general, at the ith iteration, two point-
ers are sufficient to limit that part of a sequence {d(i, j)/2k}, k 1, p which is
contained in R. Hence the storage requirement is of order O(n2). Successive appli-
cations of the methods of [7], [12] for q log p times will yield rl, r, rq. By
that time the remaining set of possible values, Rq, will contain O(n) elements.
Therefore, the remaining medians in the sequence are found in total effort of O(n)
using the linear time algorithm of [1]. Thus, we have demonstrated that the total ef-
fort of our procedure to find r(p) is of order O(n log 2p) with O(n) storage.

Finally, using the duality result presented in the Introduction we observe that
the optimal objective value of the p-center dispersion problem is also found in
O(n log Zp) time. To find the locations of the p centers achieving this optimal value,
one can use the procedure given in [2]. As shown in [5] this procedure can be imple-
mented in O(n) time.

Remarks.
1) There are certain circumstances where the bound O(n log 2p) given above

can be improved if a different method is used to find the sequence of medians. We
mention two such procedures. The first one is based on the observation that the me-
dian of the set R is also the median of the set R-1, consisting of the reciprocals of R.
But then the sequence {2k/d(i, j)} k 1, p, is a linear sequence. It is shown
in [4] how to find a median of set consisting of nz linear sequences in O(n log n)
time. Applying the latter procedure to compute {rl, rz,... } yields the bound
O(n log n log p) for the algorithm to find r(p).

For the second procedure we first sort the sequence of the m O(n) distances
between the tips. Denoting this sorted sequence by Cl >- c2 >- Cm, we represent
R as the union ofp monotone sequences. For each k 1, p we consider the se-

quence {c/2k}, 1,... m. Applying the methods of [7], [12] to this structure
yields the bound O(n log n + p log n log p) for the total effort to find r(p).

2) The discrete p-center problem, i.e. the model where demand occurs only at
the nodes of T, is solved in [13], [3] by an O(n log n) algorithm. We indicate that this
bound can be reduced to O(n) for the method in [13]. The set R of possible values
for r(p) for the discrete problem is known to contain O(n) elements. All these ele-
ments are computed in O(n) total effort. Then, for each given r, an O(n) routine
finding M(r), the minimum number of r-neighborhoods covering all nodes, is given.
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As was done above for the continuous p-center problem, one can generate the
sequence of medians {rl, r2, } and apply the procedure to find M(r) a total of
O(log (n2)) O(log n) times. Since each time the cardinality of the remaining set Ri
is cut by half, the linear time algorithm of [1] will generate the entire sequence of
medians in total effort of O(nZ). This latter term is then the dominating term yielding
the bound O(n) for the effort to find r(p).
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THE ERDIS-KO-RADO THEOREM FOR INTEGER SEQUENCES*

PETER FRANKLt AND ZOLTAN FREDI

Abstract. For positive integers n, k, we investigate the problem how many integer sequences
(al, az, , a,) we can take, such that <= ai -< k for =< =< n, and any two sequences agree in at least
positions. This problem was solved by Kleitman (J. Combin. Theory, 1 (1966), pp. 209-214) for k 2, and by
Berge (in Hypergraph Seminar, Columbus, Ohio (1972), Springer-Verlag, New York, 1974) for 1. We
prove that for -> 15 the maximum number of such sequences is k"-t if and only if k -> + 1.

1. Introduction. Let t, k, n be positive integers with k _-> 2, n _-> t, and let be a set
of integer sequences (al, a.,..., an), l<-ai<=k. We say that (al, a2,’", an) and
(a’1, a2, , an) intersect in at least positions if we can find 1 _-< il < i2 <" < it <- n
such that aij aij for 1,..., t.

Let f(n, k, t) denote the maximum cardinality can have supposing that any two
elements of intersect in at least positions. Setting 0 {(a l,’’’, a,)ll-<_ ai <= k,
aj 1 for ]= 1,..., t}, we obtain

(1) f(n, k, t) >_ k

In the case k 2 the problem reduces to the following" What is the maximum
number of subsets of an n-set such that the symmetric difference of any two has
cardinality at most n t? This problem was posed by Erd6s and solved by Kleitman [5],
who proved that

t(n,/2],/n\ ifn-tiseven,
i=0 \l/

(2) f(n, 2, t)=
[(n-’/2]

(n-1),2.=o"i if n-t is odd.

The expression (2) is much greater than (1) except for 1, when we have equality.
Berge [1] proved that

(3) f(n, k, 1)= k

holds for k _-> 3 as well. In fact he proved that if instead of ai <= k we suppose ai <= ki,
k <-. <- kn, then the corresponding bound is k2k3 kn. Livingston [7] proved that
if equality holds in (3) then necessarily is of the form0 (up to isomorphism). In the
present paper we are mainly concerned with the problem, for which triples n, k, is the
bound (1) optimal. We have the following

CONJECTURE. The bound (1) is optimal if and only if n <- + 1 or k >- + 1.
Remark. It is easy to check that the conjecture holds for n _-< / 1, i.e., n and

n + 1. On the other hand, (2) and (3) settle it for 1.
THEOREM 1. The conjecture holds for >- 15.

We give some results for the range 2 <_- <_- 14 as well.

2. Preliminaries. Our main tool in proving Theorem 1 will be the strongest form of
the ErdSs-Ko-Rado theorem (see [2]), proved in Frankl [3]. To state it we need some

* Received by the editors December 3, 1979, and in final form March 24, 1980.

" Centre National de la Recherche Scientifique, Paris, France.
Mathematical Institute of the Hungarian Academy of Scienees, Budapest, Hungary.
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definitions. Let s be an integer <= s-<_ n. Let be a family of s-element subsets of
{1, 2, , n } satisfying IB f3 B’I --> for B, B’ Y3. Such a family is called t-intersecting.
Let us define

o {B
___

{1, 2,..., n}l{1, 2,..., t} B, IBI- s}

{1, 2,""", rt}[ I{1 2,’’’, +2}f’lB[->-t + 1, IBI s}.

Clearly both 30 and Y31 are t-intersecting. Then we have
THEOREM 2[3]. There existpositive constants ct, depending on only and satisfying

c, < 2 for >-_ 2, and ct < 1 for >= 15 such that for

(4) n -t
>ct(t+l),
S--t

a t-intersecting family of maximum size is of the form o or, (up to isomorphism).
As remarked in [3],

(5) [Y3ol 191 iff n (s + 1)(t + 1).

Let us now return to our set of sequences d, which is t-intersecting; i.e., any two
sequences in intersect in at least positions. Let us define"

+ {(al, a2," ", a,+l)l(a, ", a) , 1 _-< a,+l _-< k}.

It is evident that / is t-intersecting, yielding

(6) f(n + 1, k, t)>= kf(n, k, t).

Consequently the function f(n, k, t)k is nondecreasing in n (and bounded by 1).
Hence the following limit exists (and is at most 1)"

g(k, t)= lim f(n, k)k -n.

We will now bring to a canonical form. Such a transformation was first used by
Kleitman [6]. Let 1 -< j =< n. Define the transformation,

Tj,i(al,’’., ai’’’ ,an)= t (al, a2," ,ai," ,an)

(al, a2," ",aj,. ",an)

if this sequence is not in , and

ai=i, ai=l,
otherwise.

It is easily seen that T.i()= {T.i(A)IA } is t-intersecting and has the same cardi-
nality as . Repeated application of the transformation yields a system ’ which is
t-intersecting, 14’[ I1, and for 1 _-< j -< n, 1 _-< -< k,

(7) T/.,i (,’) ’.

Without loss of generality we may assume =’. Let us associate with every
(al,’’’, an)= A, the set B(A)= {ilai-- 1}.

PROPOSITION 1. The family 3 {B(A)[A } is t-intersecting.
Proof. LetA =(al,’", an),A’=(a’,..., a’n).Let{il, i2,"" ir} be the set of

i’s such that ai=ail In view of (7), A" (a"v," , an) , where a a for
i:{ix,..., it}, a,’.’ 1 for i{il,..., it}. As (al,"’, an) and (a,,..., a) agree in the
ith position only for B(A) fq B(A’), the statement of the proposition follows. Now by
the maximality of we have

PROPOSItiON 2. {A (a, , a,)ll _-< ai <- k, B(A) 3}, and consequently

(8) I1 Y’. (k- 1) n-Isl.
B3
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Hence the problem of determining f(n, k, t) reduces to finding the maximum of (8) over
all t-intersecting families N. We need an easy probabilistic result.

PROPOSnnON 3. For every positive e and 6 the number of sequences (al, , an)
with l <=ai <-k which contain more than (1 +e)(n/k) l’s or less than (1-e)(n/k) l’s is
less than 6k for n > no(& e).

Instead of a proof, just observe that p(a 1)= 1/k; hence the mean value of l’s
is n/k, and the events a 1 are independent for 1,..., n.

3. The main results. We prove Theorem 1 in a somewhat surprising way; namely
we prove first that it holds asymptotically, i.e., f(n, k, t)<= (1 + o(1))k n-t for k, fixed,
k > -> 15. Then we deduce f(n, k, t) k n-t from it for every n => t.

THEOREM 3. For k > >= 15 we have

g(k, t)= lim f(n, k, t)k k -t.

In view of Proposition 2,

f(n,k,t)k-n=( (k-1)-’B’)k-,
B3

for some t-intersecting family . Moreover, Proposition 3 gives that for any 6, e > 0,
n > n0(6, e), we have

f(n, k, t)k-" <(Y (k-1)"-’BI] k +6,.(9)
\ B /

where B runs over those elements of N which satisfy

(1-e)(n/k)<-IB]<-_(1 +e)(n/k).

Now for (1 e )(n/k --<- s <- (1 + e )(n/k ), set

As k =>t+ 1, for n > no(e) we have (n-t)/(s-t)>ct(t+ 1); i.e., (4) is satisfied and we
may apply Theorem 2 to the t-intersecting family N(s). We deduce

(10) [(s)l-<_max(lYol [l[)=max (t+2) +
s s-t-1 s-t-1

By (5) for k >t+ 1 the value of (10)is (n -t).sIf k t+ 1, then

I--E S

t+l n

l+e
t+l"

We can still obtain for n > no(t, e),

(n-t-)/(n-t) (s-t).(n-s)
s-t- s =(n---):(r-+l)

(t+e)(l+e)
<tz+2t+ 1-e

and

n -t-s n s-t s-t-1 (l+e)2

<tn-t n-t-1 +2t+1
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yielding

I’(s)’<’o’(t+2)(t+e)(l+e)+(l+e n-(11) < (1+2e),tz+2t+ 1-e s

whenever e is sufficiently small. Now from (9) and (11) we obtain

f(n,k,t)k-"<(l+2e) , (n-t)(k-1)"-Sk-+6
s=t S

i=o j
(k-1 +6

(1 + 2e)k-nk "-t + 8

=(l+2e)k-t+8,
which implies, since 8, e > 0 were arbitrary,

g(k,t)<=k -t.

As ISo] k"-t we have g(k, t) >= k -t as well, which concludes the proof of Theorem 3.
Proof of Theorem 1. Suppose that for some t-intersecting family we have

]sl -> k-t+ 1. Then using (6) we deduce

f(n’, k, t) >= kn’-nf(n, k, t) >= k"’-" 11 _-> k"’(k -t + k-n),

whence g(k, t) >= k -t + k-" > k -t, a contradiction (observe that now n is fixed and we
have n’ --> ), which proves the if part of Theorem 1.

For the only if part, let us define

x {A (al, a,)[ 1 _-< ai <- k, IB()(3{1,..., + 2}1 >-- + 1}.

Obviously 1 is t-intersecting, and we have for n _>- + 2, k -< t,

Ill- k"-r-z((t / 2)(k 1)+ 1) k"-’(1 + (t + 1 k)k -2) > k "-.

4. Some remarks. Using the same argument we could deduce
THEOREM 4. If >= k > c,(t + 1), then

g(k, t) k-t-2((t + 1)(k 1) + 1).

(By [3] we know that c, < 0.8 for >- 15.) Now Theorem 4 yields
THEOREM 5. If >-- k > G(t + 1), then

f(n, k, t)= k"-t-2((t + 1)(k 1)+ 1).

5. Probabilistic arguments. Now we want to apply the random walk method
developed in [4] to obtain a general bound on g(k, t), k > 2.

Let 5 be the t-intersecting family associated with the maximal set of t-intersecting
sequences . With Y3 we proceed as in [3]. For 1 <=i<]<-_n, the canonical trans-
formation is the following.

B’ B -{]} LJ {i}
K’i(B)= B

if iB, j B, B’: ,
otherwise;

Ki,i(Y3 (Ki,i(B B }.
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Applying Ki.i repeatedly we obtain a t-intersecting family Y2’ which satisfies
Ki.i(Yd’) Yd’ for all 1 _-< < f _-< n. We may suppose Yd’. The following propositions
are taken essentially from [3].

PROPOSITION 4. No subset S of T={1,2,...,t-l,t+l,...,t+21+l,...}
belongs to Yd.

Proofi Otherwise an application of gt+2l,t+2l+l for all _-> 0 would yield S’ for
S’
_
T’= {1, 2,. ., t, + 2,. ., + 2l,...}. But IS fq S’[ <-IT f3 T’I t- 1, a contradic-

tion.
Let us associate with a sequence A (a 1, , an) a random walk in the plane in the

following way. We start from (0, 0). Suppose that after (i- 1) moves we are in (x, y).
Then we move to (x, y + 1) or (x + 1, y) according to whether ai 1 or not. The random
walks associated with different sets are different. Proposition 4 yields (see [3])

PROPOSITION 5. The random walk associated with A M hits the line y x + t.
In probability language, considering the space of all possible sequences

(al, , an), 1 -< ai <= k, we move upward with probability 1/k and to the right with
probability (k 1)/k. Now let us continue to walk indefinitely. Then for the probability
of hitting the line y x + t, p(t) we obtain

p(0) 1,

p(t)=(1/k)p(t-1)+((k-1)/k)p(t+l) for t_>l,

and

p(t)-O

Hence, we deduce

as oo, because k > 2.

p(t)=(k-1)-t.
Consequently we have

THEOREM 6. For k >- 3 we have k-nf(n, k, t) <- (k 1)-t, and consequently

(12) g(k,t)<-_(k-1)-t.
From (2) it follows that g(2, t) 2-1 for every _-> 1, which is a great contrast to (12).

On the other hand, for k, fixed, let (s, s + t) be the point of the line y x + for
which the probability that a random walk goes through it is the largest. Let s be the set
of the corresponding sequences. Then obviously

(13) Ms {A (al, , an)liB(A)f’l {1, 2,..., + 2s}l _-> + s}.

Thus

g(k, t) >-

Then elementary computation shows that for some constant dk depending on k only, we
have

(k- 1)-’
g(k,t)>

dk4-t
Let us finish with a conjecture, setting the general case.

CONJECTURE. Let :ds be defined by (13). Then

f(n, k, t)= max
s>0
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ON ADDITIVE BASES AND HARMONIOUS GRAPHS*

R. L. GRAHAMS" AND N. J. A. SLOANE"

Abstract. This paper first considers several types of additive bases. A typical problem is to find nv(k), the
largest n for which there exists a set {0 al < a2 <" < ak} Of distinct integers modulo n such that each in
the range 0 =< -< n can be written at least once as mai + aj (modulo n) with </’. For example, nv(8) 24,
as illustrated by the set {0, 1, 2, 4, 8, 13, 18, 22}. The other problems arise if at least is changed to at most, or

</’ to -</’, or if the words modulo n are omitted. Tables and bounds are given for each of these problems.
Then a closely related graph labeling problem is studied. A connected graph with n edges is called harmonious
if it is possible to label the vertices with distinct numbers (modulo n) in such a way that the edge sums are also
distinct (modulo n). Some infinite families of graphs (odd cycles, ladders, wheels,...) are shown to be
harmonious while others (even cycles, most complete or complete bipartite graphs, .) are not. In fact most
graphs are not harmonious. The function nv(k) is the size of the largest harmonious subgraph of the complete
graph on k vertices.

1. Additive bases. This paper is mostly concerned with modular versions of certain
additive bases for the integers {1, 2,. , n}, and with a closely related graph labeling
problem, that of determining which graphs are harmonious.

Although our primary interest is in just two of these function (nv and vv), it is most
convenient to begin by defining eight closely related functions. Our notation is that
[1, n ]: {1, 2, , n }, Zn denotes the integers modulo n, and k >= 2 is a natural number.
The ill’st four functions are concerned with covering [1, n] or Zn with sums.

n(k) (resp. n(k)) is the largest number re such that there exists a k-element set
A {0 al < a2 <" < ak} of integers with the property that each r [1, n] can be
written in at least one way as r ai + aj, with </" (resp <- j).

nv(k) (resp. n(k)) is the largest number n such that there exists a subset
A {0 al < a2 <" < ak} Of Z, with the property that each r Z can be written in at
least one way as r ai + a. with </" (resp. -<_/’).
Since this does not assign a value to nv(2) we define nv(2) 1. The other four functions
are concerned with packing [0, v] or Z with sums.

v(k) (resp. vt(k)) is the smallest number v such that there exists a k-element set
A {0 a < a2 <" < ak} of integers with the property that the sums ai + a for </"
(resp. <= f) belong to [0, v and represent each element of [0, v at most once.

vv(k) (resp. v(k)) is the smallest number v such that there exists a subset
A {0 al < a2 <. < ak} of Z with the property that each r 7/ can be written in at
most one way as r ag + ai with < f (resp. f).

Although nv and v do not seem to have been studied before, the other functions
have an extensive literature. For example n is the subject of a series of papers by
Rohrbach, Moser, Hammerer, Hofmeister, and others ([36], [37], [46], [59]-[61], [65],
[79]) who refer to the set A as an interval basis (Abschnittsbasis), or 2-basis, and by
Lunnon and others ([1], [la], [43a], [56], [76]) under the name of the postage stamp
problem, n was briefly mentioned by Rohrbach in [66]. The functions vt and v have
been studied by Singer, Erd6s, Turfin, Bose, Chowla and others (see [11], [21], [40,
Chapt. II]). The set A associated with v is often called a B2-sequence. Other types of
additive bases have been defined in [14], [19], [40], [45], [51]. (Since this paper
impinges on many different parts of combinatorics we have attempted to include a fairly
complete bibliography.)

* Received by the editors April 1, 1980.
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Our interest in vv stems from its application to error-correcting codes. Let
A (k, 2d, w) denote the largest possible number of binary vectors, each containing w l’s
and k-w O’s, such that any two vectors differ in at least 2d places ([6], [57]). It can
be shown ([28], [29]) that

A(k, 6, w)>-;,ik
and there is a similar bound for A(k, 2d, w) using sets in which all sums of d- 1 distinct
elements are distinct modulo v. When combined with Theorem 1, this implies

A(k, 6, w)>- (1)) as kwi (1+o

which is stronger than any previously known bound (see [28]). We should also point out
that the function A(k, 2d, w) has been studied under another guise in extremal set
theory by Erd6s, Hanani, Sch6nheim, Kalbfleisch, Stanton and others (see [20], [73],
[77]) in the following context. Let D(t, k, s) denote the maximum number of k-element
subsets of an s-element set S such that every t-element subset of S is contained in at
most one of the k-element subsets. Then D(t, k, s) A(s, 2k 2t + 2, k).

We shall justify our interest in nv in 3.

2. Tbles, bonSs n8 properties. Tables I-IV give values of these eight functions,
and examples of the sets A which attain them. Usually the (lexicographically) first

TABLE
n(k) and no(k).

k n (k) An example of the set A.

2 {0, 1}
3 3 {0, 1,2}
4 6 {0, 1, 2, 4}
5 9 {0, 1, 2, 3, 6}
6 13 {0,1,2,3,6,10}
7 17 {0,1,2,3,4,8,13}
8 22 {0, 1, 2, 3, 4, 8, 13, 18}
9 27 {0,1,2,3,4,5,10,16,22}

10 33 {0, 1, 2, 3, 4, 5, 10, 16, 22, 28}
11 40 {0,1,2,4,5,6,10,13,20,27,34}
12 47 {0, 1, 2, 3, 6, 10, 14, 18, 21, 22, 23, 24}
13 56 {0, 1, 2, 4, 6, 7, 12, 14, 17, 21, 30, 39, 48}
14 65 {0, 1, 2, 4, 6, 7, 12, 14, 17, 21, 30, 39, 48, 57}

k ha(k) An example of the set A.

2 2 {0, 1}
3 4 {0, 1, 2}
4 8 {0, 1, 3, 4}
5 12 {0, 1, 3, 5, 6}
6 16 {0,1,3,5,7,8}
7 20 {0, 1, 2, 5, 8, 9, 10}
8 26 {0, 1, 2, 5, 8, 11, 12, 13}
9 32 {0, 1, 2, 5, 8, 11, 14, 15, 16}
10 40 {0, 1, 3, 4, 9, 11, 16, 17, 19, 20}
11 46 {0, 1, 2, 3, 7, 11, 15, 19, 21, 22, 24}
12 54 {0, 1, 2, 3, 7, 11, 15, 19, 23, 25, 26, 28}
13 64 {0, 1, 3, 4, 9, 11, 16, 21, 23, 28, 29, 31, 32}
14 72 {0, 1, 3, 4, 9, 11, 16, 20, 25, 27, 32, 33, 35, 36}
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TABLE II
n,(k) and n,(k).

k nv(k) An example of the set A. k n(k) An example of the set A.

2 1 2 3 {0, 1)
3 3 {0, 1, 2) 3 5 {0, 1, 2)
4 6 {0, 1, 2, 4} 4 9 {0, 1, 3, 4)
5 9 {0, 1, 2, 4, 7} 5 13 {0, 1, 2, 6, 9}
6 13 {0, 1, 2, 3, 6, 10} 6 19 {0, 1, 3, 12, 14, 15)
7 17 {0, 1, 2, 3, 4, 8, 13} 7 21 {0, 1, 2, 3, 4, 10, 15}
8 24 {0, 1, 2, 4, 8, 13, 22} 8 30 {0, 1,.3, 9, 11, 12, 16, 26}
9 30 {0, 1, 2, 4, 10, 15, 17, 22, 28} 9 35 {0, 1, 2, 7, 8, 1.1, 26, 29, 30}

10 36 {0, 1, 2, 3, 6, 12, 19, 20, 27, 33}

TABLE III
vo,(k) and vt(k).

k vo,(k) An example of the set A. k v(k) An example of the set A.

2 {0,1} 2 2 {0,1}
3 3 {0, 1, 2} 3 6 {0, 1, 3}
4 6 {0, 1, 2, 4} 4 12 {0, 1, 4, 6}
5 11 {0, 1, 2, 4, 7} 5 22 {0, 1, 4, 9, 11}
6 19 {0, 1, 2, 4, 7, 12} 6 34 {0, 1, 4, 10, 12, 17}
7 31 {0, 1, 2, 4, 8, 13, 18} 7 50 {0, 1, 4, 10, 18, 23, 25}
8 43 {0, 1, 2, 4, 8, 14, 19, 24} 8 68 {0, 1, 4, 9, 15, 22, 32, 34}
9 63 {0, 1, 2, 4, 8, 15, 24, 29, 34} 9 88 {0, 1, 5, 12, 25, 27, 35, 41, 44}
10 80 {0, 1, 2, 4, 8, 15, 24, 29, 34, 46} 10 110 {0, 1, 6, 10, 23, 26, 34, 41, 53, 55}

k

TABLE IV
v,(k) and v(k).

An example of the set A.

2 2 {0, 1}
3 3 {0, 1,2}
4 6 {0, 1, 2, 4}
5 11 {0, 1, 2, 4, 7}
6 19 {0,1,2,4,7,12}
7 28 {0, 1, 2, 4, 8, 15, 20}
8 40 {0, 1, 5, 7, 9, 20, 23, 35}
9 56 {0, 1, 2, 4, 7, 13, 24, 32, 42}
10 72 {0, 1, 2, 4, 7, 13, 23, 31, 39, 59}

k v(k) An example of the set A.

2 3 {0, 1}
3 7 {0, 1, 3}
4 13 {0, 1, 3, 9}
5 21 {0,1,4,14,16}
6 31 {0,1,3,8,12,18}
7 48 {0, 1, 3, 15, 20, 38, 42}
8 57 {0, 1, 3, 13, 32, 36, 43, 52}
9 73 {0, 1, 3, 7, 15, 31, 36, 54, 63}
10 91 {0, 1, 3, 9, 27, 49, 56, 61, 77, 81}
11 9

12 133 {0, 1, 3, 12, 20, 34, 38, 81, 88, 94, 104, 109}
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example of A is given. The entries in the no table are taken from [1], [56], and [76], and
the entries in the v table which come from difference sets (see (8)) are taken from [2a,
Table 6.1]. The other entries are believed to be new.

The best bounds presently known for these functions are as follows.
THEOREM 1.

(1) (k 1)a < n,,(k), n(k) < .4802ka + O(k),

(2) (k 1)2 < n.(k), n,(k) < 1/2k 2 + O(k),

(3) 2k2-O(k3/a)<v,(k), vo(k)<2ka+O(k36/23),
(4) k2- O(k) < vn,(k < k2 + 0(k36/23),
(5) k2- k + 1 -< v(k) < k2 + 0(k36/23).

Discussion of Proof. Hiimmerer and Hofmeister [36] showed that n(k)>
5(k 1)2/18, and it is not difficult to modify their proof to give n(k) > 5(k 1)2/18.
The lower bounds in (2) then follow from n,(k)<=n,/(k) and no(k)<=n(k) 1 (see
Lemma 2 below). The upper bound in (1) is due to Klotz [46]. Since there are (2k) sums
ai + aj(i < j) from a k-element set A, we have immediately that

(6) n’(k)<(k)=2 =<v,(k),

and similarly

(7) n(k)<(k+l) < v(k)
2

which imply the upper bound in (2). Notice that if equality holds on either side of (6)
then it holds on both sides, and similarly in (7).

The lower bounds in (3) follow from a straightforward modification of the
Erd6s-Turfin argument ([21], [40, Chapt. II, 3, Theorem 4]); we omit the details. The
lower bound in (4) will be proved at the end of this section. The lower bound in (5) holds
because if the sums ai + aj (1 <_- <_-j <- k) are distinct modulo v, then so are the k(k 1)
nonzero differences ai- ai; hence v 1 => k2-k. It follows that the equality signs can
only hold in (7) when k 2; thus

k+l)n(k) <
2

< v(k) for k > 2.

We shall see in Theorem 5 that the equality signs can only hold in (6) when k 2, 3 or 4.
The upper bounds in (3)-(5) are all obtained by using Singer difference sets and the fact
that (see [43]), whenever x is sufficiently large, there is a prime p with

13/23x<p<--x+x

(compare [40, Chapt. II, 3, Theorem 6]. In particular, difference sets attain the lower
bound in (5), so

(8) v (k) k2- k + 1, whenever k 1 is a prime power.

A projective plane of order 6 would have implied v(7)= 43, but since this plane does
not exist we may regard the cyclic shifts of A {0, 1, 3, 15, 20, 38, 42} modulo 48
(corresponding to v(7)= 48) as giving, in a sense, the best approximation to such a

plane. Other approximations are described in [40a] and [56a].
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The following properties of these functions are easily established.
LEMMA 2.

LEMMA 3.

n(k)<=v(k),

nv(k)<-vv(k),

n(k)<-no(k),

v,,(k)<-vo(k)-l,

n(k)<=nv(k),

no(k)<=vo(k),

n(k)<=v(k),

nv(k)<=n(k),

vv(k)v(k),

n(k)<=n(k)-l,

v(k) -> v(k)- l.

(a) IrA {0 al < a2 <’" <: ak} attains n(k), then a2 1, a3 2, a4 3 or 4, and
ak <= n(k 1) + 1. Furthermore,

n,,(k)+3<=n(k+l), for k->3.

(b) IrA {0 al < a2 <" < a} attains no(k), then a2 1, a3 2 or 3, an 3, 4 or
5, and a <= no(k 1) + 1. Furthermore,

no(k)+2<=no(k+l).

(c) If A {0 al < a2 <" < a} attains nv(k) (or n(k), vv(k) or v(k)) and if
nv(k) (or n(k), vv(k), v(k)) is of the form prqS, with p, q prime, r, s -> O, then we may
assume that a2 1.

Proof. (a) and (b) are straightforward. (c) Suppose A {0= al <a2 <"" <ak} is
such that the sums ai + aj (i < ]) cover 7/n, where n n(k) prqS. If some ai is relatively
prime to n then A’= a71A contains 0 and 1, and also attains nv(k) n. If not, since not
all the ai can be divisible by p, nor by q, we can find at and a, such that plat, qat, p au,
qla,. Then at- au is relatively prime to n, and (at- a,)-1 (A a,) contains 0 and 1 and
attains nv(k)= n. Similarly for n, vv and vs. Q.E.D.

Parts (a) and (b) of this Lemma simplify the computation of n and no (and the
absence of similar results for the other six functions makes their calculation more
difficult). The calculations are further simplified by the next lemma.

LEMMA 4. If there is no k-element set A such that the sums a + ai (i <]) cover
1, m ], then n, (k) <= m 1 and similarly for no (k). Ifthere is no k-element setA such that
the sums a + ai (i <]) belongto [0, m] andare distinct, then v,(k)>= m + 1; andsimilarly
forvo(k).

But these properties need not hold for the modular functions. Consider for
example the problem of determining nv(8). The set A {0, 1, 2, 3, 4, 8, 13, 18} covers, for all n in the range 8 =< n =< 22, but no 8-element set covers 7/23. Nevertheless
A {0, 1, 2, 4, 8, 13, 18, 22} covers 7/24, and n(8)= 24. Similarly when determining
n(6) we find that A {0, 1, 2, 5, 7, 11} covers , for 6 -< n <- 15, A {0, 1, 2, 4, 9, 14}
covers 2716, A ={0, 1,2,3, 8, 12} covers 17, no 6-element set covers 7/ls, A
{0, 1, 3, 12, 14, 15} covers/:19, and n(6)= 19.

We conclude this section by determining when the equality signs can hold in (6).
THEOREM 5.

(9) n(k)=() =v(k)

if and only/fk 2, 3 or 4; otherwise nv(k)<()<vv(k).
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Pro@
(i) If (9) holds and k 0 or 1 (modulo 4) then k must be a perfect square (cf. [80]).

For in this case n () is even, and so the parity of an element of 7/n is well defined. Let
A __c_ 7/, attain nv(k) vv(k) (), and suppose c of the ai are odd and/ are even, with
c +/ k. The number of odd sums ai+aj (i<]) is c/ =1/2(), hence (c-/)2=
k k (k 1) k is a perfect square.

(ii) Equation (9) holds for n 2, 3, 4 (see Tables II, IV), part (i) eliminates k 5,
8, 12 and 13, and a computer search elminated k 6, 7, 9, 10 and 11.

(iii) The values of k >- 14 are eliminated by the following lemma. Q.E.D.
LEMMA 6. Suppose A {0 al < a2 <" < ak} is a subset of 7/ such that the sums

ai + aj (i < ]) represent each element of Zn at most once. Let u [n/3] and assume

(10) k<=u-1.

Then

(11) k2u <-_ n{u(u 1)+ 3ku k(k + 1)}.

Pro@ The proof is a modification of the Erd6s-Turfin argument ([21 ], [40, p. 86]).
Consider the n subsets , ={m, m +1,... ,re+u-l}

of ;gn, for 0-<_ m _-< n- 1, and let Am--Im IA I. Since each ai belongs to exactly u
subsets,

(12) E A,, ku.
m=0

Let T be the number of triples (ai, ai, m) with 1 _-<i<]-< k and ai fire, a ,. The
number of pairs (ai, ai) contained in , is 1/2A, (Am 1), so

n-1

(13) T=1/2 A.(A,-I).
m=0

From (12), (13) and Cauchy’s inequality,

(14) T_->
k2u 2 ku
2n 2

For _-< ] let

p(ai, ai) min {aj- ai, n ai + ai}.

If a and aj, <j, are contained in ,, p(ag, aj) is an integer d with 1 _-<d_-< u- 1.
Conversely, given d e [1, u 1], how many pairs (ai, ai) satisfy < ], p(a, a) d? It is
easly seen that the answer is 0, 1 or 2. If there is one solution we call d ordinary, if two,
special. A special d is associated with a unique triple a, a, ak with

2aj ai -t-ak, p(ai, ai)=P(a,ak).

Since there is at most one special d associated with ai, there are at most k special d’s. An
ordinary d contributes u-d to T since the unique pair (ai, a) with o(ai, aj)--d is
contained in exactly u d of the sets ,. Similarly, a special d contributes 2(u d) to T,
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and so

T= (u-d)+ 2(u-d)
d ordinary d special

"-
<- E (u-d)+ (u-d.),

d=l v=l

where dl, , ds are the special values of d, with s -< k. Using (10) we can bound this by

T <-1/2u(u-1)+ ku -(l + 2 +. +k)
(15)

=1/2u(u 1)+ ku -1/2k(k + 1),

and (11) follows from (14) and (15). Q.E.D.
COROLLARIES.
(i) If we set n (z), then for k >= 14 (10) is satisfied but (11) is not, which eliminates

the cases k >- 14 of Theorem 5.
(ii) For n large, (11) implies

k <_4-+ O(1),

which is equivalent to the lower bound in (4).

3. Harmonious graphs. We call a connected graph with v nodes and e _-> v edges
harmonious if it is possible to label the nodes x with distinct elements A (x) of e in such
a way that, when each edge xy is labeled with A (x) + A (y), the resulting edge labels are
distinct. If the graph is a tree (with v nodes and e v 1 edges) we require exactly one
node label to be repeated. Such a labeling of the nodes and edges is called a harmonious
labeling of the graph. In a harmonious labeling the node labels are distinct (or contain
exactly one duplicate, if the graph is a tree), and the induced edge labels are 0,
1,..., e-1. Fig. 1 shows some harmonious graphs with 5 nodes, and Fig. 2 gives
harmonious labelings of all trees with 7 nodes.

Harmonious graphs arise naturally out of the problems considered in 1. For if
nv(v) vv(v) () is attained by a set A {al," ao}, for v _>- 3, then al," av is a
harmonious labeling of Kv, the complete graph on v nodes. From Theorem 5 we obtain"

THEOREM 7. The complete graph on v nodes is harmonious if and only if v <-4 (see
Fig. 3).

For larger values of v it is natural to ask how large a subgraph of Ko can be
harmonious. From the definition in 1 we see that the answer is given by:

n(v) is the greatest number of edges in
any harmonious graph on v nodes.

For if A {al, a} attains nv(v), we label the nodes ofK with al, ao and omit
any edge whose label has already appeared. Since by definition the sums ai + aj (i < ])
cover Ze, every edge label appears at least once. For example Fig. l(n) shows the largest
harmonious graph on 5 nodes, corresponding to the value nv(5) 9, which is attained by
A {0, 1, 2, 4, 7}. One of the two edges labeled 2 has been omitted from Ks.

Although many other ways of labeling graphs have been studied in the literature
([8], [9], [25], [49], [54], [67]), this one appears to be new. However, there are many
similarities between harmonious graphs and what are called graceful graphs. A
connected graph with v nodes and e _-> v 1 edges is graceful if it is possible to label the
nodes x with distinct integers (x) from {0, 1,..., e} in such a way that, when each
edge xy is labeled with [/x (x) -/z (y)[, the resulting edge labels are distinct (and therefore
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(0) mod4 (b) c ,mod5 (c) mod 5 (d) mod 5

2 3 2 0

(e) mod 6 (f) mod6 (g) mod 6 (h) mod 7

6 0 6 0 60
(i) mod "7 mod 7’ (k) mod "7

, o
zo

mod 8 (rn) w 4, mod 8 (n) mod 9

FIG. 1. Some harmonious graphs with 5 nodes.

0
5 34 54021 525

FIG. 2. Harmonious labelings o[ the trees with 7 nodes (modulo 6).
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K?., mod Ks, mod K4, rood 6

FIG. 3. The complete graphs K2, K3 and K4.

all values in {1, 2, , e } appear uniquely). A graceful labeling of a graph is also called a
B-valuation or a restricted difference basis. These have an extensive literature ([3]-[5],
[7]-[10], [15], [22]-[27], [30], [31], [33]-[35], [42], [44], [47], [48], [50], [53], [57a],
[58], [64], [67], [69], [74], [78], [81]).

We are interested in determining which graphs are harmonious. The principal
results we have obtained are summarized in Table V, which shows which graphs are
harmonious (H) and for comparison which are graceful (G). The entries in the table are
explained in the remaining sections.

TABLE V
Comparison of harmonious and graceful graphs.

Graph Harmonious? Graceful?

Caterpillars H ( 5) G [15], [67]
Trees Conjectured to be H, true Conjectured to be G, true

for -<9 nodes for -<16 nodes [7], [67]
Cycle C4m Not H ( 6) G [10], [64]
Cycle C4m+1 H ( 6) Not G [10], [64].
Cycle C4m+2 Not H ( 6) Not G [10], [64]
Cycle C4,,+3 H ( 6) G [10], [64]
Ladder L,, H iff n >_-3 ( 7) G 10, p. 121]
Friendship graph Fn H iff n 2 G iff n --0 or

(mod 4) ( 8) (mod 4) [4], [5]
Fan fn H ( 9) G ( 9)
Wheel W H ( 10) G [22], [44]
Complete graph K, H iff n -< 4 (Theorem 7) G iff n -< 4 [25], [74]
Complete bipartite K,,n H iff m or n (Theorem 19) G [25], [67]
Small graphs All with _-<5 nodes are H except All with -<5 nodes are G except

for 5 (Fig. 15) for 3 [25]
Petersen H (Fig. 16) G [25]
Cube, octahedron Not H (Theorem 22) G [25]
Icosahedron H (Fig. 17) G [23]
Dodecahedron H (Fig. 18) G [23]
Most graphs Not H (Theorem 23) Not G (Theorem 24)

Several of these families of graphs were suggested by the following application.
Consider a network of transmitting stations, each of which must be able to communicate
with certain others--those to which it is linked in the network. The total bandwidth
available is divided into e channels, where e is the number of links in the network, and
each station x is assigned a number A (x) from 7/e. When x and y communicate they use
channel number A (x) +A (y). If the numbering is harmonious, each channel is assigned
to exactly one link.

Harmonious graphs are also interesting because they lead to modular versions of
various combinatorial problems. For example, a harmonious labeling of the friendship
graph Fn (see 8) may be regarded as a modular generalization of the Langford-Skolem
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problem (see [2], [4], [17], [18], [32], [41], [52], [55], [62], [63], [68], [70], [75]), a
version of that problem which does not seem to have been discussed before.
Harmonious labelings of fans, wheels, complete bipartite graphs, etc. (see below) also
have interesting combinatorial interpretations.

To conclude this section we mention that there is a curious geometric inter-
pretation of the condition that a graph G be harmonious. Let Pe denote a fixed regular
e-gon embedded in the plane. Then G is harmonious if and only if the nodes of G can be
embedded into the nodes of Pe SO that no two edges of the embedded copy of G are
parallel. This follows from the observation that if the nodes of Pe are labeled cyclically
with 0, 1, , e 1, then the direction of the chord joining and ] depends only on + j
(modulo e). (The condition must be modified slightly if G is a tree.) For example, Fig. 4
shows the graph of Fig. 1 (f) embedded in a regular hexagon.

FIG. 4. The harmonious labeling ofFig. (f) corresponds to an embedding ofthis graph in a regular hexagon
in such a way that no two edges are parallel.

4. General properties of harmonious graphs. The first property concerns
equivalent labelings of the same graph.

THEOREM 8. If is a harmonious labeling of the nodes of a graph with e edges, then
so is aA + b, where a is an invertible element of ’e and b is any element of

Proof. The edge labels (x) + , (y) are changed to a(, (x) + , (y)) + 2b, but remain
distinct. Q.E.D.

COROLLARY.
(i) Any node in a harmonious graph can be assigned the label O.
(ii) The repeated node label in a harmonious tree can be any element of e.
On the other hand one harmonious graph may lead to others via the following

constructions, which have the effect of moving an edge with a given label from one part
of the graph to another.

THEOREM 9. Let G be a harmoniously labeled graph containing (i) an edge wx with
label A (w)+ A (x), and (ii) a pair of nodes y, z not joined by an edge but satisfying
A (w) + A (x) A (y) + A (z). Then deleting the edge wx and inserting yz changes G to
another harmonious graph.

For example we can move the edge labeled 4 in Fig. 1 (b) and obtain Fig. 1 (c).
THEOREM 10. Let G be a harmoniously labeled tree containing an edge wx labeled

A (w) + A (x), where x is an endpoint (ofdegree 1), and A (x) is the repeated node label, fly
is any other node in G, we may delete edge wx and node x and replace them with a new
node z and edge yz where z is labeled with A (z)= A (w)+ A (x)-A (y).

For example the second and third trees in Fig. 2 are obtained from the first by
moving the edge labeled 2.
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The last theorem in this section gives a necessary condition for certain graphs to be
harmonious.

THEOREM 11. If a harmonious graph has an even number e of edges and the degree
of every node is divisible by 2"(a => 1), then e is divisible by 2"/1.

Proof. Let node x have label h (x) and degree 8(x). The sum of the edge labels is
,xS(X)h(x)=O+l+ .+(e-1)----1/2e(e-1)=e/2 (modulo e); hence 2" divides e/2
and so 2/1 divides e. Q.E.D.

For example the 1-skeleton of the octahedron has 12 edges and 6 nodes, each of
degree 4, so is not harmonious.

5. Are all trees harmonious? It is easy to see that paths and stars are harmonious
(see the first and last examples in Fig. 2). More generally, let a caterpillar be a tree with
the property that the removal of its endpoints leaves a path.

THEOREM 12. Any caterpillar is harmonious.
Proof. Draw the caterpillar as a bipartite graph, as shown in Fig. 4a, with say nodes

on the left and r on the right. There are e + r- 1 edges. If e is odd, or if e is even and r
is odd, choose a 7/e SO that 2a r- 1 (in Ze). If e and r are both even, then is odd and
we choose a so that 2a 1 I. We label the left-hand nodes a, a / 1, , a / 1 and
the right-hand nodes -a, 1- a,. ., r- 1- a, as in Fig. 4a. The full set of node labels is
{0, 1, , e 1} with either a repeated (if 2a r- 1) or -a repeated (if 2a 1 l). The
edge labels are {0, 1,. , e 1}, and the graph is harmonious. Q.E.D.

We shall usually just specify the node labels and leave to the reader the straight-
forward verification that the labeling is harmonious.

mod 9

FIG. 4a. A caterpillar with e 9 edges, drawn as a bipartite graph with 5 nodes on the left and 5
nodes on the right. We obtain a harmonious labeling by choosing a 2, so that 2a r- 1.

By repeatedly applying the constructions of Theorems 9 and 10 to caterpillars, it is
easy to generate large numbers of harmonious trees. Those with 7 nodes are shown in
Fig. 2, and in the same way we have established the following theorem, whose proof is
omitted.

THEOREM 13. All trees with <-_9 nodes are harmonious.
We conjecture that all trees are harmonious (cf. [7]).
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6. Cycles.
THEOREM 14. The cycle C, with n nodes, n >= 3, is harmonious ifand only ifn is odd.
Proof. If n is odd we label the nodes 0, 1,..., n- 1 (see Fig. l(b)). If n 2m is

even, suppose ao, a x,..., az,- is a harmonious labeling of C,. The numbers
ao + a x, a + a2,’’’, a,_ + ao are congruent (modulo 2m) to some permutation of
0, 1, 2,..., 2m- 1. Adding these numbers we obtain 2S =-S (modulo 2m), where
S 0 + 1 + 2 +. + 2m 1 rn (modulo 2m). Hence rn 0 (modulo 2m), a contradic-
tion. Q.E.D.

7. Ladders are harmonious. The ladderLn (n >- 2) is the product graph P2 en, and
contains 2n nodes and 3n- 2 edges (Figs. 5, 6).

THEOREM 15. All ladders except L2 are harmonious.
Proof. Lz=C4 is not harmonious by the previous theorem. L2a+x (a >= 1) is

harmonious" label one path 0, a + 1, 1, a + 2, 2, a + 3, and the other 3a + 1, 2a + 1,
3a + 2, 2a + 2, 3a + 3, 2a + 3, (Fig. 5). L4 is harmonious: label the paths 0, 5, 1, 9
and 2, 6, 3, 4. Finally Fig. 6 shows a harmonious labeling of L2a for a >-3. Q.E.D.

5 4 5 6

d t3

FIG. 5. The ladder Ls.

0 + -I-- -I-.

+3 | 5a-5

mod 6a-2
FIG. 6. The ladder L2a, a >-_ 3.

The labeling of L2a+x is exceptionally pleasant since the edges are numbered
consecutively. Furthermore by simply joining the ends of the ladder we obtain a
harmonious labeling of the prism P2 C2a+1 (Fig. 7), and the pattern may be continued
to produce a harmonious labeling of any P,, C2a+x (Fig. 8). The cube P2 C4 is not
harmonious (Theorem 22 below), but P3 x C4 is (Fig. 9).

8. Friendship graphs. The friendship graph F,(n >= 1) consists of n triangles with a
common vertex (see Fig. 10).

THEOREM 16. Fn is harmonious except when n --2 (modulo 4).
Proof. If n--2 (modulo 4), F, is not harmonious by Theorem 11. If n-= 0 or 1

(modulo 4) it was shown by Skolem [75] that the numbers {1, 2,..., 2n} may be
partitioned into n pairs (ar, br) with br-ar r, for r 1,..., n. Then a harmonious
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25

%

FIG. 8. The prism P3 x

FIG. 9. The prism P3 x C4.

mod t2

FIG. 10. The [riendship graph F4.
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labeling of Fn is obtained by labeling the vertices of the triangles with (0, r, n + at), for
r 1,. , n (see Fig. 10). If n 3 (modulo 4) it is known [4, Th. 1, the case d 3] that
{1, 2,..., 2n-6} may be partitioned into n- 3 pairs (ar, br) with br-ar r + 2, for
r 1,.. , n -3. We label the triangles of F, with (0, 1, 3n 1), (0, 2, 3n -6), (0,
3n 2, 3n 3), and (0, r + 2, n + a) for r 1,. , n 3. Q.E.D.

9. Fans are harmonious. The fan fn (n -> 2) is obtained by joining all nodes of P to
a further node called the center, and contains n + 1 nodes and 2n 1 edges.

THEORZM 17. f, is harmonious.
Proof. Let m [n/2] and label the center with 0 and the nodes of the path with m, n,

m+l,n+l,m+2,...(seeFig, ll).
Remarks.

(i) f2,, may also be harmoniously labeled in such a way that the endpoints of the
path are 1 and -1: label the nodes of the path with 1, 2, 5, 6, 9, 10, , 4m -3, 4m -2.

(ii) f, is also graceful, although this fact does not seem to have been mentioned
before: label the center with 0 and the nodes of the path with 2n- 1, 1, 2n-3, 3,
2n -5,.

(iii) Let g,(n->2) be the graph with n + 2 nodes and 3n- 1 edges obtained by
joining all nodes of P, to two additional nodes. A harmonious labeling of g2, is
obtained by labeling the path with 2, 4, 8, 10, 14, 16, , 6m -4, 6m 2, and the two
additional nodes with 0 and 1 (Fig. 12). But g2,/1 does not seem to have such a simple
labeling.

|2 0

t) 2

FIG. 11. The fan fT.

FIG. 12. The graph g6.

10. Wheels are harmonious. The wheel W, (n -> 3) is obtained by joining all nodes
of C, to a further node called the center, and contains n + 1 nodes and 2n edges (see
Fig. 13). A harmonious labeling of W, is equivalent (by Theorem 8) to finding a subset
{al,. , a,} of Z2, with the property that

al,’’ ",an, al+a2, a2+a3,’’’,an+al
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02.I 0

4

22

mod 2.4
t2 18

FIG. 13. The wheel W12.

comprise all the elements of 7/2n (for then we may label the cycle with al,. , a, and
the center of the wheel with 0).

THEOREM 18. Wn is harmonious.
Proof. The cases W2,,/1, W4,,, W8m+2 and W8,/6 will be handled separately. In

each case the center is labeled with 0. For W2,+1 the cycle is labeled 1, 3, 5, , 4m /

1. For W4, we divide the cycle into 2m pairs, m of which will be labeled (4i / 1, 4i +
3), 0 _-< _-< m 1; m 1 of which will be labeled (4i / 7, 4i + 1), m -<_ -<_ 2m 2; and one
which will be labeled (4m- 2, 4m + 2). The actual labeling of the cycle is

4m-2,4m+2;

1, 3; 4m +7, 4m /1; 5, 7; 4m +11, 4m +5;

4i-7, 4i-5; 4m +4i-1, 4m +4i-7;

4i-3, 4i-1; 4m +4i+3, 4m +4i-3;

4i+1,4i+3;4m +4i+7,4m +4i+1;

4m-ll,4m-9; 8m-5, 8m-ll;

4m-7,4m-5;8m-l,8m-7;

4m-3,4m-1.

Fig. 13 shows the labeling of W12o To verify that this labeling is harmonious we observe
that, out of the residues modulo 8m, all the numbers congruent to 1 or 3 (modulo 4)
except 4m / 3 and 8m 3 appear as spoke labels, and 4m + 3 and 8m 3, together with
all numbers congruent to 0 (modulo 4) appear on the perimeter. Furthermore, the
numbers congruent to 2 (modulo 4) appear on the perimeter in the order. 4m / 8i
6, 4m +8i- 10, 4m /8i/2, 4m +8i-2, .

For W8m+2 (m 1) the cycle C8m/2 will be labeled modulo 4 as follows:

2,1,2,1,...,2,1; 1,1,...,1; 0,0,...,0.

4m+2 2m-1 2m+1
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The actual labels for these three sets of nodes are

and

4rn +2, 16m +1, 4m-2, 16m-3,..., 12m +6, 8m + 1;

4m-3, 8m-3, 4m-7, 8m-7,. , 4m +5, 1;

4m, 8m +4, 4rn +4, 8m +8,..., 12m, 8m

(the last set being 4 times the labels of f2,/1 given above). For example W18 is labeled
(modulo 36) as follows.

nodes: 10 33 6 29 2 25 34 21 30 17;

perimeter: 7 5 35 31 27 23 19 15 11 22

nodes: 5 13 1; 8 20 12 24 16

perimeter" 18 14 9 28 32 0 4 26.

For W8rn+6 (m >-0) the cycle is labeled

12m +2, 12m +5, 12m-2, 12m +1, , 4m-2, 4m +1;

16m +5, 4m-3, 16m +1,4m-7, , 12rn +9, 1;

16m + 8, 16m + 4, 16m 8, 16m 12, , 24, 20, 8, 4

(the last set being 4 times the second labeling of f2,+2 given above). For example, W14 is
labeled (modulo 28) as follows.

nodes: 14 17 10 13 6 9 2 5; 21 1; 24 20 8 4

perimeter" 3 27 23 19 15 11 7 26 22 25 16 0 12 18

11. Complete bipartite graphs. Let K,..n denote the complete bipartite graph with
m + n nodes and mn edges.

THEOREM 19. K,.,n is harmonious if and only if m or n 1.
Proof. If m or n 1, the graph is a star and is harmonious (see 5). Suppose m > 1

and n > 1. A harmonious labeling of K,.,. is equivalent to a direct sum decomposition of
7/,.n A B, where A and B are disjoint subsets of 7/.. with IAI m, IBI n. Since all
the sums a + b (a A, b B) are distinct, so are all the differences a b. But there are
mn differences, hence 0 a- b must occur exactly once. Therefore A and B are not
disjoint, and K,.,. is not harmonious. Q.E.D.

The proof has an interesting corollary.
COROLLARY. If _, A B then IA C1BI 1.
Although many papers have dealt with decompositions of this type ([12], 13], 16],

[38], [71], [72]), this result does not seem to have been noticed before.

12. The one-point union of two complete graphs. The graphK (n _-> 3) consists
of two copies of K, sharing a common node, and contains 2n- 1 nodes and n (n- 1)
edges (see Fig. 14). It is known that K(,2 is never graceful [5].
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THEOREM 20. K(2) is harmonious if n 4 but is not harmonious if n is odd or n 6
Proof. For n =4 see Fig. 14, and for odd n apply Theorem 11. The computer

eliminated n 6. Q.E.D.
We conjecture that K,2) is harmonious only when n is 4.

rood t

FIG. 14. The graph K(42).

13. Some small graphs.
THEOREM 21. Them are six connected graphs with <=5 nodes that are not

harmonioussee Fig. 15.
Proof. It has already been shown that C4, F2=K32), K5 and K2,3 are not

harmonious, and the other two graphs in Fig. 15 are easily eliminated by hand.
Harmonious labelings of most of the other graphs with <_-5 vertices are given in Fig. 1,
and the remainder are easily dealt with. Q.E.D.

4 F2

K2,3

FIG. 15. The six nonharmonious graphs with <-5 nodes.

For comparison we note that Golomb [25] showed there are three connected
graphs with _-<5 nodes that are not graceful, namely C5, F2 and Ks; and Rao Hebbare
[64] found that there are six nongraceful connected graphs with 6 nodes.

THEOREM 22. The Petersen graph and the 1-skeletons of the tetrahedron, icosa-
hedron and dodecahedron are harmonious, while the 1-skeletons of the cube and
octahedron are not.

Proof. For the first four see Figs. 16, l(m), 17 and 18. The octahedron is not
harmonious by Theorem 11, and the computer was used to check that the cube is
not. Q.E.D.
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mod t.5

FIG. 16. The Petersen graph.

8

mod 30 9

FIG. 17. The icosahedron.

12

25

7

mod 30

FIG. 18. The dodecahedron.
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14. Most graphs.
THEOREM 23. Almost all graphs are not harmonious.
Proof. For our model of a random graph with n nodes we assume that each of the (z)

possible edges independently exists or does not with probability 1/2. Fix e (0, 1/2), and let d
be a fixed integer in the range [(1/2- e)(), (1/2 + e )(.)]. We shall show that almost no graphs
with n nodes and d edges are harmonious (as n ). Since almost all graphs with n
nodes have a number of edges in this range, the theorem follows.

(n (n 1)/2) labeled graphs with n nodes and d edges, and so at leastThere are
d

1 (n(n-1)/2)n! d

unlabeled graphs with n nodes and d edges.
Let A be a labeling of the n nodes with distinct numbers from {0, 1,..., d- 1}.

There are d(d 1) (d n + 1) _-< d" such labelings. Let us consider how many graphs
there are for which A is a harmonious labeling. Let Pi be the number of pairs of nodes
{v, v’} with h (v) + h (v’) (modulo d). Then

A graph is harmonious with this labeling if it consists of one edge taken from each of the
classes counted by p. Thus there are

d-1

i=0

labeled graphs for which h is a harmonious labeling. This product is maximized by
taking the p’s as equal as possible; in particular

Therefore there are at most

1-7I (n(n 1),)
d

pi <
i=0 2d

n(n d

2d

harmonious labeled graphs. This is also an upper bound on the number of harmonious
unlabeled graphs. To complete the proof we show that the ratio

dn( n (n -1))
a

2d
p=

1 (n(n-l)/2)n! d

approaches 0 when n oo and d is in the required range. Write d (1/2-/x)(), with

x (-1/2, 1/2). Then
dnn !48(.) (1/2- )(+/x)

P(
(1/2- t)a2(’) H2[(112)-"]

where HE(X)=-x log2 x-(l-x)log2 (l-x) (cf. [57, p. 309]). The denominator is
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equal to

2-()[(1/2+]og[(/2)+]

and sop0asnoo. Q.E.D.
The same argument establishes an unpublished result of Erd6s (cf. [25]):
THEOREM 24. Almost all graphs are not graceful

15. Comparison of harmonious and graceful graphs. A study of Table V suggests
that the properties of being harmonious and graceful are roughly similar, although the
entries for cycles show that the two properties are in general independent. Comparing
the harmonious labelings of the previous sections with graceful labelings of the same
graphs (see for example [10], [22], [44]) suggests that harmonious labelings are
considerably more complicated. We know that nv(v), the number of edges in the largest
harmonious graph on v nodes, is bounded by (2). On the other hand, if g(v) denotes the
number of edges in the largest graceful graph on v nodes, it is known that
limo_,o g(v)/v 2 exists and satisfies

(16) 1/2-< lim g(--v) =< 0.411,
(see [26], [42], [53], [58], [81]). Table VI compares the first few values of nv(v) and
g(v): they are extremely close. We conclude therefore with an open problem: show that
limv_ n(v)/v exists, and find improvements to (2) comparable with (16).

TABLE VI
The size of the largest harmonious graph on v nodes
(n.(v)) compared with the size of the largest graceful
graph (g(v)). The values of g(v) are taken from [53]
and [58].

v nv(v) g(v)

2
3 3 3
4 6 6
5 9 9
6 13 13
7 17 17
8 24 23
9 30 29

10 36 36
11 43
12 50
13 58
14 68

Acknowledgments. We should like to thank P. Erd6s and A. M. Odlyzko for
helpful discussions, and F. R. K. Chung for proving Theorem 17 and parts of
Theorem 18.

Note added in proof. Thom Grace (written communication, June 14, 1980) has
shown that g2,/1 is harmonious (see 9): label the path m, 0, m + 1, 1,. , m 1, 2m,
and the two additional nodes 3m and 5m + 1 (modulo 6m +2). E. Levine (written
communication, June 24, 1980) has shown that if K(ff is harmonious (see 12) then n is
a sum of two squares.
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ON UNIMODALITY FOR LINEAR EXTENSIONS OF PARTIAL ORDERS*

F. R. K. CHUNG’I’, P. C. FISHBURN’I" AND R. L. GRAHAMf

Abstract. R. Rivest has recently proposed the following intriguing conjecture: Let x* denote an arbitrary
fixed element in an n-element partially ordered set P, and for each k in {1, 2, , n let Nk be the number of
order-preserving maps from P onto {1, 2,..., n} that map x* into k. Then the sequence N1,’’ ’, N,, is
unimodal. This note proves the conjecture for the special case in which P can be covered by two linear orders.
It also generalizes this result for P that have disjoint components, one of which can be covered by two linear
orders.

1. Introduction. Given a finite partially ordered set (P, <), where < is asymmetric,
we say that an injection A from P into the set Z of integers is a linear extension of P if,
for all x, y P,

x < y :::),A (x) < A (y).

We shall presume that P has n elements and, in the main part of the paper, restrict
ourselves to bijections A :P-> In]---{1, 2,..., n}. Generalizations are discussed later.

Let x* be an arbitrary fixed element in P. For each k [n], define Nk to be the
number of linear extensions A :P --> In ] for which A (x*) k. Rivest [2] has proposed the
following tantalizing conjecture.

CONJECTURE. The sequence Nk, k [n ], is unimodal.
By unimodal we mean that, for all 1 _-< < j < k <_- n,

N. -> min {N, Nk).

In this note we shall prove that the conjecture is valid for the important class of
partially ordered sets that can be partitioned into two linearly ordered subsets, i.e.,
chains, with <-pairs allowed between the chains. In fact, we show that the Nk’S in this
case satisfy the stronger property of logarithmic concavity, i.e.,

N2k >=Nk-lNk+l for 1 < k < n.

A similar proof provides an interesting result involving the unimodality of certain
sequences of integers.

2. Lattice paths in Z2. We shall say that the partially ordered set (P, <) can be
covered by two chains if there is a partition {A, B} of P such that the restriction of < on
each of A and B is a linear order. To avoid the trivial case, we shall suppose that < on P
is not linear, and that (P, <) can be covered by two chains, denoted as A
{ax< < ar} and B {b <. < b}, with r-> 1, s _-> 1 and r + s n. There can be
"cross-relations" like a <hi or bi<a from (P, <), but in any event < must be
asymmetric (x < y => not (y < x)) and transitive.

Let L denote the set of all ordered pairs of nonnegative integers. Each linear
extension A:P In] induces maps of A and B into In], with A (a)<... < A (a) and
A (b) <. < A (b). To each such A we will associate a lattice path ,r(A) in L as follows.
The first point on zr(A) is (0, 0). If the kth point on r(h) is (Xk, Yk) and if A (p)- k + 1,
then the (k + 1)st point on 7r(h) is (Xk + 1, Yk) if p cA, and (Xk, Yk + 1) if p B. The
terminal point on r(h) is (r, s). An example appears in Fig. 1.

* Received by the editors March 19, 1980.

" Bell Telephone Laboratories, Murray Hill, New Jersey 07974.
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FIG. 1. The correspondence between A and r(A ).

The fact that A preserves the linear orders on A and B is reflected in the fact that
the indices of the ai and bj increase as we move along 7r(A) from (0, 0) to (r, s). But how
do the other <-pairs show up in or(A)? For Fig. 1, what constraint does a < be (which
forces A(al)<A(b2)) place on r(A)? The answer is very simple. Each ai <bi cor-
responds to a rectangular "barrier" which the path 7r(A) is not allowed to penetrate.
This barrier is defined to be all lattice points (x, y) in L for which x -<_ and y ->_ j- 1, as
illustrated in Fig. 2.

b

(0,0)

(i,j-1)

C]

FIG. 2. The barrier for ai < bi.

The barrier for ai < bj forces rr(A to reach a lattice point with x-coordinate before
it reaches one with y-coordinate j, i.e., ai occurs before bj on 7r(A). This is precisely what
is needed for A (a) < A (b).

In a similar manner, b. < ai corresponds to a rectangular barrier consisting of all
(x, y) in L for which x -> 1 and y -< j. For A to be a linear extension of P, rr(A must not
penetrate any of the barriers formed from the cross-relations in (P, <). Fig. 3 shows the
union of the barriers for (P0, <) from Fig. 1.

The next point we consider is how A (x*) k is reflected in 7r(A). Without loss of
generality, we assume that x* ai, SO that x* A. Then it is easy to see that A (ai) k iff
7r(A) contains the two points (i 1, k i) and (i, k i). (Similarly, A (b) k iff zr(A)
contains (k-,- 1) and (k-/’, ).)

Suppose Nk-1 and Nk/ are both positive, and let A / and A- be linear extensions of
P such that Z +(ai) k + 1 and A-(ag) k 1. Thus, 7r(A /) contains points (i 1, k + 1
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FIG. 3. The union of barriers for (Po, <).

i) and (i, k + 1 i), and zr(h-) contains (i 1, k 1 i) and (i, k 1 i). Let Xo be the
largest integer that is <=i 1 such that, for some y, (Xo, y + 1) is on r(h 4) and (Xo, y) is on
zr(h-), and let yo, which cannot exceed k-l-i, be the largest integer such that
(Xo, yo + 1) is on r(h 4) and (Xo, yo) is on 7r(h-). Similarly, let x be the smallest integer
->i such that, for some y, (xl, y + 1) is on r(h +) and (Xl, y) is on r(h-), and let Yl, which
cannot be less than k- i, be the smallest integer such that (Xl, y / 1) is on 7r(h +) and
(X1, Yl) is on 7r(h -).

We now form two new lattice paths zr(h 1) and zr(h) as follows. Let r(h 1) consist of
the points on 7r(h-) from (0, O) to (Xo, Yo), plus the points on 7r(h 4) from (Xo, yo + 1) to
(X 1, Y / 1) translated by -1 in the y-direction, plus the points on zr(h-) from (x 1, y 1) to
(r, s). Let 7r(h2) consist of the points on (h 4) from (0, O) to (Xo, yo + 1), plus the points
on zr(h-) from (Xo, yo) to (x 1, y 1) translated by + 1 in the y-direction, plus the points on
7r(h4) from (X1, YI / 1) to (r,s). It is of course possible to have "//’(h l) (h2), or,
equivalently, h h 2, but this will not affect our conclusions. We observe that:

(i) 7r(h 1) and r(h 2) are lattice paths from (0, 0) to (r, s) which contain (i, k i) and
(i- 1, k-i), and, therefore, hl(ai)=hE(ai) k;

(ii) since zr(h 4) lies strictly above 7r(h-) in the region where the translations occur
in the construction, neither 7r(h 1) nor r(h2) penetrates any of the barriers formed by
(P, <). It follows that h and h2 are linear extensions of P;

(iii) if two ordered pairs of the form (h 4, h-) are distinct, then their associated
(hi, h.) pairs are distinct. This follows from the construction: if two (zr(h /), 7r(h-))
differ prior to on the abscissa, then their associated (r(h 1), 7r(h 2)) will differ before i; if
two (zr(h 4), r(h -)) differ after 1, then their associated (r(h 1), 7r(h 2)) will differ after
i-1.

Thus, our construction provides an injection from the ordered pairs (h /, h-) into
pairs (h 1, hE), where h + and h- are any linear extensions of P for which h +(ai) k + 1
and h--(ai) k 1, and h and hE are linear extensions of P that satisfy h l(ai) h2(ai)
k. If a, / and y are the number of linear extensions of P for which h (ai)= k / 1,

2h (ai) k 1, and h (ai) k, respectively, then such an injection requires y -> a/3, for
otherwise two (h 1, hE) pairs associated with distinct (h 4, h-) pairs would have to be
identical.

The preceding argument applies analogously when x* bj. Thus, we have proved
the following result.

THEOREM 1. Letx* be a fixed element in a partially ordered set (P, <) on n elements,
and suppose (P, <) can be covered by two chains. For k E {1, 2,..., n}, let Nk be the
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number of linear extensions h P {1, 2,. , n} for which h (x*) k. Then

N Nk_lNk+ for k 2,. , n 1.

COROLLARY. Given the hypotheses of Theorem 1, the sequence N1, N2,""", Nn is
unimodal.

The same basic argument for Theorem i can be used to prove the following result
for sequences of integers. Let A--(al->a2 ->’’ ") be a nonincreasing sequence of
nonnegative integers. Given A, let Sn be the number of nonincreasing sequences
x =(xl>--xz>-_ >--xn) of integers for which 0<--_xk--<_ak, for k 1,. , n.

THEOREM 2. The sequence $1, S2, is logarithmically concave, i.e.,

S >= $n_IS,+ for all n >-2.

When A is constant, say A (t, t, t,...), Theorem 2 shows the (easily proved)
logarithmic concavity of the binomial coefficients (tk) for k 1, 2,. .

3. A generalization. We now generalize our analysis of logarithmic concavity by
considering disjoint partial orders along with linear extensions that map P into
[m =- {1,. , m) when m exceeds the cardinality of P. The following lemma provides a
basis for the generalization.

LEMMA. Let (P, <) and (P tA C, <) be partially ordered sets on n and n + a elements,
respectively, that have the same ordered pairs in their partial orders with C P . Let
x*P be fixed, and let Ng and N’, respectively, be the number of linear extensions
h "P-[n] and A"Pt.JC[n +a] that have h(x*)=k and h’(x*)=k. IfN1,... ,Nn is
logarithmically concave, then so is N’, N’,+.

If C is empty, there is nothing to prove; so suppose initially that C {c }, with a 1.
Since neither c < x nor x < c for each x P, each h for P generates n + 1 h’ for P LJ {c}
according to the n + 1 placements of c. With No N,/I 0,

N=(k-1)N_+(n-k+l)N fork=l,...,n+l.

Using this relationship, (N’)2-N’k_N’/ 1, for 2 -< k =< n, reduces to

k(k 2)[N_ -N,-:zN,]+(n k)(n k + 2)[N, -N,_,Nk.I]

+ (k 2)(n k)[N,_N, N,_2N,+] + (Nk- Nk)2,

which must be nonnegative if {Nk} is logarithmically concave.
This completes the proof of the lemma if a <_- 1, so suppose in this paragraph that

a _->2 with C ={cl,’’’, ca}. The A’:Pt.JC--,[n +a] can be generated from the h :P
In] by adding one ci at a time. For a given A, we first add c1 to obtain n + 1 linear
extensions from Pt.J{c} onto In + 1]; for each of these n + 1, we then add c2 to obtain
n + 2 linear extensions from Pt.J{cl, c2} onto In + 2]; and so forth. If {N,,} is logarith-
mically concave, then successive applications of the result obtained in the preceding
paragraph for each ci addition show that {N, } must be logarithmically concave. The
lemma is thus proved.

We now state our generalization, discuss its features, and then conclude this section
with its proof.

THEOREM 3. Suppose (P1, < x), (P2, <2) and (P, <) are partially ordered sets on n 1,

n2 and n elements respectively such that 0<n_-<n, P LIP2 P, P P2 and
<1LI <2 <. Let x* PI be fixed, and let Nk (k 1,. , n) be the number of linear
extensions h :Pl-,[n] for which h(x*)=k. In addition, given m>-n, let Mk (k=
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1,.. ",m) be the number of linear extensions h*’P[m] for which h*(x*)=k. If
N1, , Nnl is logarithmically concave, then so is M1, , M,,.

When n2 0 and m > n, this shows that logaritlamic concavity tor h P/n carries
over to h *" P [m]. When n2 > 0 and m n, Theorem 3 says that logarithmic concavity
for the elements within a part of (P, <), namely (P1, < 1), carries over to all of (P, <) for
those same elements, provided that the rest of (P, <) is not connected to the first part.
The combination of these two cases provides the generalization stated in the theorem.

Theorems 1 and 3 together yield the following result.
THEOREM 4. If an n-element partially ordered set (P, <) can be partitioned into

partially ordered sets (P1, < 1) and (P2, <2) with no <-connection between P1 and P2, if
(P1, < 1) can be covered by two chains, and if x* P1, m >-_ n, and Mk is the number of
linear extensions h P [m] for which h (x*) k, then M1, , M,, is logarithmically
concave and unimodal.

We now sketch the proof of Theorem 3 using the notation in its statement. In
addition, let Tk be the number of linear extensions h0" P In for which ho(X*) k, and
if n2>0, let/3 be the number of linear extensions h2"P2[n2], and let N, be the
number of linear extensions h"Plt_JC[n] that have h’(x*)=k when C is a
completely unordered n2-element set (see the lemma) that is disjoint from P1.

If n2 0 then T N, so assume henceforth in this paragraph that n2 > 0. We shall
apply the lemma with a n2. Consider a fixed h2"P2-[n2] along with a generic
hi "P1 [n]. The n2 numbers in In] that are not in hl(P) can be bijectively assigned to
the elements in P2 in exactly one way that preserves the h2 order and yields a
h0"P [n]mas compared to the n2! ways this could be done for the unordered set C.
Since this is true for each such h 1, it follows that the number of h0" P In] that have
ho(X*) k and have P2 in its h2 order is N/n2!. Since there are /3 such h2, Tk-"
BN/N2!. If N1,"’,N,, is logarithmically concave, then the lemma says that
TI," ", rn is too.

This proves Theorem 3 if m n. If m > n, we reapply the lemma with a m n. In
this case let C’ be a completely unordered (m n)-element set disjoint from P and, with
respect to (Pt_J C’, <), let T, be the number of linear extensions h"PtA C’ [m] for
which h’(x*) k. By the lemma, if {T} is logarithmically concave then so is {T, }. Since
the m-n numbers in [m] that aren’t in a h’(P) can be bijectively assigned to C’ in
(m n)! ways, it follows thatM as defined in Theorem 3 equals T/(m n)!. When this
is combined with preceding conclusions, we see that if N1,’’’, N, is logarithmically
concave, then so is M1,""", Mm.

4. Concluding remarks. The preceding techniques can be used to prove other
unimodality results for restricted lattice path problems. For example, consider lattice
paths zr that are not allowed to penetrate barriers of the type shown in Fig. 3, so that r is
bounded between two increasing staircases. Let D,,k be the number of such paths that
go through point (k, n -k). Then, for each n, the sequence D,,, 0 _-< k _-< n, is logarith-
mically concave and therefore unimodal. (Of course, here we are just looking at the
intersections of lattice paths with the line x + y n.) The reader is referred to the recent
paper of Graham, Yao, and Yao [1] for similar applications of these ideas.

Finally, we note another open conjecture that is suggested by our analysis. Within
the context used for the earlier conjecture, we propose"

CONJECTURE*, The sequence N, k [n ], is logarithmically concave.
Conjecture* is stronger than Rivest’s Conjecture since unimodality follows from

logarithmic concavity, but not conversely. Thus, a counterexample for Conjecture*
need not disprove unimodality, while verification of Conjecture* would establish
Rivest’s Conjecture.
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Note added in proof. R. Stanley has just proved Conjecture* using a very ingenious
application of the Alexandrott-Fenchel theorem (which guarantees the logarithmic
concavity of certain coefficients arising from the volume of weighted sums of n-
dimensional polytopes).

REFERENCES

[-1] R. L. GRAHAM, A. C. YAO, AND F. F. YAO, Some monotonicity properties o]’partial orders, this Journal,
(1980), pp. 251-258.

[2] R. RIVES’r (personal communication).



SIAM J. ALG. DISC. METH.
Vol. 1, No. 4, December 1980

1980 Society for Industrial and Applied Mathematics
0196-5212/80/0104 0006501.00/0

OBTAINING SPECIFIED IRREDUCIBLE POLYNOMIALS
OVER FINITE FIELDS*

SOLOMON W. GOLOMB

Abstract. In numerous applications, it is necessary to find an irreducible polynomial f(x) of degree n
over GF(q) whose roots are primitive dth roots of unity. (Here d must divide qn 1.) Let a be one such root.
A direct method is to write

n-1

qi) ./(x)= l-I (x-a
=o j=0

where Co and all Ci are in GF(q). Explicitly, C is the sum of all powers of a whose exponents, written as
n-digit numbers in base q, look like binary numbers of weight ]. Formulas for the number of such polynomials
f(x) are given, several computational shortcuts exploiting properties of cyclotomic polynomials are noted,
and numerous illustrative examples are presented.

1. Introduction. There are numerous applications in which it is necessary to find
an irreducible polynomial, f(x), of degree n, over the finite field GF(q), of q elements,
whose roots are primitive dth roots of unity. (A necessary condition for such an f(x) to
exist is that d be a divisor of qn_ 1.) Such applications include the generation of
algebraic error-correcting codes with specified properties ([1]), the design of n-stage
linear shift register sequences over GF(q) with period d ([2]), and the construction of
fast transforms based on finite field properties ([3]).

Various tables of irreducible polynomials over finite fields, and especially over
GF(2), have been published ([1], [2], [4], [14]). A variety of methods are employed in
the construction of such tables, including a close analog of the "sieve method" used in
making tables of prime numbers. However, if one only wishes to obtain polynomials for
a given set of values of n, q, and d, and no tables are available, then a direct algebraic
method may be used. This article is an attempt to explain and illustrate this method,
which is scarcely mentioned in the existing literature. (It is described briefly as the
"synthetic method" in [2, pp. 66-69].) For a general background to the algebra
involved, one may consult [1], [2], or [5].

2. Methodology. If f(x) is an irreducible polynomial of degree n > 1 over GF(q),
then the roots of f(x) are primitive dth roots of unity for some divisor d of qn 1, where
d does not divide q" 1 for any m, 1 -< m < n. The number of irreducible polynomials
over GF(q) of degree n and "primitivity" d is then 4(d)/n, where b is Euler’s totient
function, since there are b (d) primitive dth roots of unity and these occur n at a time as
roots of irreducible polynomials of degree n.

If a is a root of f(x), then the complete set of roots of f(x) is
{ ql q2 q3 qn--1

,a ,a ,.’.,a }. Hence we may write"

n-1

f(x)--" H (x-lqi)--xn-flxn-l--f2xn-2-C3xn-3-]-" "+(-1)C,
i=0

where the coefficients C/must be elements of the ground field, GF(q). Clearly

n-1

C1-- o
qi

i=o

* Received by the editors September 21, 1979, and in revised form February 5, 1980. This research was
supported in part by the U.S. Air Force Office of Scientific Research under grant AFOSR 75-2798.

t Departments of Electrical Engineering and Mathematics, University of Southern California,
University Park, Los Angeles, California 90007.

411



412 SOLOMON W. GOLOMB

is the sum of the roots of f(x), also called the "trace" of f(x), or Tr (a). The powers of a
which are summed have as exponents the integers 1, q, q2,... qn-1, which are all the
numbers which, when written as n-digit numbers in base q, consist of all cyclic
permutations of (000.. 01).

Similarly, Cj is the sum of all powers of a having exponents which, when written as
n-digit numbers in base q, look like binary numbers of weight ].

If d is a proper divisor of qn 1, then the exponents on a are effectively reduced
modulo d, since t d 1. However there are computational advantages to determining
the exponents first modulo q" 1, and then reducing them modulo d.

Note that

n-1

Cn H Olqi ol (qn--1)/(q--1),
i----0

which is a nonzero element of GF(q). Let r (q 1)/(q 1). Then

o’--qC,-1 E a a C, Tr (if-l).
=o =o

This symmetry between C,_(a) and C(1/a) generalizes to a symmetry between
and C for all j.

The total number of irreducible polynomials of degree n over GF(q) is

_1 E g (t)q "/’,
tin

where the summation is over all divisors of n, and g is the M6bius function. This is also
the number of "primitive" necklaces consisting of n beads in q colors, where a primitive
necklace is one with no periodic substructure. The natural correspondence between
polynomials and necklaces is the one established by the cyclic permutations of the
base-q digits of some power a of a. These permutations of the digits correspond on the
one hand to the necklaces, and on the other hand to the traces of the irreducible
polynomials of degree n over OF(q).

The total number of necklaces of n beads in q colors (primitive or not) is

E (d)q"/d,

which is also the number of irreducible polynomials of all degrees d which divide n over
GF(q). Equivalently, this is the number of irreducible polynomial factors of x" -x
over GF(q), which is the number of different minimal polynomials over GF(q) having
all elements of GF(q) as roots.

Let ez=/. Then the cyclotomic polynomial

(I)m (X) H (X --i),
l<--_i<=m

(i,m)=l

is the polynomial whose roots are the primitive ruth roots of unity over Q, the field of
rationals. It is known ([6]) that ,,(x) is irreducible over Q for all m, but as we have
seen, m(x) frequently factors over GF(q). Gauss [7] was the first to study sums of the
type

n-1
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but tended to think of these solely as complex numbers. He called these sums "periods"
of the cyclotomic equation, and derived many of their properties. It was Kummer
[8], I-9] who studied the problem of interpreting these sums as elements of GF(q), and
a table of evaluations (containing a disturbing number of errors) was published by
Reuschle [10].

To avoid confusion with all the other periodic phenomena which are present, these
sums have also been called cyclotomic cosets ([2], [11 ]), and are the basis vectors of an
algebra ([12]). (The term cyclotomic coset is used both for the set of exponents, and for
the sum of c raised to each of these exponents. Fortunately, confusion rarely results
from this imprecision.)

The assignment of values in GF(q) to these cyclotomic cosets is less mysterious
than it first appears. First, any sum of complex roots of unity equal to an integer can be
carried over to GF(q). This includes

t-1

Z oJ O,
j---O

(where a is a primitive tth root of unity), for all > 1, and

E = u(t),
(i,t)=l

where/z is the M6bius function.

3. Examples.
1. q=2, n=3, d=q"-l=7. Leta =1.

4) 3 2 2 4Thenf(x)=(x-a)(x-2)(x-a =x +’01x +’0zx+l, where’01=a +a +a
3 O6 5and "0z a + + a (’01 has exponents 001,010, and 100, and "02 has exponents 011,

2 6ll0,101.)Since0=l+a+a +...+c =l+’01+’0,either’01=1,’0=0or’02=l,
"01 0. Both assignments are valid, since there are b(7)/3 2 irreducible polynomials
of degree 3 over GF(2) for primitive 7th roots of unity. Thus

fl(x) x 3 + x + 1,

f2(x x 3 + x + 1.
152. q 2, n 4, d 24 1 15. Let a 1.

8) X4 3 2Then f(X)"-(X--Ol)(X--Ol2)(X--Ogn)(x--og -l-fix +C2x +C3x + 1, where
2 4 8C1-a -}-a q--o -[-a "-’01,

exponents being the cycles of 0001;
6 12 9) 5 10)C2=(a3+a +a +a +(a +a "0a+’0b=l+l=0,

since "0a (exponents are the cycles of 0011) is the sum of the primitive 5th roots of unity,
and "oh (exponents are the cycles of 0101) is the sum of the primitive cube roots of unity;

7 14 13 11C3 --a q"a "}-a "["a ’?’/2,

exponents being the cycles of 0111. Thus

f(x) x 4 + "01X3 q- "02x q 1,

where ’01 "+" "02--"/.t (15)= 1, so that either "01 1, "02 ---0, or "01 0, "02--- 1. Both assign-
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ments are valid and the two polynomials are

fl(X)-- X
4 / X

3 / 1,

f2(x) x 4 + x + 1.
8 43. q=3, n=2, d=8. Leta =l.(Thena =-1).

Thenf(x)=(x a)(x a3) x 2 3 =_(as 7).7IX 1, where 71 a / --72 / a

Also, 71 / 7z =/x(8) 0. Since two polynomials are sought, we may take either 71 1,
72----1, or 71 ---1, 72-- 1. (The choice 71 72--0 would create an odd number of
solutions. Moreover, it is obvious by inspection that x2-1 is reducible.) Thus the two
solutions are

fl(X)=X2-X-1,
f(x x + x 1.
20 104. q=3, n=4, d=20. Leta =l, sothata =-1.

Then

f(X) (X --Ol)(X 3)(X 9)(X _aT)
4 3 2

X 71X / C2X 72X / 1,
3 7 9 11 13 17 19where71=a +a +a +a ,72=a +a +a +a ,and71+72=/.t(20)=0. Also,

12 16) 10 4 8 12 16C2=(o4/o8/o /a +2a =-l-2=0, sincea +a +a +a =/z(5)=-l.
We seek b(20)/4 2 distinct irreducible polynomials, which we obtain from the

assignments 71 1, 72 =-1 and 71 =-1, 72 1. The two resulting polynomials are

4 3
fltX) --’X --X X 1,

4
X

3f(x)=x + -x + l.

16 85. q=3, n=4, d=16. Leta =l, sothata =-1.
Then

f(X)-- (X --Og)(X --O3)(X --O9)(X --O 11)
4 3 2

X --71X + C2X --72X 1,

where

and

Thus,

3 9 11 3 3

5 7 13 15 7 5 7
72=a +a +a +a =a +a-a-a =0,

12) 10 14) 4) 8 2 6)C2 2(or 4 + o + (c

__(Of 2 / a 6)_..

f(x) X4- 7ax2-1,
and the two required polynomials result from the assignments 7a +1 and 7a =-1,
viz.,

fl (X) X
4

X
2 1,

f2(X)=X4+X2--1.
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Actually, this result can be obtained immediately from the solution to Example 3, since,
over GF(3), the polynomials for the primitive 16th roots are obtained from those for
the primitive 8th roots by replacing f(x) with f(x2).

A general rule ([13]) is that if divides d, and the irreducible polynomials {//(x)} for
primitive dth roots of unity over a field F have degree n while the irreducible
polynomials {gj(x)} for primitive (td)th roots of unity over Fhave degree m, then we
obtain the gj’s from the f/’s by the rule gi(x)=.(xt). (Over the field O of rationals,
tu(x)=a(x’) whenever divides d. However, over GF(3), the irreducible poly-
nomials for primitive 8th roots have the same degree as the irreducible polynomials for
primitive 4th roots, so that over GF(q) it is also necessary to check the degrees of the
polynomials involved.) The reader may wish to apply this general rule to the tables in
[14].

6. q=2, n=5, d=31. Leta31=l.

where

Then

4) 8) 16)f(x) (x )(x )(x (x (x
5 4 3 2

X -t" ClX -t" C2x -+- C3x +C4x+I
4

X if" ’l/IX -I’- (’02 -" "g/3)X3 + (’05 "t- T/6)X 2 + ’/’4X + 1,

3 6 12 24 17

9 18 5 10 20
’1"/3=0 -["0 ’[-a -[-a -[-a

27 23 15 30 29

19 7 14 28 25
r/5=a +a +a +a

26 O21 11 22 13
"06 O -{- "[-a -t-a

exponents are the cycles of (00001);

exponents are the cycles of (00011)

exponents are the cycles of (00101)

exponents are the cycles of (01111);

exponents are the cycles of (00111);

exponents are the cycles of (01011).

There are b(31)/5 6 irreducible polynomials over GF(2) for the primitive 31st roots
of unity. We know r/l+r/2+r/3+r/n+r/5+ r/6 =/.t.(31) =-1, and over GF(2), three of
the r/i’s must be assigned the value 1 while the other three are assigned the value 0.
(Each ’/i is the trace of each of its summands. Since the elements of GF(25) are
partitioned by trace into two sets of equal size, the elements a i, 1 <= <= 30, must be also).
The r/i’s have been arranged so that r/i+ contains the cubes of the powers of a contained
in r/i, where the subscripts on r/are treated modulo 6. A valid assignment of values in
GF(2) to the r/i’s will then yield the other valid assignments by cyclic permutation of the
rows, as shown in Table 1.

TABLE 1.

fl

6

"01 "02 "03 "04 "05 "06 polynomial

0 0 0
0 0 0
0 0 0 1

0 0 0
0 0 0

0 0 0

X nt- X
4 nt- X X+I

XS+ XZ+
XS+ X3+X2+X+I
x nt- x4 nt- X nt- X nt-1
X5 X3-[
X5 -[- X4"-b xa- X2-
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The important principle of "superposition of cosets" ([2, p. 56]) states that the shift
register sequence corresponding to f(x), which is also the sequence of coefficients in the
power series expansion of 1If(x), is obtained as the sequence {Tr (ai)}’_-l. That is, the
ith term, ai, of the sequence is the value in GF(q) of the coset r/j to which a belongs.

The assignment of values to the r/’s, as in Table 1, may be obtained from Reuschle’s
Table ([10]), which in turn is based on algebraic methods of Kummer ([9]). One may
also use trial and error, or may work back from shift register sequences by the
superposition of cosets principle.

7. q=2, n =8, d 17. Let a 1.
Then

f(X) (X --OI)(X O2)(X O4)(X O8)(X a-1)(X --O (X O-4)(X --O

8 7 6 4 3 2
X -Jt" flx -Jt" C2x "-[- C3x ’t" Cax -[- C3x ’" C2x -- Clx "-I-1.

(The identity f(x) x ’f(1 /x) corresponds to a left-right symmetry of the coefficients of
-1f(x), and arises from the set of roots of f(x) being closed under the operation a c .)

Let
2 4 8 --1 --2 --4 --8

/a=a+c +a +ce +ce +ce +a +a

and
3 5 6 7 --3 --5 --6 --7

72=ce +ce +c +a +ce +a +a +ce

Then

Ca=r/l; C2=r/2+r/2+r/a+4=r/a; C3=4r/a+3r/2=r/2; and Ca =1,

because [(x) has coefficients which are left-right symmetric, and if C4 0, then (1) 0,
meaning that [(x) would be divisible by x + 1, contradicting irreducibility. The compu-
tation of C3, for example, comes from taking the cyclic patterns of weight 3, assigning
the standard values to these as binary numbers, reducing these modulo 17, and then
noting whether r/x or 72 contains that exponent on c. Thus"

00000111 7 7r/2;

00001011 11 -6 - */2

00010011 19- 2 r/l;

00100011 35 1- r/l;

01000011 67 -1 r/l;

0001010121 4,/1;

0010010137 3,/2.

As a check, there must be () 56 powers of a added in C3, and each of the seven r/’s is a
sum of eight powers of a. We have r/a + */2 =/z(17) =-1, so that over GF(2) the two
valid assignments are ra 1, r/2 0, and 7"/1 --0, 9"/2-- 1. Hence, from the general

f(X) X
8 "[- T]IX7 "[- lX

6
-[- ’2x5 "[- X

4 + T]2x3 -[" lX
2 -[- T/IX q" 1,

we get

fl(x)=xS+x7 --X6"Jr’X4-t-X2-’’X + 1 111010111,

f2(x) x 8 + x 5 q- x 4 --I-- x 3 -- 1 100111001.
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As verification, we have"

fi(x)
f2(x)

f (x )f2(x dP17(X

(x7-1)
(x-l)

16 15 14 13 2x +x +x +x +...+x +x+l

111010111
x 100111001

111010111
111010111

111010111
111010111

111010111

11111111111111111

For further information about cyclotomic polynomials, and how they factor over
finite fields, see 13].

8. Other cases which the reader may wish to try as exercises include"

q=2, n=6, d=21.

q=2, n=ll, d=23.

q=3, n=3, d=13.

q=3, n=3, d=26.

q=3, n=4, d=40.

q=2, n=ll, d=89.

(two polynomials)

(two polynomials)

(four polynomials)

(four polynomials, which can be obtained from the
previous case by x -x)

(four polynomials)

(eight polynomials)
Caution" Reuschle’s Table contains an error in this
case! The correct polynomials are"

11

11

11
X

11
X

11
X

11
X

11
X

11
X

"+- X 7 ff" X6"+" X -" 1

q"X 10 "+-X 5 -t-X 4 + 1-- X 8 "- X 5 -- X 4 -1" X
2 -" X + 1-- X 10 -- X 9 + X

7 -- X 6 -I-" X
3 -" 1

"+- X 8 q" X
7 -+- X 6"+" X 5 "+" X 3 -at" X 24c- X -t- 1

4 3"[- x O’ x 9-[- X 8"[- X 6-[- X 5 -[- X q- X +1-- xlO q’- xS -- X 7 q" X6 q" X
5 "nt- X4-}- X 3 q- X2 q- X q- 1

+x+x9+xs+x7+x6+x+x+x3+x+l
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TOTALLY NONNEGATIVE, M-, AND JACOBI MATRICES*

MORDECHAI LEWIN"t

AbstracL It is shown among other results that a nonsingular M-matrix is a Jacobi matrix if and only if
its inverse is totally nonnegative and it is a normal Jacobi matrix if and only if its inverse is oscillatory.

This is an extension of a previous result of Markham [Proc. Amer. Math. Sot., 161 (1972), pp.
326-330].

1. Introduction. A matrix is totally nonnegative (totally positive) if all its minors
are nonnegative (positive). We shall use the definition of an M-matrix as it appears in
[5]. The matrix A is an M-matrix if it has only nonpositive offdiagonal elements and
A->__ 0. In recent years the investigation of M-matrices has taken a trend towards
what is now commonly known as the inverse M-matrixproblem, the aim of which is to
seek characterizing properties of nonsingular nonnegative matrices whose inverses are
M-matrices. This problem has important applications in operations research as well as
in physics. The interested reader may find a number of references in [1, p. 163]. See
also [4].

Let A be an n n matrix. Let hi, j be the submatrix of A of order n- obtained
by deleting the th row and the jth column.

In [5] Markham established the following result.
THEOREM M. If F is totally nonnegative and nonsingular, then F- is an M-matrix

if and only if det(A i,) 0 for /j=-- 0 (mod2), :/=j.
In this note we wish to investigate more closely the interrelation between totally

nonnegative matrices, M-matrices and Jacobi matrices.
A totally nonnegative matrix is oscillatory, if some power of it is totally positive.

Let Z’ denote the set of nn matrices with nonpositive offdiagonal entries. Let
’1 m(aij ). Define A* =(a.) with a =(- 1)i+Jaij. A matrix A m(aij) is a Jacobi matrix
if ai2 =0 for ijl > 1. A Jacobi matrix of order n is a normal Jacobi matrix, if

ai, i+ , a+ 1,i <0 for 1,2 n- 1. The matrix A is called sign-regular if A* is totally
nonnegative. Let A be a square matrix of order n. let ct, ]3 be subsets of { 1, n}.
Then A[al/3] is defined as the submatrix of A obtained from A by deleting the ith row
whenever 6ct and thejth column wheneverj6 13. See for example [6].

2. The main result. In [3] the following result appears.
TaEOREM GK. Let A be a square matrix. Then A- is totally nonnegative if and

only if A* is totally nonnegative.
We wish to establish the following result.
THEOREM 1. Let A be a matrix. Consider the following three conditions.
(i) A- is totally nonnegative.
(ii) A is an M-matrix.
(iii) A is a Jacobi matrix.

Then any two of the three conditions imply the third.
Proof.
Case 1. A satisfies conditions (i) and (ii). By Theorem GK we have A* totally

nonnegative. Consider a :/=0 for some i, j, li-j] > 1. Then aij <0. We may assume

*Received by the editors November 30, 1979, and in revised form February 13, 1980.
*Department of Mathematics, The Technion, Israel Institute of Technology, Haifa, Israel.
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<j. Then there exists an integer k such that < k <j. If i, j have the same parity, then
by Theorem M we have a =0 and hence aij =0, so we assume and j to be of
different parities. Then k has the parity of either orj. In either case we get aikajk =0.
Then,

det(A*[ {i, k)l(k, j) ])=akkaij (0, since akk

This is a contradiction, so that A is a Jacobi matrix.
Case 2. A satisfies (i) and (iii). This case is part of [5, Theorem 2.1]. We prove it

independently. As in Case we have A* totally nonnegative following from condition
(i). Then A is sign-regular (see also [3, 3, p. 87]). Since A is a Jacobi matrix, this
means that A Z"’ n, and hence A is an M-matrix.

Case 3. Conditions (ii) and (iii) are satisfied. Then all the leading principal minors
of A are positive [2]. Therefore, all the leading principal minors of A* are positive.
Applying [3, e, p. 94] it follows that A* is totally nonnegative, so that A- is totally
nonnegative. This proves Theorem 1.

Theorem 2 is analogous to Theorem with totally nonnegative replaced by
oscillatory and Jacobi matrix replaced by normal Jacobi matrix.

THEOREM 2. Let A be a matrix. Consider the following three conditions.
(i) A- is oscillatory.
(ii) A is an M-matrix.
(iii) A is a normal Jacobi matrix.

Then any two of the three conditions imply the third.

Proof.
Case 1. Conditions (i) and (ii) hold. Then, by [3, 8, p. 88] we have A* oscillatory.

By the characterization of oscillatory matrices in [3, p. 115], A* has a positive
superdiagonal and a positive subdiagonal. By Theorem 1, Case 1, matrix A is a Jacobi
matrix, so that A is a normal Jacobi matrix.

Case 2. A satisfies (i) and (iii). Then by Theorem 1, Case 2, A is an M-matrix.
Case 3. A satisfies (ii) and (iii). Since A is an M-matrix, we have by [2] that all the

leading principal minors of A are positive. This is also true for A*, since A is a Jacobi
matrix. Applying [3, Theorem 11, p. 119] to A* we conclude that A*, and hence A- 1, is
oscillatory. This proves Theorem 2.

The following corollary is inherent in Theorems and 2.
COROLLARY 1. Let A be an M-matrix. Then A- is totally nonnegative if and only if

A is a Jacobi matrix, and A- is oscillatory if and only if A is a normal Jacobi matrix.
Thus Corollary has the implication that in reality if a totally nonnegative

matrix F is an inverse of an M-matrix, then not only det(F,j)=0 for all i+j=--O
(rood2), =/=j, < i, j< n, as indicated by Theorem M, but actually det(F,j)=0 for all
andj for which [i-j I> 1, < i, j < n, so that Markham’s condition in fact "cleans the

table" as it were.

Acknowledgment. The author would like to thank Prof. Plemmons from the
University of Tennessee for his constructive remarks and Dr. Neumann from the
University of Nottingham (England), for having asked the fight question.
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THE ELIMINATION MATRIX: SOME LEMMAS AND
APPLICATIONS*

JAN R. MAGNUS AND H. NEUDECKER*

Abstract. Two transformation matrices are introduced, L and D, which contain zero and unit elements
only. If A is an arbitrary (n, n) matrix, L eliminates from vecA the supradiagonal elements of A, while D
performs the inverse transformation for symmetric A. Many properties of L and D are derived, in particular
in relation to Kronecker products. The usefulness of the two matrices is demonstrated in three areas of
mathematical statistics and matrix algebra: maximum likelihood estimation of the multivariate normal
distribution, the evaluation of Jacobians of transformations with symmetric or lower triangular matrix
arguments, and the solution of matrix equations.

1. Introduction. If a matrix A has a known structure (symmetric, skew symmetric,
diagonal, triangular), some elements of .4 are redundant in the sense that they can be
deduced from this structure. Thus, if A is a symmetric or lower triangular matrix of
order n, its n(n-1) supradiagonal elements are redundant. If we eliminate these
elements from vecA (the column vector stacking the columns of A), this defines a new
vector of order n(n+ 1) which we denote as v(A). The matrix which, for arbitrary A,
transforms vecA into v(A) is the elimination matrix L, first mentioned by Tracy and
Singh (1972) and later by Vetter (1975) and Balestra (1976).

Of equal interest is the inverse transformation from v(A) to vecA. For lower
triangular A, we shall see that L’v(A)fvecA. We further introduce the duplication
matrix D such that, for symmetric A, Dv(A)=vecA. The matrix D (or a matrix
comparable to D) was previously defined by Tracy and Singh (1972), Browne (1974),
Vetter (1975), Balestra (1976), and Nel (1978). D +, the MooreoPenrose inverse of D,
possesses the property, used by Browne (1974) and Nel (1978), D +vecA v(A), for
symmetric A.

The purpose of this paper is to study the matrices L and D. Both matrices consist
of zero and unit elements only. 2 gives the necessary definitions and basic tools. The
next two sections contain the theoretical heart of the paper and establish a number of
results on L and D. 5-7 are devoted to applications: maximum likelihood estima-
tion of the multivariate normal distribution, the evaluation of Jacobians of transfor-
mations with symmetric or lower triangular matrix arguments, and, finally, the
solution of matrix equations. An appendix presents the proofs of the lemmas in 4.

Not all results are new. Thus, Tracy and Singh (1972) established that ]L(A(R)
A)D[= ]AI +1. They obtained two other determinants as well (their examples 5.3 and
5.4), but these are both in error. Browne (1974) proved the important fact that
(D’(A(R)A)D)- =D +(A-(R)A-)D +’ for nonsingular A, while Nel (1978) evaluated
the determinant of D+(A(R)B)D, when ABffiBA, A and B symmetric. Concurrently
with the present paper, Henderson and Searle (1979) wrote an article on the same
topic. Inevitably there is some overlap between the two papers.

2. Notation and preliminary results. All matrices are real; capital letters represent
matrices; lowercase letters denote vectors or scalars. An (m, n) matrix is one having m
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rows and n columns; A’ denotes the__transpose of A, trA its trace, and [AI its
determinant. If A is a square matrix, A denotes the lower triangular matrix derived
from A by setting all supradiagonal elements in A equal to zero; dg(A) is the diagonal
matrix derived from A by setting all supra- and infradiagonal elements in A equal to
zero. If x is an n-vector, and f(x)=(f(x).. "fm(X))’ a differentiable vector function
of x, then the matrix Of/Ox has order (n, m) with typical element (Of/Ox).

The unit vector ei, i= 1,..., n, is the ith column of the identity matrix I,, i.e., it is
an n-vector with one in its th position and zeroes elsewhere. The (n, n) matrix Ej has
one in its 0"th position and zeroes elsewhere, i.e., Ej =eej. We partition the identity

n(n + 1) as follows"matrix of order

I(l/2)n(n+l)-’(ulIH21 UnlU22"’" Un2U33"’" Unn ).

n(n+ 1) with unity in its [(j-1)n+iFormally, u2 is a unit vector of order-- j(j- l)]-th position and zeroes elsewhere (1 <__j<__i<-n).
If A is an (m, n) matrix and A its jth column, then vecA is the ran-column

vector

/t.

vecA

n(n + 1) vector that is obtained fromIf A is square of order n, v(A) denotes the
vecA by eliminating all supradiagonal elements of A. For example, if n---3,

vecA (alia21a31a12a22a32a13a23a33
and

v(A) (a,a2a3a22a32a33 )’.
Finally, the Kronecker product of an (m, n) matrix A (aj) and an (s, t) matrix

B is the (ms, nt) matrix

A(R)B--(aijB ).
This settles the notation. Let us now state some prelimina_ry results that will be

used throughout. If A--(aij) is an (n, n) matrix, then A, A, and dg(A) can be
expressed as

(2.1) A= E aijEij; Y= . ai2Eij; dg(A)= aiiEii
ij ij i-----1

A standard result on vecs is

(2.2) vecABC-- (C’ (R)A )vecB,
if the matrix product ABC exists. For vectors x and y of any order we then have

(2.3) x(R)y=vecyx’ and x(R)y’ =xy’ =y’(R)x.

The basic connection between the vec-function and the trace is

(2.4) (vecA)’vecB trA’B,

where A and B are (m, n) matrices. From (2.2) and (2.4) follows

(2.5) (vecA)’(B (R) C)vecD trA’CDB’,

if the expression on the right-hand side exists.



424 JAN R. MAGNUS AND H. NEUDECKER

We shall frequently use the commutation matrix K defined implicitly as"

DEHNTION 2.1a (implicit definition of K). The (n2, n2) commutation matrix K
performs for every (n, n) matrix A the transformation KvecA =vecA’.

In fact, K is a special case of the (mn, mn) matrix Kmn which maps vecA into
vecA’ for an arbitrary (m, n) matrix A. The matrix K, was introduced by Tracy and
Dwyer (1969). Many of its properties are derived in Magnus and Neudecker (1979),
who also established the following explicit expression for K.

DEFINITION 2.1b (explicit definition of K).

i==lj-----1

Closely related to the commutation matrix is the matrix N.
DEFINITION 2.2a (implicit definition of N). The (n2, n2) matrix N performs for

every (n, n) matrix A the transformation NvecA =vec1/2(A + A’).
Its explicit expression is immediately derived.
DEFICTION 2.2b (explicit definition of N).

N--1/2(I+K).
Note that the implicit definitions of K and N are proper definitions in the sense

that they uniquely determine K and N. The following lemma gives some properties of
K and N.

LEt_A 2.1.
(i) K--K’--K -"
(ii) K(A (R) B) (B(R)A)K, for any (n, n) matrices A and B;
(iii) N N’ N2;
(iv) NK=N KN.

For any (n, n) matrix A we have
(v) N(A (R)A)--- (A (R)A)N=N(A (R)A)N;
(vi) N(I(R)A +A (R)I)=(I(R)A +A (R)I)N=N(I(R)A +A (R)I)N

2N(I(R)A )N-- 2N(A (R)I)N.
Proof. The properties of K follow from Magnus and Neudecker (1979). The

properties of N follow from those of K since N

Let us now give four results on the unit vector u of order n(n + l) and the v(.)
operator.

(2.6) , UijUj I(1/2>n(,+ 1)"
i>=j

If A is an (n, n) matrix, then

(2.7) v(A)=v(Y)= aijuj and v(dg(A))=

(2.8) uij=v(Eij ) and aij=ujv(A ), i>__j;

(2.9) v(A) v(dg(A)), if A is upper triangular.

Finally, we make use of the following standard facts in matrix differentiation.
For every matrix X and Y of appropriate orders,

(2.1O) d(XY) (dX) Y+X(dY),
(2.11) dtrXr= tr(dX)Y+ trXdr.
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For every nonsingular X,

(2.12) dlog X trX ldX,

dX X l(dX )X 1.

3. Basic properties of L and D. Let us now introduce the elimination matrix L. As
in the previous section, where we defined K and N, the elimination matrix will be
defined implicitly and explicitly.

DEFINITION 3.1a (implicit definition of L). The (1/2 n(n+ 1), n2) elimination matrix
L performs for every (n, n) matrix A the transformation LvecA---v(A).

L, thus defined, eliminates from vecA the supradiagonal elements of A. We shall
show that L is.uniquely determined by (3. a). Let A be an arbi.trary (n, n) matrix, and
suppose that L and L both transform vecA into v(A). Then (L-L)vecA =0 for every
A. Hence, L= L. We can derive an explicit expression for L as follows. Recall that ei,

i= 1.-- n, is the th unit vector of order n. Then, using (2.7), (2.4), and (2.3), we find

v(A ) i>jaijuij i>juij( e:Aej) E uijtr( eje;A )

Z uijtr(EiA) Z uij(vec Eij)’vecA Z(uij@ej(e;)vecA.
ij ij i>j"

This leads to the following explicit definition.
DEFINITION 3.1b (explicit definition of L).

L= E uij(vecEij)’= . (uij(R)e(R)e;).
i>=j ij

An example, for n= 3, is

0
0

0 0
0

0

0 0
0 0

0 0 0 0

Most authors on (0,1) matrices are interested only in transformations with
symmetric matrices, and work with LN rather than L. See, e.g., Browne (1974) and Nel
(1978). The justification for this lies in the following lemma.

LEMMA 3.1. For any (n, n) matrix A we have

(i) LNvecA - v(A +A’)

In particular, when A is symmetric,

(ii) LNvecA =v(A).

Proof. Immediate from the implicit definitions of N and L.

Thus, if A is symmetric, L and LN play the same role. In this paper we have
chosen a more general approach, based on LvecA =v(A) for arbitrary A, largely
because this allows us to study transformations with triangular matrices as well. The
following lemma characterizes L as a (0, 1) matrix with i n(n + 1) l’s, one in each row
and not more than one in each column.
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LMMA 3.2.
n(n+ 1)"(i) L has full row-rank

(ii) LL’ I/2)+ O;
(iii) L + L’, where L+ is the Moore-Penrose generalized inverse of L.
Proof. We shall show that LL’--I. The other two results then follow directly.

LL’= X (uijeje;) Z (U’hkekeh)= X (uijukejeke;eh)
ij hk ij hk

ijj ](1/2)n(n+ 1), by (2.6).
ij

Let us now determine three matrices that are useful for certain linear transfoations.
LM 3.3. The matrices L’L, LKL’, and L’LKL’L are diagonala ideotent of

rank n(n+ 1), n, and n respectively. t A be an arbitra (n, n) trix. Then,

(i) L’LvecA vecA;
(ii) L’L= (E@Eii);
(iii) LKL’v(A) v(dg(A));

(iv) LKL’= iii;
iffil

(v) L’LKL’LvecA vec(dg(A));

(vi) L’LKL’L (EiiEii ).
il

Proof. By the explicit definition of L wc have

L’L= (ujejei) (Uhkee)= (ujuhkejeeie)
ij hk ij hk

(ejeeie)= (EjjEii),
ij ij

so that, using (2.2) and (2.1),

L’ w a (
ij ij

vec ( eieAeje ) vec aijEij
ij ij

Further, for arbitra v(A),

aiiii iiiv(A),

by (i), the implicit definitions of K and L, (2.9), (2.7) and (2.8). is proves (i) and
(iv). Silarly, for arbitra vecA,

L’LKL’LvecA L’v(dg(A )) vec(dg(A)) vec (auEu )

=vec (eieAeie)= vec(EiiAEii) ( EiiEii)vecA

by (iii), (i), (2.1) and (2.2). It is easy to see that the tee matrices are diagonal with
only zeroes and ones on the diagonal. Hence they are idempotent. era of each of
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n(n+ 1), n and nthe three matrices equals the number of ones on the diagonal, i.e.,
respectively. [-]

Note that Lemma 3.3(i) implies that L’LvecA =vecA if and only if A is lower
triangular. The matrix LKL’, as shown in the previous lemma, is diagonal with n ones
and n(n- 1) zeroes. Hence, I+ LKL’ is a nonsingular diagonal matrix with n times 2

L(I + K)L’and n(n- l) times on the diagonal. Because LNL’ =
n(n 1) times1/2(LL’ + LKL’) 1/2(I+ LKL’), it is diagonal too with n times and

on the diagonal. The following properties of LNL’ are of interest.
LEMMA 3.4. The matrix LNL’ is diagonal with determinant
(i) LNL’I 2-(1/2)n(n-1).

Its inverse is

(ii) ( LNL’)- 2I- LKL’.
Proof. Since LNL’ is a diagonal matrix, its determinant is the product of its

diagonal elements, i.e., ]LNL’ --2 -(l/2)n(n-D. Property (ii) is easily established using
LNL’ 1(1+ LKL’) and the idempotency of LKL’. [-]

As we have seen, L uniquely transforms vecA into v(A). The inverse transforma-
tion generally does not exist. We can, however, easily transform v(A) into (the vecs
of) a lower triangular matrix or a diagonal matrix, since

L’v(A)=vecA (Definition 3.1a and Lemma 3.3 (i)),
and

L’LKL’v(A)=vecdg(A) (Definition 3.1a and Lemma 3.3(v)).
Combining these two transformations one verifies that

( L’ + KL’- L’LKL’)v(A)=vec(Y+’-dg(A)).

We have thus found a matrix which transforms v(A) into (the vee of) a symmetric
matrix. Let us define this matrix implicitly.

n(n/ 1)) duplication matrixDEFINITION 3.2a (implicit definition of D). The (n2,
D performs for every (n, n) matrix A the transformation Dv(A) vec(A +’ dg(A)).

It is easy to see that D is unique. Hence, D= L’+KL’-L’LKL’ =2NL’-L’LKL’.
Note that in particular, if A is symmetric, DLvecA=Dv(A)=vecA. This is an
important property that we will frequently use. The converse is also true; i.e., any A
satisfying DLvecA vecA is symmetric.

LEMMA 3.5.
(i) LD IOI2)n(n+ );
(ii) OLN-- N;
(iii) D-- 2NL’ L’LKL’ NL’(LNL’)- .
Proof. Let A--A’; then LDv(A)=LvecA=v(A). Hence, LD--I, since the sym-

metry of A does not restrict v(A). Further, for arbitrary A,

DLNvecA=DLvec1/2(A +A’)--Dv(1/2(A +A’))---vec1/2(A +A’)--NvecA,
which proves (ii). It also implies that DLNL’ =NL’, and because of the nonsingularity
of LNL’, D NL’(LNL’)- . [-I

Note that DLN=N is a defining property of D. In fact, it is just a reformulation
of Definition 3.2a. The matrix D can be explicitly expressed in terms of unit vectors of
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order i n(n + 1) and n, i.e., in terms of uij, ei, and ej. From the explicit definition of K
and L, and the expression for L’L (Lemma 3.3 (ii)), one verifies that

and

so that

Z,K--

LKL’L-- E Uu(vecEu)’,

D’ L+LK-LKL’L

E uij(vecEij)’+ E uij(vecEji)’- E Uu(vecEi,)’.
ij ij

Hence, we may define D as follows.
DFINITION 3.2b (explicit definition of D). Let T/j be an (n, n) matrix with in its

0"th and jith position, and zeroes elsewhere. Then

o’= Z
Note that Tj Ej + Ej for i4:j, and that Tu Eu. An example, for n= 3, is

0 0
0 0
0 0

0 0
0 0 0
0 0 0

0 0
0
0 0

Further properties of D are contained in the following two lemmas.
LEMtA 3.6.

(n+ 1);(i) D has full column-rank n
(ii) KD D ND;
(iii) D’O (LNL’)
(iv) D + LN.
Proof. Straightforward from the expression D=NL’(LNL’)- and the properties

DLN N N2 KN, and LD I.

LEMMA 3.7. Let A be an arbitrary (n, n) matrix. Then,
(i) D’vecA =v(A +A’-dg(A));
(ii) DD"vecA =vec(A +A’-dg(A));
(iii) DD’ 2N- L’LKL’L.
Proof. From Lemmas 3.3(iii) and (v), and 3.5(iii), and Definitions 2.1a, 2.2b, 3.1a,

and 3.2a, we have

D’vecA (L +LK-LKL’L)vecA v(A) + v(A’) v(dg(A)),
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and

DD’vecA =Dv(A +A’-dg(A))=vec(A +A’- dg(A))
(I+K)vecA L’LKL’LvecA (2N- L’LKL’L)vecA,

for an arbitrary (n, n) matrix A. Hence, DD’ =2N-L’LKL’L.

The matrices L and D, like the commutation matrix K, are useful in matrix
differentiation. From Definition 2.1a, it follows that vecX/vecX’=K where X is an
(n, n) matrix. The corresponding results for L and D are contained in the following
lemma.

LEMMA 3.8. Let X be an ( n, n) matrix. Then
[ L, for lower triangular X;

(i) vecX/v(X)= D’, for symmetric X;
(ii) Ov(X)/OvecX L’.
Proof. Immediate from the relations vecX= L’v(X) (lower triangular X), vecX=

Dv(X) (symmetric X), and v(X)=LvecX. [-]

Comment. More general results are easily obtained from Lemma 3.8, using the
chain rule. In particular, let Y=F(x) be an (n, n) matrix whose elements are
differentiable functions of a vector x. Then

( Ov(Y)/Ox)L if Y is lower triangular for all x;
(i) vecY/19x

()v(r)/Ox)D’ if Y is symmetric for all x;
(ii) Ov(Y)/Ox--(OvecY/Ox)L’ for all Y.

4. Applications to Kronecker products. From 2 we know that the commutation
matrix K possesses two major properties: a transformation property, KvecA =vecA’
(its definition), and a Kronecker property, K(A (R)B)K=B(R)A. The elimination matrix
L and the duplication matrix D have likewise been defined by their transformation
properties, viz. LvecA=v(A) and, for symmetric A, Dv(A)=vecA. Let us now
investigate their Kronecker properties. The applications in 5-7 are based almost
entirely on the lemmas in the present section. Proofs are postponed to the Appendix.

We shall first show that, if A and B have a certain structure (diagonal, triangular),
Kronecker forms of the type L(A (R)B)L’ and L(A (R)B)D often possess the same
structure.

LEMM 4.1. Let A and M be diagonal n-matrices with diagonal elements i and #g
( 1... n). Letfurther P and Q be lower triangular n-matrices with diagonal elements Pii
and qii, i= 1... n. Then,

(i) L(A(R)M)L’ =L(A(R)M)D is diagonal with elements tikj(i__.J") and determi-
nant IIitii-i+ 1.

(ii) L(P(R) Q)L’ is lower triangular with diagonal elements qgiPjj(i >-) and determi-
n--i+l.nant IIiqiiPii

(iii) L(P(R)Q)D is lower triangular and L(P’(R)Q’)D is upper triangular. Both
matrices have diagonal elements qiipjj(i>=j") and determinant _i _n-i+

HiqiiPii
Next we establish some properties of L(P’(R) Q)L’, with lower triangular P and Q.

Notice that (i) is the Kronecker counterpart of the property L’LvecP--vecP for lower
triangular P.

LEMM 4.2. For lower triangular n-matrices P (Pij) and Q= (qij),
(i) L’L(P’(R)Q)L’=(P’(R)Q)L’;
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(ii)
1,2,- ,

[L(p,(R))L,I,L[(p,),(R)Q,IL, s ,-2,- 1, ifP -1 and Q-1 exist,

s--g, if lower triangular pl/2 and Ol/ exist;

(iii) L(P’(R)Q)L’=D’(P’(R)Q)L’ has eigenvalues qiiPjj (i>=J) and determinant
_i _n--i+

i1iiPii
In Lemma 4.1 we have proved that, for lower triangular P and Q, the matrices

L(P(R)Q)L’, L(P(R)Q)D, L(P’(R)Q’)L’, and L(P’(R)Q’)D are triangular as well, with
diagonal elements qiiP22, i>=J Although the matrices L(P’(R)Q)L’, L(P(R)Q’)L’, and
L(P(R)Q’)D are not triangular, they also possess eigenvalues q,P22, i>=J; see Lemma
4.2. The matrix L(P’(R)Q)D is more complicated and seems not to have such nice
properties. In particular, its eigenvalues are in general different from q,P22, i>-

The results of Lemmas 4.1 and 4.2 enable us to find the following determinants
which are of importance in the evaluation of Jacobians of transformations with lower
triangular matrix arguments (see 6).

LEMMA 4.3. For lower triangular n-matrices P, Q, R, and S with diagonal elements
p,, q,, r,, and sii, i= 1.-. n, we have

(i) IL(PQ’(R)R’S)L’ -’IXi(riisii)i(Piiqii)n-i+ 1;
(ii) [L(P’(R)Q+ R’(R)S)L’I-IIi> j(qiiPjj +siiGj);
(iii) IL(P(R)Q’R)DI-- IIi(-qiirii) tlii
(iv) IL(PQ’(R)R’)DI ---IIiriii(Piiqii)n-i+ 1.

If P, Q, R, S are nonsingular,
(v) [L(PQ’(R)R’S)L’]-=L(Q’-(R)S-)L’L(P-(R)R’-)L’.

Finally,
H

(vi) IL [(P’)n-h(R)Ph-]L’IfHnIPIH-IIi>jlXi2 H=2,3,---,
h=l

where
(pi , -e 7)

IJ’ij (Pii --Pjj)
ifpii 51=PJJ’

H-InPii ifPii-’Pjj.
A variety of corollaries flow from Lemma 4.3 by putting one or more of the

LEMMA 4.4. For any (n, n) matrix A,
(i) DL(A (R)A)D--’(A (R)A)D;

(ii) [L(AA)D]" =L(AS(R)AS)D, ifA exists,

ifA1/2 exists;

matrices P, Q, R, and S equal to I. Also, the four matrices L(PQ’(R)Q’P)L’,
L(PQ’(R)P’Q)L’, L(PQ(R)Q’P)D, and L(PQ’(R)P’Q’)D have the same determinant,
namely el/ Ol/.

In Lemmas 4.1-4.3 we have studied triangular matrices only. The crucial
properties for lower triangular matrices are L’LvecP=vecP and its Kronecker coun-
terpart L’L(P’(R)Q)L’--(P’(R)Q)L’, which enable us to discover further properties of
the important matrix L(P’(R)Q)L’. Let us now turn away from triangular matrices.
An equally important property is DLvecA =vecA for symmetric A. Its Kronecker
counterpart is DL(A (R)A)D=(A (R)A)D for arbitrary A, as we shall see shortly, and it
enables us to study the matrix L(A (R)A)D.
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(iii) The eigenvalues of L(A(R)A)D are XiXj, i>-, when A has eigenvalues
Xi(i=l...n);

(iv) Iz(a(R)a)Ol--Ial"+;
(v)

IfA is nonsingular,
(vi) [D’(A (R)A)D] LN(A-@A- )NL’.

IfAB BA, and A and B have eigenvalues h and lzi, i-- 1... n,
(vii) [D’(A (R)B)D[-- IA[ IBIIIi>j(AiIj -I-ji).
Note that in (vii) we do not require A and B to be symmetric, in contrast to Nel

(1978). In applying (vii) one must be careful to note that knowledge of h and/1 is not
sufficient in order to compute IIi>j(,dj +hjlxi). In general, it is necessary to carry
out the simultaneous reduction of A and B to diagonal form, because the ordering of
the eigenvalues is important. A case that can be solved without this reduction is

ID’(A’(R)Aq)DI=IAI "+"q (Xf-q +x-q),
i>j

where p and q are integers (positive, negative or zero).
Similar results hold for the Kronecker sum I(R)A +A (R)1:
LEMMA 4.5. For any (n, n) matrix A with eigenvalues h ( 1... n),
(i) DL(I(R)A +A(R)I)D=(I(R)A +A(R)I)D--2N(I(R)A)D--2N(A(R)I)D;
(ii) the eigenvalues of L(I(R)A +A (R)I)D are h +Xj, i>-_j’;
(iii) IL(I(R)A +A(R)I)DI--2"IAIII,>j(A, +hi);
(iv) [L(I(R)A +A(R)I)D] - =L(I(R)A +A(R)I)-D;

for nonsingular I(R)A +A (R)I. The results (i) and (iii) can be generalized to
H H

(v) DL (A-n(R)Aa-)D (A-n(R)Aa-)D, H--2,3,...,
hffil h--l

and
H

(vi) IL (An-n(R)Ah-1)Dl=H’lAl"-’IIi>jlxij,
h--1

where

H=2,3,-..,

ftij (i--kj)
if ’i

H--IHX if k

The next lemma concerns the detenant of the sum or the difference of the
matrices L(A@A)D and L(BB)D.

LEM 4.6. Let A and B be (n, n) mtrices. Then the detemint

IL(A@AXB@B)DI
equals

(i) A + i](1 AiAj), ifA is nonsingular and hi, 1... n, are the eigenvalues
of BA -"

(ii) ij(auajj biibjj), if Af(aij) and Bf(bij) are lower trianlar;
(iii) Hij(PiPj Oi’), ifABfBA, where Pi and #i (iffi 1... n) denote the eigenvaV

ues of A and B.
Again, owledge of p and is, in general, not sufficient to compute (iii). See

the remarks under Lena 4.4(vi).
A final lemma will prove useful in 5 and 6.
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LEMMA 4.7. Let P be a lower triangular and nonsingular (n, n) matrix, and a a
scalar. Let

(i) IL[e’(R)e+avecP(vece’)’]L’l=( +an)lel"+;
(ii) L[ P’ (R) e + avece(vecP’)’]L’)- L[P’- 1(R) e flvecP l(vecP’- I)’]L’,

where a/(1 + an). Let further A be a symmetric and nonsingular (n, n) matrix. Then,
(iii) L[A (R)A + avecA(vecA)’]D ( + an)l A["+ 1;
(iv) [L[A (R)A + avecA(vecA)’]D -1 L[A l(R)A -1 _/3vecA -l(vecA-I)’]D.
This ends the theoretical part of this paper.

5. Maximum likelihood estimation of the multivariate normal distribution. We
shall now show the usefulness of L and D in a number of applications. Consider a
sample of size m from the n-dimensional normal distribution of y with mean/t and
positive definite ovariance matrix O. The maximum likelihood (ML) estimators of/t
and are well known, but the derivation of these estimators is often incorrect. The
problem is to take properly into account the symmetry conditions on O, as has
recently been stressed by Richard (1975) and Balestra (1976). More precisely, we
should not differentiate the likelihood function with respect to veer, but with respect
to v(O). First we derive the ML estimators of /t and (Lemma 5.1), then the
information matrix and asymptotic covariance matrix (Lemma 5.2), and finally we
investigate properties of the random vector v(F), an unbiased estimator of v(O).

LEMMA 5.1. Consider a sample of size m from the n-dimensional normal distribution

of y with mean /t and positive definite coariance matrix 0. The maximum fikelihood
estimators of/t and are

(it= - . y,=-Y;

),.

Proof. The loglikelihood function for the sample is

mlogAm(y;/t, v(O}) " nmlog2r- - trO IZ,

where m

Z---- E (Yi--/t)(Yi--/t)’"
i---1

Using well-known properties of matrix differentials (see (2.10)-(2.13)) and traces
(2.4)-(2.5), the first differential of A can be written as

mdlogl OdA - - tr(d - )Z- i tr dZ

mtrtI) ldtI) + IZ- trO l(dO)O

+ "trO- (Yi-/t)(d/t)’ + (d/t) E (Yi

ltr(ddp)O-l(Z-mO)0-1 + (d/t)’O-I (Yi --/t)
2

!(vecdO)’(o-lo-1)vec(Z-mO)+(d/t)’O-I E (Yi2

-(dv(O))’D’(O-lo-l)vec(Z-m*)+(d/t)’O-l E (Yi
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Necessary for a maximum is that dA=0 for all d/v0 and dv()vO. This gives-1Z (yi --/) =0

and

D’( -1@ -1)vec(Z_me) =0.

The first condition implies f=(1/m)Y,y -----. The second can be written as

D’( -’(R) 1)Dv(Z-me) 0,

that is

v(Z-mt) O,

since D’(-(R) )D is nonsingular. Thus,

=(1/m)=(1/m) (Yi --)(Yi--)" 1-]

The precision and efficiency of an estimator is usually stated in terms of the
information matrix defined by

02Am O’xI E
)0)0’

Its inverse is a lower bound for the covariance matrix of any unbiased estimator of
and v(). This is the Cram6r-Rao inequality (see, e.g., Rao (1973)). The asymptotic
information matrix is defined as

xI,= lim xI,,,,,
m-- oo m

and its inverse is the asymptotic covariance matrix of the ML estimator.
LEMMA 5.2. The information matrix for t and v() is the (-2 n(n+3), in1

(n + 3)) matrix

-1 o ).--1( --1-1D’( )D

the asymptotic covariance matrix of the ML estimators f and v() is

0 2LN((R))NL’

and the generalized asymptotic variance of v() is

I2LN( (R)dp)NL, 2,,11.+ 1o

Proof. Recall that the first differential of A is

--1 --1dA=(d)’-l (Yi --P’)+ (dv())’D’( )vec(Z-m

1Some authors refer to XIml (rather than xI,-1) as the asymptotic covariance matrix of d.
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The second differential is therefore

d2A=(d)’(de-l) E (Y,-)-m(d)’*-’(d)

’D’( -1))vec(Z+ -(dv(dp)) d(dp-’(R)dp --map)- -1, )v c(aZ-maO).

Taking expectations, and observing that Ey =, EZ=m, and EdZ=O, we find

( m )(dv()),D,(-l 1)vecdEaA=m(att)’ ’( at, ) + -[m ,(=m(d)’-(dt)+l,T1(dv(,))’D - (R)- )Ddv(O).

The information matrix then follows. From Lemma 4.4 we know that

and

Hence,

and

D’(*- l)(I)-1)DI 2(l/2)n(n- 1)11-("+ 1).

o )2LN(r(R)O)NL’

12LN(p(R)dp)NL’ 2(’/2),,("+ l) D’(O -1() (I) --’)DI -’

=2(1/2)n(n+l)2-(1/2)n(n-1)ld#l"+l=2nldPl"+l. i--]

The ML estimator v()) is not an unbiased estimator of v(). Let us therefore define

F
m

y" (Yi--Y)(Yi __y)t_. mo"
m--1

The following properties of v(F) can then be established.

LEMMA 5.3. The random vector v(F) is an unbiased estimator of v(dp),
(i) Ev(F) v().

Its covariance matrix is

(ii) cov(v(F))=2(LN(dp(R)dp)NL’)/(m- 1),
and v(F) is therefore a consistent estimator of v(dp). In particular,

(iii) var(fy)=(qi +qiiqyj)/(m- 1), i>__j"= 1... n.
Finally, the efficiency of v(F) is

(iv) eff(t(F))’--[(m- 1)/m](1/2)n(n+ l).
Proof. We know that

mS= X (yi-Y)(yi-Y)’= Xyiy;-myg’

is centrally Wishart distributed W(m-1, ), see Rao (1973, p. 537). Therefore, as
derived in Magnus and Neudecker (1979, Corollary 4.2),

me,=(m- )O,
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and

cov(mvec) (m 1)( I+K)(@).
Thus, v(F)--(m/(m-1))v()is an unbiased estimator of v() and its covariance
matrix is

cov(v(F)) 1cov(mv()) 1cov( Lvecm)
(m-l))- (m-l)

(m- 1)2
.(m--1)L(I+K)(dp(R)d)L’

2 2
.LN((R))L’= .LN((R))NL’.

(m-l) (m--l)
We see that cov(v(F))0 as mo. This shows that v(F) is a consistent estimator of
v(), given (i). The diagonal elements of LN(tb(R))NL’ can be derived as follows.
Let i>_; then, by (2.8), Lemma 3.3 (i), and (2.5),

u;jLN(dp@d# )NL’uij ( v( Eij ))’LN(d@d# )NL’v( Eij)

(vec( Eij + Eji ))t(f(f)vec( Eij +Eft)

Thus,

2

var(f/j)
(m- 1) qij + qiiqjj).

Finally, the efficiency of v(F) is [see Anderson (1958, p. 57)]

-EO2A
-1

Ov(O)0v(O)’
eef(v(F))=

Icov(v(F))l

2
)NL’(m 1)

-I

-D’(dp dp )D

----I (m--l)
-1

Lemmas 5.1 and 5.2 can be straightforwardly generalized by allowing the Yi to
have different expectations/i. Clearly, it is not possible to estimate all/ (i= 1.-- m)

In(n+ 1) parameters, from nm observations. If, however, weand v(), i.e., nm+ -assume that the/ depend upon a fixed number of parameters (01- 0r)=0’, and/ is
the ML estimator of 0, then the ML estimator of is

(1)= Y. (Y,-li())(Yi-ti())"
and the asymptotic covariance matrix of v() is again

as.cov(v()) 2LN(dp(R)O)NL’.
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6. Jacobians. Let the matrix Y be a one-to-one function of a matrix X. The
matrix J J(Y, X) (vecY/0 vecX)’ is called the Jacobian matrix and its determi-
nant the Jacobian of the transformation of X to Y.

Because the ordering of the variables is arbitrary, the value of the Jacobian can
vary in sign, but since only the absolute value matters, this should not worry us. Note
that our. definition of a Jacobian differs from some textbooks’, where J(Y, X) is
defined as I vecY/vecX 1.

Consider for example the linear transformation

Y=AX,
where X and Y are (m, n) matrices, and A is a nonsingular (m, m) matrix. Taking
differentials and vecs we have

dY=AdX,
and

so that

dvecY=(I(R)A)dvecX,

IJ(Y,X)I=
)vecY

OvecX =II(R)AI--IAI"

The evaluation of Jacobians of transformations involving symmetric or lower
triangular matrix arguments is not straightforward, since in this case X contains only
n(n + 1) "essential" variables. To account for this, a variety of methods have been

used, notably differential techniques (Deemer and Olkin (1951) and Olkin (1953)),
induction (Jack (1966)), and functional equations induced on the relevant spaces
(Olkin and Sampson (1972)). Our approach finds its root in Tracy and Singh (1972)
who used modified matrix differentiation results to obtain Jacobians in a simple
fashion.

n(n + 1) variables Yij and the i n(n + 1)Consider the relation between the i
variables xij given by

Y=AXA’,
where X (and hence Y) is symmetric. Taking differentials and vecs, we have

dvecY=(A(R)A)dvecX,
and, using the definitions of L and D,

dv(Y) L(A (R)A )Ddv(X),
so that by Lemma 4.4 (iv)

IJ(Y,X)I=
Ov(X)

--IL(A(R)A)DI--IAI "+’.

See also Deemer and Olkin (1951), Anderson (1958, pp. 156 and 162), Jack (1968),
Tracy and Singh (1972), and Olkin and Sampson (1972). Anderson unnecessarily
assumes that X has a Wishart distribution or that A is triangular. A more general
transformation is

Y=AXA’ +_. BXB’,
where X again is symmetric. This yields

dv(Y)=L(A<A +_.BB)Ddv(X),
and the Jacobian matrix is

J( Y, X)=L(A &A ++_ B(R)B)D,
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of which we know the determinant from Lemma 4.6. See Tracy and Singh (1972) for
an earlier (wrong) solution in the case AB--BA.

We now turn to nonlinear transformations involving symmetric matrix arguments.
Consider

Y=XAX,
where A and X are symmetric. Differentiating,

dr= (dX) X+X(dX)
so that

and

dvecY= (XA (R)I+ I(R)XA)dvecX,

dr(Y) L(XA (R)I+ I(R)XA)Ddv(X).
Thus, from Lemma 4.5 (iii), the Jacobian is

IJ(Y, X)I=[L(XA(R)I+I(R)XA)DI=2"]AI]X ]-[ (h +hj),
i>j

where hi, i= 1..-n, are the eigenvalues of XA. This problem has been studied by
Tracy and Singh (1972), but not solved satisfactorily. See also Olkin and Sampson
(1972).

The inverse transformation

y=x -,
for symmetric X gives

av( r) L(X ’(R)X ’)Dav(X)
Disregarding the minus sign, the Jacobian is (Lemma 4.4 (iv))

IJ(Y, X)l-- lt(x-l(R)x-1)Ol--lXl --(n+l).

See Jack (1968), Zellner (1971, pp. 226 and 395), and Olkin and Sampson (1972).
Zellner assumes (unnecessarily) that X is positive definite.

More interesting is the transformation, again for X--X’,

y--ISiS -l.
Totally differentiating yields

dV--(dlXl)X -I +lgldX -I

---IX I(trX -dX)X -ISiS -(dX)X -’,
so that

and

dvecY= IX I[ (vecX ’)(vecX 1)’dvecX- (X -l(R)x 1)dvecX]
-IXl[ X-Ix-I-(vecX-1)(vecX-1)’]dvecX,

dv( Y) -[XIL[ x l(R)x -’ (vecX )(vecX ) ] Dd)(X).
The Jaeobian is

Jar(y, X)l--IX <l/)"<"+ ’)ILl X -l(x -1 (vecX l)(vlcX -l)t] D
--Ixl(l/)"("+’)(1-n)lXl-<"+’) (by Lemma 4.7 (iii))

--(n-- 1)lxl ’/-"+’"-=>.
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See Deemer and Olkin (1951) for a solution along completely different lines, assuming
X to be positive definite rather than only symmetric.

As a final example of the usefulness of L and D in evaluating Jacobians of
transformations with symmetric matrix arguments, consider

Y=X’, p=2,3,’".

Upon differentiating we find

ar=(ax)x -’ +x(ax)x +...
P

E x -’(dX)X
h.

which gives
P

dvecY= ] (X’-h(R)Xh-)dvecX,
h---I

and
P

dv(Y)=L , (X’-h(R)Xh-’)Ddv(X),
h--I

so that the Jacobian matrix is
P

J(Y, X)=L E (X’-n@Xn-I)o,
h--1

the determinant of which is given in Lemma 4.5 (vi).
n(n+ 1) variablesSummarizing, we have considered six relations between the i

of a symmetric matrix Y and the i n(n + 1) variables of a symmetric matrix X. The
results are given in Table 6.1.

Let us now investigate transformations involving lower triangular matrix argu-
ments. Consider the relation between lower triangular Y and lower triangular X given
by

Y= PXQ,
where P and Q are also lower triangular. We find

dvecY=(Q’(R)P)dvecX,
and thus

dv(Y ) L(Q’ (R)P)L’dv(X ).
Hence, the Jacobian is

IJ(Y, X)I=IL(Q’(R)P)L’I= ]-IPiiqii -i+l (Lemma 4.3 (i)).

This problem has been solved by Olkin and Sampson (1972), Deemer and Olkin
(1951) for Q=I, and Olkin (1953) for P=I.

More general is the transformation

Y=PXQ+RXS,
with lower triangular P, Q, R, S. This leads to

dv(Y)=L(Q’(R)P+ S’(R)R)L’dv(X),
and the Jacobian follows from Lemma 4.3 (ii).
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TAnLE 6.1
Jacobians of transformations with symmetric matrix arguments

Transformation Jacobian J(Y, X)l Conditions, particularities

(i)

(ti)

(iii)

(iv)

(v)

(vi)

Y=AXA’

Y AXA’ +BXB’

Y=XAX

YffiX’ (pffi2,3,...)

IAln+ lij.(l +-hihy)

(aiiajj +-biibjj)
i>_j

(, +_ooj)*

i>j

Ixl--(n+ 1)

(n- 1)lxl0/2"+ .-2)

plXl- II

*See the remarks under Lemmas 4.4 (vi) and 4.6 (iii).

IAI=0
Ihl=/=O, hi (iffi l. n)

eigenvalues of BA

A =(aij and B,f(bij

lower triangular

ABffiBA, Ii and 0 (iffi 1... n)

eigenvalues of A and B

AffiA’,Ai(i=l...n

eigenvalues of XA

Ixl*0
Ixl0

(xf-x;)/(x,-xs), if
ij

p)k-1 if )k

where A (i 1..- n) are
eigenvalues of X

Next, we consider the relation between symmetric Y and lower triangular X given
by

Y= B’XA +A’X’B.
Using the same technique, we have

dvecY= (A’ (R)B’)dvecX+ ( B’ (R)A’)dvecX’
A’ (R)B’ + (B’ (R)A’)K] dvecX (Definition 2.1a),

and

dv(Y)=L[ A’(R)B’ +(B’(R)A’)K]L’dv(X).
The Jacobian is

by the definition of N and Lemmas 2.1 (ii), 3.5 (ii), and 3.4 (i). The determinant
[L(A (R)B)D] can of course be evaluated for each specific A and B. In particular, if
A P and B Q’R, or A PQ’ and B R’, where P, Q, and R are lower triangular, we
can express this determinant in terms of the diagonal elements of P, Q, and R, by
Lemma 4.3 (iii)-(iv). Special cases have been solved by Deemer and Olkin (1951)
(A =P’ and B=I) and by Olkin (1953) (A---1 and B=P).
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Turning now to nonlinear transformations involving lower triangular matrix
arguments, we first consider the relation

Y XPX,
with lower triangular P. We find

at= (ax )ex+xe(ax)
and

dv( r) L(X’P’ (R)I+ I(R)XP)L’dv(X ).
By Lemma 4.3 (ii) the Jacobian is

IJ(Y, X)I=IL(X’P’(R)I+I(R)XP)L’I I (px +PiiXii)

--=lel IXl II (PiiXii-["pjjxjj).
>j

The next transformation is between a symmetric Y and lower triangular X,
Y=X’AX+XBX’,

where A---A’ and B---B’. Proceeding as before we find

dvecY=(I(R)X’A +.XB(R)I)dvecX+ (X’A (R)I+ I(R)XB)dvecX’

=2N(I(R)X’A +XB(R)I)dvecX,
so that

dv( Y) 2LN(I(R)X’A +XBI)L’dv(X).
The Jacobian is thus

[J(Y, X)] 2(1/2).(.+ 1) IL(I(R)AX+ BX’(R)I)NL’[

2"IL ( I(R)AX+ BX’ (R)I)D[.
Special cases are the transformations Y=XX’ (A =0, B=I) and Y=X’X (A =I, B=0),
for which the Jacobians can be expressed in terms of the diagonal elements of X by
Lemma 4.3 (iii)-(iv). See Deemer and Olkin (1951), Olkin (1953), Jack (1966), Olkin
and Sampson (1972), and Zellner (1971, p. 392).

The Jacobians of the transformations Y=X 1, y= [X[X 1, and Y--X’, p
2, 3,.-., for lower triangular X and Y can be determined in a fashion very similar to
their symmetric counterparts. For Y=X- we find

dv(Y ) I( x’ l(R)x 1)’dv(X).
For Y--Ixl x-,

dv(Y) -ISlt[ X’- (R)X vecX (vecX’- )’ Z’dv(S ),
and for Y X’,

P

av(r)= X [(X’)-hx-l]Z:av(X).
h-’-I

The Jacobians of the three transformations are easily recognized as determinants
which have been studied in 4 (Lemmas 4.3 (i), 4.7 (i) and 4.3 (vi)).

The above discussion about Jacobians of transformations with lower triangular
matrix arguments is summarized in Table 6.2.
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TABLE 6.2
Jacobians of transformations with lower triangular matrix arguments

Transformation Jacobian J(Y, X)l Conditions, particularities

(i)

(ii)

(iii)
(iiia)
(iiib)

Y--PXQ

(v)
(va)
(vb)

Y-- PXQ+RXS

Y-- B’XA +A’X’B
Y-- R’QXP+ P’X’Q’R
Y=RXPQ’ + QP’X’R’

II 9i _n-i+
ir ii ttii

II (p.qjj +r.sn)
2"IL(A@B)DI

2 n--i+IIi( qiirii) Pii
2nIIi(Piiqii)n-i+ lr/i

P, Q lower triangular

P, Q, R, $ lower triangular

P, Q, R lower triangular
P, Q, R lower triangular

(iv) YfXPX 2"IPI IxlII,>tp,,x,, +pjjxn) P lower tdangular

A--A’,B--B’2"IL(I(R)AX+ BX’ (R)I)DI
2nIIix.-i+l

2 IIixii

Y=X’AX+XBX’
Y=XX’
Y--X’X

(vi) Y--X-’ Ixl-(n-t-l) IXlO
(vii) Y--IXIX -1 (n- 1)lxl <’/zx"+ l"--) IXlO

p" Xlp- II i>flxiy(viii) YfXP(p---2,3, I.tij if Xii =i/=Xjj

pxfi-- if Xti
where xii (iffi 1-’- n) are the
diagonal elements of X

7. Matrix equations. A third area where we can demonstrate the usefulness of the
matrices L and D is the solution of matrix equations. Suppose we are given a matrix
equation Y= F(X), where we know a priori that X is symmetric (or triangular). We
wish to solve X in terms of Y. If Y is a one-to-one function of X, as in the preceding
section on Jacobians, then X--F-I(Y) is the unique solution. If, however, Y is not in
one-to-one correspondence with X, we have to restrict the solution space of X to
symmetric (or triangular) matrices. In other words, we should not solve for X, but for
v(X). An example may clarify this approach.

LEMMA 7.1. The vector equation

QvecX-vecA,

where Q and A are (n2, n2) and (n, n) matrices respectively, and X is known to be
symmetric, has a solution for X if and only if

QD(QD)+vecA vecA,

in which case the general solution is

vecX= D(QD)+vecA + D[ I- (QD) +QD ]vecP,
where vecP is an arbitrary n(n+ 1)-vector and (QD) + denotes the Moore-Penrose
inverse of QD.

Proof. Since X is symmetric, we have vecX---Dv(X) and thus QDv(X)=vecA.
The consistency and solution of this system follow from Penrose (1955, p. 409). Thus,
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if a solution exists, it has the form

v(X ) (QD) +vecA + I- (QD) + QD vece,
for arbitrary P. Premultiplication with D gives the desired result. [5]

This problem has also been studied by Vetter (1975, p. 187), but not solved
satisfactorily. If Q is nonsingular, a solution exists if and only if (I-K)Q-lvecA =0.
The (unique) solution then takes the form vecX=Q-lvecA. If LQD is nonsingular,
we may write the solution, if it exists, as vecX=D(LQD)-LvecA. This is Vetter’s
solution. He assumes nonsingularity of Q and of LQD (neither of which implies the
other!) and also tacitly the existence of a solution for vecX. Note that if we know X to
be lower triangular rather than symmetric, the solution is obtained by replacing D
with L’.

As a final example, let us consider a problem which arises in dynamic economet-
ric models. It concerns the equilibrium covariance matrix. We want to find the matrix
of partial derivatives of S with respect to A for S =ASA’ + V, with symmetric V and S,
when all eigenvalues of A are less than in absolute value. This problem was first
studied by Conlisk (1969) who derived OvecS/aij for each element of A separately.
Neudecker (1969) gave a compact expression for OvecS/OvecA. His derivation is
wrong, but the result is correct.

LEMMA 7.2. Consider the matrix equation

S=ASA’ + V,
when S and V are symmetric (n, n) matrices, and all eigenvalues ofA are smaller than
in absolute value. The partial derivatives of S with respect to A can be expressed as

( )vecS ),3 vecA 2N( I(R)I-A (R)A )-1(AS(R) I).

The partial derivatives of the distinct elements of S with respect to A can be expressed as

)vecA 2LN(I(R)I-A @A)-I(AS@I).

Proof. We take differentials and vecs"

dS=A(dS)A’ +(dA)SA’ +AS(dA)’ +dV,

dvecS=(A (R)A)dvecS+(AS(R)I)dvecA +(I(R)AS)dvecA’ +dvecV.

Using Lemma 2.1 (ii), and the definitions of K and N, we have

( (R)I-A (R)A)dvecS= [ AS(R)+ ( I(R)AS)K] dvecA + dvecV

AS(R)I+K(AS(R)I)]dvecA + dvecV

2N(AS(R)l)dvecA + dvecV.

Since the eigenvalues of A are smaller than 1 in absolute value, the matrix I(R)I-A (R)A
is nonsingular, and

(I(R)I-A@A)-’= " (AhAh).
h,=O
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Thus, by Lemma 2.1 (v),

dvecS-- 2 (An(R)Ah )N( aS(R)I)dvecA + ( I(R)I-A (R)A)- ldvec
h

=2N", (Ah(R)Ah)(AS(R)I)dvecA +(I(R)I-A(R)A)-ldvecV
h

--2N(I(R)I-A(R)A)-I(AS(R)I)dvecA +(I@I-A@A)-ldvecV,
and dv(S)=LdvecS=2LN(I(R)I-A(R)A)-l(AS(R)I)dvecA

+ L(I(R)I-A (R)A)- ldvecV.

Appendix: proofs of lemmas in 4.
Proof of Lemma 4.1. Let A and B be (n, n) matrices. We shall write L(A (R)B)L’

in terms of unit vectors, using the explicit definition of L and (2.5).

i>=j s

Y E (vecEij)’(A(B)(vecEst)uiju’s,
i>--__js>t

X tF(EjinEsta’)uijust-- Z ajtbisuijust
i>=j s>-_

If A A, B M, and ij denotes the Kronecker delta symbol (8i =0 if :/:j, 8u 1),
we find

L(A(M)gt= i>:j s> jtisXjl’LiUijU;t Z XjLiUijUj’
----t i>----j

which is a diagonal matrix (since UijUj is diagonal) with elements Li)kj, i>=j", and
determinant IIi>_ fiziX IIi]Liik-i+ 1.

If A =P and B=Q, we have L(P(R)Q)L’ =Yi>j s>=t Pjtqisuijust. Because P and
Q are lower triangular, we may restrict the summation to i>=j >-t, i>=s>=t. This implies
that the matrix uiju’t is lower triangular. Hence, L(P(R)Q)L’ is lower triangular. By
putting s=i and t=j, we find that its diagonal elements are qiiPjj, i>-, and its
determinant is IIi>_j qiiPjj II _i _n-i+

iqiil)ii

Similarly, we can express L(A (R)B)D in terms of unit vectors, using the explicit
definitions of L and D. One verifies that

(A (R))D (A(R))’ + r(A, ),
where

I’(A, B) E E ajsbituiju’s,.
i>--_j s>t

Consider the matrix F(A, B). It is easy to see that F(A, M)=0. If A=P and
B Q, we may restrict the summation to >___d" >s > t, so that F(P, Q) is strictly lower
triangular. If A P’ and B Q’, we may restrict the summation to s > t >-i >=j’, so that
F(P’, Q’) is strictly upper triangular. The properties of L(A(R)M)D, L(P(R)Q)D, and
L(P’(R)Q’)D then follow from the properties of L(A(R)M)L’ and L(P(R)Q)L’. W]
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Proof of Lemma 4.2. Let P and Q be lower triangular and v(X) arbitrary.
Remembering that L’v(X)--vecX (Lemma 3.3 (i)), we have

Thus,

L’L(P’ (R) Q )L’v(X) L’L( P’ (R) Q)vecX L’LvecQXP

vecQXP= ( P’(R) Q)vecX ( P’ (R)Q )L’v(X ).

L’L(P’(R)Q)L’=(P’(R)Q)L’.
Property (ii) follows from repeated application of (i). Further, D’(P’(R)Q)L’=
D’L’L(P’(R)Q)L’ =L(P’(R)Q)L’, since LD---I (Lemma 3.5(i)). Let us now determine
the eigenvalues of L(P’(R)Q)L’. We will need the following result.

Result A.1. Let P be a lower triangular matrix with distinct diagonal elements.
Then there exists a lower triangular matrix S with ones on the diagonal such that
s-eS=dg(e).

In(n--1) equations in n(n-1) unknowns (sij, i>j) givenProof. Consider the i
by PS=Sdg(P). This gives Pij+,ih_j+lPihShj=Sijpjj, i>j, from which we can
sequentially solve for sj+ 1, (J= 1..- n- 1), s+2, (j= 1.-- n-2),-.-, sn. I-’1

Assume that both P and Q have distinct diagonal elements. Then, by Result A.1,
there exist lower triangular matrices S and T with ones on the diagonal such that

S PS dg(P) and T QT=dg(Q).

By repeated application of (i) we see that

L(S’@ T-’)L’L( P’(R)Q)L’L(S’- ’(R)T)L’
L( S’P’S’-1(R) T -IQT)L’=L(dg(P) (R)dg(Q))L’,

and

L(S’(R)T-’)L’L(S’-’(R)T)L’=LL’=I.
From Lemma 4.1 we know that L(dg(P)(R)dg(Q))L’ is a diagonal matrix with
elements q,pj, i>=j". These, therefore, are the eigenvalues of L(P’(R)Q)L’.

If not all diagonal elements of P and Q are distinct, we can obtain (iii) by way of
a limiting relation, starting with P+ A and Q+ A, where A is a diagonal matrix with 8h
as its h th diagonal element. If is sufficiently small, P+ A and Q+ A will each have
distinct diagonal elements. Hence the eigenvalues of L[(P+A)’(R)(Q+A)]L’ are
(q, +Si)(p +), i>_. Letting 6---0, we find the desired result. I"]

Proof of Lemma 4.3. Using Lemma 4.2, we have

L(eo’ (R)R’S)L’I L( P(R)R’)(Q’ (R)S)L’I L( P(R)R’)L’L(Q’(R)S)L’I

1[ siiqjj-IL(P’(R)R)L’IIL(Q’(R)S)L’I=(i>.jriiPjJ)(i>
j

)
H (riisii)i(Piiqii)n-i+ l.

To prove (ii) we first assume that P and Q are nonsingular. Then, by Lemma 4.2 and
LL I,

L(P’(R) + R’(R)S)L’=L(I(R)I+ R’P’-’(R)SQ-’)(P’(R)Q)L’

=L(1(R)1+ R’P’-’(R)SQ-’)L’L( P’(R)Q)L’
(1+ L( R’P’-’(R)SQ -’)L’)( L(P’ (R)Q )L’).
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Hence,

iIj ( Sii J ) ijIL(P’(R)Q+R’(R)S)L’I-- -t’-- (qiiPjj)--’-- H (qiiPjj -’Siij)"
qii Pjj ij

If P or Q is singular, we obtain (ii) starting with P+1 or Q+I, where is small and
P+ 8I or Q+1 is nonsingular. To prove (iii) and (iv) we use Lemmas 4.1 (iii) and 4.2
(i) and (iii)"
L(P(R)Q’R)DI= L(P(R)Q’)(I(R)R)D I-- L(P(R)Q’)L’L(I(R)R)DI

_i _n--i+=IL(P’(R)Q)L’IIL(I@R)DI=HiqiiIii Hirii=Hi(qiirii)Pi-’+1

L( PQ’ (R)R’)DI= [L( P(R)R’)( Q’ (R)I )D I= L( P(R)R’)L’L(Q’@I)D
n--i+ i+1 n--i+l--IL(P’(R)R)L’IIL(Q (l)Dl--IIiriiPii lIIiqi- --IIirii(Piiqii)

For nonsingular P, Q, R, S, we again use Lemma 4.2 (i) to prove (v) as follows.

L( PQ’ (R)R’S)L’L( Q’- l(s -1)L’L(P -’(R)R’-

L(P(R)R’)L’L(P -’(R)R’-’)L’-- LL’-- I.

Let us now show (vi). Assume that P has distinct diagonal elements. Then there exists
a lower triangular matrix S with ones on the diagonal such that S-IpS=A, with
A dg(P) to simplify notation (see Result A. 1). Thus,

L [(P’)H-h(ph-1]L’-- EL[St-IAH-hs’SAh-Is-I]L
h--1 h

Because

we have

L(S’-I@S)L’L(A-h@Ah-’)L’L(S’@S-’)L
h

=(L(S’-’@S)L’) Z (L(AH-h@An-I)L’)(L(S’@S-’)L’)
h

( L(S’-l(S)L’) -1= L( S’(S -I)L’,

L E [(P’)H-h@ph-1] L’
hl

E L(AH-h(Ah-1)L’
h

Now, from Lemma 4.1 we know that L(AH-h(Ah-1)L is a diagonal matrix with
diagonal elements xh/--lhjH--h, t’>’--__,/. Hence Y.ff.. IL(An-h@Ah-)L is diagonal with
elements v xh- IxH-h i’, and deternant

L(g-h@h-l)L’ 2 .-lxj-h (-1) N -lxj
h i4" hffil hffil

Hwhere ftij -X= lphii ,_n-hpjj (since k --Pii)-.(piHi --pjj )/(Pii--Pjj)" The case where not
all diagonal elements of P are distinct, say p, =pjj, can be considered to be a limiting
case of the situation where pjj approaches Pii. Taking the limit as Pjj--Pii, we find
Iij HPiHi -1 [-]
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Proof of Lemma 4.4. Using the properties DLN=N, D=ND, and (A(R)A)N=
N(A(R)A)--see Lemmas 3.5 (ii), 3.6 (ii), and 2.1 (v)--we have

DL(A (R)A)D DL(A @A)ND DLN(A@A)D N(A@A)D
=(A(R)A)ND=(A(R)A)D.

This proves (i). By repeated application of (i) we find (ii). To prove (iii) we note that
n(n- 1)L(A(R)A)D and DL(A(R)A) have the same set of eigenvalues apart from i

zeroes which belong to the latter matrix. Let A have eigenvalues h and eigenvectors
xi; then

DL(A (R)A)(x(R)xj + x.i(R)xi)= DL(Axi(R)Axj +Axj(R)Ax)
=XiXDL(x,(R)xj + xj(R)xi)-- X,XjDLvec(xjx
=X,:vec(x:x +xxj) (by the implicit definition of D)

=XX(x(R)x + x(R)x).
Hence, DL(A(R)A) has eigenvalues XX:, i>__j", plus g n(n-1) zeroes, and L(A(R)A)D
has eigenvalues X),:, i>-_j". Its determinant is

L (A @A )D i>.j x ’j I[)k]+lIAIn+l’i
Let us now prove (v) and (vi). Since D--NL’(LNL’) -1 (Lemma 3.5 (iii)), and

again using Lemmas 3.6 (ii) and 2.1 (v), we can write

D’(A A)D=(LNL’)-ILN(A (R)A)D=(LNL’)-IL( (R)A)D.
The properties of D’(A (R)A)D thus follow from the properties of LNL’ (Lemma 3.4)
and L(A (R)A)D (this lemma).

To prove (vii) we first assume that A has distinct eigenvalues. In that case there
exists a matrix T such that T- 1AT= A, where A is a diagonal matrix containing the
eigenvalues of A. From AB=BA we have TAT- 1B--BTAT-, or AM--MA, where
M-- T- IBT. Since all X’s are distinct by assumption, M is diagonal. Hence it contains
the eigenvalues of B. We may then write

D’(A (R)B)D D’(rat 1() rMr -1)D D’( r(R) r)(h(R)M)(r -1) T -I)D

D’(T(T)L’D’(AIM)DE(T -11T -I)D,
by (i). Hence, using (iv), the explicit definition of N, and Lemmas 3.5 (iii), 2.1 (ii), 3.4
(i), and 3.6 (ii),

D’(aB)DI= D’(h(R)M)DI=I(LNL’)-ILN(h(R)M)DI

1L(I+K)(A(R)M)D[---ILNL’I -115
--ILNL’I- 12-(1/2)n(n+ l) lg(AIM)D "t- L(M(A

=2-"IL(A(R)M+M(R)A)D I.

From Lemma 4.1 we know that L(A(R)M)D and L(M(R)A)D are diagonal matrices
with elements/zij and i/zj, i_._j’. The determinant of their sum is
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and thus

D’(A (R)B)DI=2 l-[ (t,X.i +kilJ,j)=2-nH (2Xil3,i) 1-[ (I,l,ikj
i>--_j i>j

=IAIIBI II (tLi)kj’t’)kitgj)
i>j

If A has multiple eigenvalues, say i =j, we consider this as a limiting case of
the situation where ,j approaches ,i- Taking the limit as Xj--->Xi the result follows. I--!

Proof of Lemma 4.5. From Lemma 2.1 (vi) and the properties ND---D and
DLN= N, follows (i). The proof of (ii) is similar to that of Lemma 4.4 (iii). Property
(iii) follows from (ii). Property (iv) follows from (i) since LD=I. We find (v) by
repeated application of DL(I(R)A+A(R)I)D=(I(R)A+A(R)I)D, and Lemma 4.4 (i).
Let us prove (vi). We proceed as in the proof of Lemma 4.3 (vi). If A has distinct
eigenvalues (or if A =A’), there exists a nonsingular matrix S such that S-AS=A,
where A is a diagonal matrix containing the eigenvalues of A. Thus,

H

L E (An-h(R)Ah-’)D=L., (SAn-hS-’(R)SAh-’S-’)D
h=l h

=L(S(R)S) _, (An-h(R)Ah-’)(S-’(R)S-’)D
h

=L(S(R)S)DL., (AH-h(R)Ah-’)DL(S-’(R)S-’)D,
h

by Lemmas 4.4 (i) and 4.5 (v). Since L(S-(R)S-)D=(L(S(R)S)D) -, and using
Lemma.4.4 (ii), we have

H

L
h,=l =ILE (AH-h(R)Ah-’)D

h

Lemma 4.1 tells us that L(AH-hAh-1)D is a diagonal matrix with elements
khi 1)tH h >-. Hence,.j

L (AH-h@Ah-1)D iI>J H-h H-1

hl hl

with

E -*=
h--1 (X --Xj)

If A has multiple eigenvalues, i--kj say, we again consider this as a limiting case of
the situation where , approaches ,i. Taking the limit as Aj--->)i we find #j =HX,n.-1.

Proof of Lemma 4.6. We shall only consider the determinant of the sum of
L(A (R)A)D and L(B(R)B)D. The determinant of their difference is proved in the same
way. By Lemma 4.4 (i),

L(A@A +B@B)D=(I+L(BA-I@BA-1)D)L(A@A)D.
If BA- has eigenvalues ,, i= 1... n, L(BA-(R)BA-)D has eigenvalues XiXj, i>_,
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by Lemma 4.4 (iii), so that, using Lemma 4.4 (iv),

IL(A(R)A +n(R)n)Ol---- (1 +kikj)lhl "+1.

To prove (ii) we first assume that A is nonsingular. Then,

IL(A(R)A +BB)DI=IAI+1 + (a,ayj +b,byy),
>j" a,aj

since A and B are now lower triangular. If A is singular, we obtain (ii) starting with
A + 8I, where d is small and A +I is nonsingular.

Consider now case (iii) where AB=BA. This result can be proved applying the
same method as in the proof of Lemma 4.4 (vii).

Proof of Lemma 4.7. We shall only show (iii) and (iv), as (i) and (ii) can be proved
similarly. Since A is symmetric and nonsingular by assumption, we have from the
implicit definition of D and Lemma 4.4, DLvecA=vecA, DL(A(R)A)D=(A(R)A)D,
IL(A(R)A)DI--IAI "+l, and (L(A(A)D) -l --L(A-I@A-)D. Thus,

L(A (R)A + avecA(vecA)’)D I+ aLvecA(vecA)’nL(A -l(A -l)n L(A (R)A)D

I+ aLvecA(vecA)’(A-’(A-’)D] L(A (R)A)D

[ I+ a( LvecA)( D’vecA ’)’] L(A (R)A)D.

Since for any two vectors x and y of the same order,

[I+xy’l= +y’x and (I+xy’)-l=I
+y’x

we find

I1+ a(LvecA)( D’vecA 1)’ + a(vecA )’DLvecA

+a(vecA- )’vecA + atrA-IA + an,

and

I+ a( LvecA)(D’vecA )’] -’ I-
+an LvecA(D’vecA )’.

Hence,

[L(A@A +avecA(vecA)’)Dl=(1 +an)IL(A(R)A)DI=(1 + an)lAI "+1,

and

L(A (R)A +avecA(vecA)’)D] -
a=L(A-(R)A-1)D I-
+an

LvecA(vecA )’D

=L[A_(R)A_ a

+an (A (R)A )DLvecA(vecA -)’] D
=L[A_I(R)A_ a

+an (vecA )(vecA 1),] D.
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DECOMPOSING A PERMUTATION INTO TWO LARGE CYCLES: AN
ENUMERATION*

EDWARD A. BERTRAM* At,a3 VICTOR K. WE1t

Abs/ract. Let c,%), denote the number of ways a permutation can be expressed as the product of an
/-cycle and an m-cycle, all in the symmetric group on n symbols. In 1972, the first author gave a necessary
and sufficient condition on such that ct,n > 0 for every even permutation . In 1978, G. Boccara gave a
necessary and sufficient condition on l, m, and such that c.%), >0. More recently, D. W. Walkup
developed a recursion for (n) In this paper, we show how to recursively calculate the values of c-n, n, n, n--i,

,,(n+ 1)Theorem states that (n) =2.(n-2)! for every odd . Theorem 2 exhibits "n+Ln-i,o as a linear
combination (with easily obtained integral coefficients) of a specified set of c(n) Applications include an, nwi,

method to evaluate, by inverting an integral triangular matrix, all values in c) - has exactly k disjoint
cycles}, for arbitrary k <=n.

1. Introduction. Let C, denote the conjugacy class containing the permutation
in the symmetric group S on the symbols { 1,2,..., n}. If Cp and C are two classes in
S,,, CpCo is the collection of all permutations (counting repetitions) which are the
product (composition) a//of permutations a Cp and ]3 Co. In the group algebra of

Sn over the complex numbers, K, will denote the sum of permutations in C.
Multiplying in the center of the group algebra, we know that KpK =’g" ,’<") K,
where each e() is a nonnegative integer, the number of decompositions of each

-po’r

permutation in C into a product a/ o permutations c Cp and/ Co.
For integers l, m" < l, m < n, let ") denote the number of ways of expressing

$. as a product po of an/-cycle p and an m-cycle o, where p, 8.. In [1] the first
author proved that c(’) >0, for each even permutation /A if and only ifl, 1, r/

-3.n| <l< (here x denotes the greatest integer <x). Similar necessary and[ j= =n
sufficient conditions were also given on l, in order that c,"t)_l,,o >0 for each odd
permutation 0Sn. However, very recently a recursion for c,, was developed by
D. W. Walkup 10].

Extending the above results, G. Boccara [2] has recently given necessary and
sufficient conditions on s, d, in order that z admit a decomposition into a product of
two (possibly nondisjoint) cycles, the sum and difference of whose lengths are s and d,
respectively. When p and o are both reflections in S (i.e., involutions: p2 =02=
identity), G. Moran [7] first gave necessary and sufficient conditions on z in order that

(n)
Co<) >0, and in [8] obtained generating functions for such c,o.

In this paper we show how to recursively determine the value of ,’t+ 1) for"n+ 1, n--i,
each i" 0<i<n and each oS,,+1 from certain earlier values c) Using directn, n--i, "r"

combinatorial reasoning in 2 (in contrast to the use of character theory in 3), we
prove in Theorem that cn) =2[(n-2)!], independent of the odd permutation--n, 1,

" S. Our main result is Theorem 2, where we show that for each o S/ 1, 0-<_ < n
1, (i+ 1)c<"+0/1, n-i, is a linear combination of certain previously obtained c()_,_,,
where the permutations - belong to specified conjugacy classes in the group S (or any
subgroup of permutations in S+1 which fix a symbol k) and where the coefficients
are easily obtained integers.
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As a first application of Theorem 2, when i=0, we find (in Corollaries 2.1 and
2.2) the number c(n) of decompositions of z (in An, the subgroup of even permuta---n n,

tions) into the product of two n-cycles, for a variety of classes C. For example,
c(n) =2[(n-1)!]/(n-l+ 1) whenever z belongs to a class in Sn represented by any
partition of the form [k m, k-1, t] with k and m even. We also show, by examples,
how one may proceed to recursively develop expressions for c( when - belongs to
any class represented by a partition of the form [k,2m, lt].

Next, let p(k, n) denote the number of (unordered) partitions of n into exactly k
parts. Then there are p(k,n) classes C, (in Sn) of permutations with exactly k
disjoint cycles (including, possibly, 1-cycles). Note that when kiln (rood 2), then z is
an odd permutation and c( =0. When k=--n (mod 2) we exhibit p(k, n) linearly
independent equations with integer coefficients, in the p(k, n) variables c(n for the

C just described. The computation of these c,), is shown to require only the
inverting of an integral triangular matrix.

As further implications of Theorem 2 we derive, in Corollary 2.3, explicit
e() and c() and show that Cn,) i,

> 2, dependsformulas for C(nn,)n_2, o,-n,n--3, o, n,n--4, o, o,

only on (n and) the number of j-cycles, for <= j-<i-1, in the disjoint cycle
decomposition of o in Sn.

On the other hand, the integers c() can in principle be computed from the
character tables of S, and in 3 we illustrate how this method yields special cases of
some of our earlier results. We show how classical recurrence relations give expres-
sions for the necessary character values, and how we are led to a variety of sums
involving binomial coefficients. Our point here is to contrast the lack of unity in these
computational methods with the scope and simplicity of the methods and results of
2.

2. Combinatorial derivation of c,,-’),._, . For n > 3, there are clearly
(n-1)[-n.(n-2)! (odd) permutations in Sn, counting repetitions, which are a product
aft of an n-cycle a, and (n- 1)-cycle/3, a,/3 S. If every odd permutation in S has at
least 2[(n-2)[] decompositions into such a product then, since (n[/2).2[(n-2)[]=(n
-1)[n(n-2)[, every odd permutation has exactly 2[(n-2)[] decompositions.

THEOREM 1. For n>= 3, every odd permutation in S has at least, and therefore
exactly, 2(n-2)[ decompositions into a product aft of an n-cycle a and an (n-1)-cycle
B,,s,.

Proof. We need only prove the result for a fixed representative of each class of
odd permutations in S. For n=3 the transposition (12)(3)=(132)(13)=(123)(23)
(composing will always be done from fight to left) has 2(n-2)!--2 such decomposi-
tions. Now suppose n > 4, and let o be an odd permutation in Sn; we proceed by
induction. Since o is not the identity permutation we may assume that o(1)--2. Now
put o’=(t 2 1)o, where t {3,4,..., n}; then o’(1)= and o’ is an odd permutation on
the set {2,3,..., n}. By our induction hypothesis o’ has 2(n- 3)! decompositions of the
form o’=,, (1)=(1)= l, is an (n-1)-cycle and is an (n-2)-cycle. Suppose
(t)=t. Then o=(12t)’/=(2t)[(lt)’/(lt)](lt)8. Also, (lt)8 is an (n-1)-cycle and
(lt)(lt) is an (n- 1)-cycle which fixes (only) t; hence (2t)[(lt)’/(lt)] is an n-cycle. On
the other hand, suppose 8(t)=t. Then d(2)ea2, and o=(12t)’d=(12)[(2t)’/(2t)l(2t)&
Here (2t)8 is an (n-1)-cycle, and (2t),(2t) is an (n-1)-cycle which fixes (only) 1;
hence (12)[(2t),(2t)] is an n-cycle. Thus, for each t{3,4, n}, we have found
2(n-3)! decompositions of o into the product of an n-cycle and an (n- 1)-cycle. We
will have found (n-2).2.(n-3)! decompositions of o, once it is shown that they are
all different. Suppose, for example, that o=(1 2 S)’)tl --el(1 s)1, and o=(1 2
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t)’22 ----’e2(1 t)82, where the ei are n-cycles, the i are (n-2)-cycles which fix the
symbols and 2, and st,s, t (3,4,..., n}. Then the (n- 1)-cycles (1 s) and (1 t)/2
are different, since they each map to a different symbol. On the other hand, suppose
o=(1 2 s)qq61 =e(1 s)6l, and o=(1 2 t)-/22 =e2(2 t)/2, where the e are n-cycles, is
an (n-2)-cycle which fixes the symbols and 2, 82 is an (n- 2)-cycle which fixes the
symbols and t, and s=/:t are in (3,4 n). Then (1 s)8 and (2 t)82 are different
(n-1)-cycles since the latter fixes 1, while the former maps to s. The cases where
s=t are handled in a similar manner, and there are (n-2).2-(n-3)!=2(n-2)!
decompositions of o. 1--1

Let Sn+(k) denote the subgroup of all those permutations in Sn+ which fix the
symbol k,l<=k<=n+ 1. Then S,,+l(k) is isomorphic to S for each k, a simple but
important fact. Thus the number of representations of zS+(k) as a product po of
an/-cycle p and m-cycle o, p and o in S+l(k), is equal to ,-(n) where -’ is any"l, m, "permutation in S with the same disjoint cycle structure as ’.

Now suppose that D is a class in S+l(k),k arbitrary: l<=k<=n+ 1. We call the
class C c_S+ an ascendant class of D (and D a descendant of C) if oC and zD
have the same number of cycles of each length, except that exactly one cycle of o has
length one more than a corresponding cycle of z. Thus, whenever n X +X 2 +"" +r
is a partition of n into r parts, >=X2 >= r 1, and the class D is represented by
[X,X2, Xr], then the ascendant classes of D are the classes in S+ given by:
[X + 1, X2 ?r], [X, 2 + 1, ?a,..., ?], [X, X2, Xa + 1, X4,’", Xr], etc. Of course, if
there are duplications among some of the i for D, then there will be fewer than r
ascendant classes of D. For example, if D (in any S(k)) is represented by the
partition [5, 3, 2, 2, 1], then D has only 4 ascendant classes: [6, 3, 2, 2, 1], [5, 4, 2, 2, 1],
[5, 3, 3, 2, 1], [5, 3, 2, 2, 2] in S14, and D is a descendant class of each of these. Note
also that [6, 3, 2, 2] (in any S14(k)) is not a descendant class of [6, 3, 2, 2, 1].

Alternatively, we may represent CC_Sn+ by the partition [12...] and DC_S+
(k) by the partition [1 2...]. Then C is an ascendant class of D, and D a
descendant class of C, if and only if, for exactly one value of r, n’ -n --1 and

+1nr_ ---nr_
We define the ascendancy factor: a(D, C) from DC_S+(k) to C in Sn+ by:

0, if C is not an ascendant class of D,

a(D,C)= s-n, ifC=[...,s -,(s+l),++,...]isanascendant
class of D [..., s, (s+ 1)+ ].

Correspondingly, we define the descendancy factor: d(C, D) from C to D by:

0
d(C, D)= r’nr,

if D is not a descendant class of C,
if D (r-1)n’-! + 1, rn’-l,... ]is a descendant

class of C= (r-1)n’-’ r,,... ].
Example. If D C_Sl4(k) is represented by [5, 3, 2, 2, 1] and CC_S4 is represented

by [5, 3, 3, 2, 1], then a(D, C)=2-2--4 and d(C, D)=3-2=6.
LEMMA 1. For each pair of classes, CCS+l and DCS+(k),ICId(C,D)=

(n/ )lDla(D, c), where IcI denotes the cardinality of C.
Proof. Let C=[1 2n... i,...] and D=[1nl 2...]. If D is not a descendant class

of C, then both sides =0. If D is a descendant class of C, then n’ =ni except for
exactly one value of r, where n’r=nr- 1 and n’r_l=nr_ l+ 1. But
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(n+ 1)!/(IIin’IIn,!) and IDl=n!/(IIi IIn;!) (see, e.g., [6, page 40]). Hence Icl/Iz)l---
[(n+ 1)(r- 1)(nr_ + 1)]/(r’nr). But a(D, C)=(r- 1)(nr_ + 1) and d(C, D)=r.nr,

from the definitions of a(D, C) and d(C, D), so the proof is complete. I--]

In the following preparation for the proof of Theorem 2, fix n >_- 2, i: 0 <= <= n- 1,
and k: l<=k<=n+ 1.

DEIINITIONS. If the permutation ’=(xlx2... xn+ I)(YlY2... Y-i), with both cycles
in S+1, then the ordered pair ((xlx2...x+l), (YlY2...Y-i)) is called an Sn+
decomposition of ,. If #=(ala2...a)(blb2...b_i), with both cycles in S+l(k), then
(ttS+l(k) and) the ordered pair ((ala2...an),(blb2...b_i)) is called a (k)-
decomposition of/x. Such S+ 1-decompositions of , and (k)-decompositions of/x are
said to be coupled if (as permutations)"

(1) (ala2...an)--’--(Xl...Xj_lXj+l...Xn+l), for some j, and
(2) (blb2... b_i)=(yly2... Y-i).
Thus, if these decompositions are coupled, (xyx+l),=/x and the class C is a

descendant class of C.
Suppose o is any permutation in Sn+ 1, and C the conjugacy class of o. We let

(o) denote the set of all S+l-decompositions of o. Clearly,
Cl,_i, o, and (o)fq (o’)=, if ovo are both in C. Let (C)" t_J o,c(O’); we

(+ 1) is theC(n+l) (as defined in the introduction, .+l,. ,othus have I(C)I IcI
number of S+l-decompositions of o). Fix k: <k<n+ 1, and let (R)k(C) denote the
set of all descendant classes D of C, Dc_S+l(k). For zD, let k(’) denote the set of
all (k)-decompositions of z. Set 2k(D)" rOwlOCk(Z) and k" td6-2k(D), the latter
union over all descendant classes D(R)k(C). If z4=z’ are any two permutations in D,

c(n) If D@k(’l’)("k(’r’)=, and I()I=IA’)I=() Thus I@(D)I=IDI_.,. i,’r"--n, n--i, "r"

:/:D’ are any two descendant classes in k(C), then k(D)f"16-k(D’)=, SO that
I@g[=,Dl@k(D)l=Y.D%(c)lDI c()-n,-i, , where z is any permutation in D. Finally, let
(C)" ----’’-,k-l’n+16"P’-’k" Since 6j[")k= j:/:k, and I 1=1  1, we have I(C)l=(n/

Olcn. n_i,, z any permutation in D.)11, for each k, so I(c)l (n/
THEOREM 2. For each i: 0 <- <_ n 1, and o S/ l, we have

d(C, D)c(n) (i + ,"("+ 1)
n,n--i,’r l’n+l,n--i,o

D C_Sn

where C is the class (C_S.+ 1) of o and -D is arbitrary.
Remark 1. Since d(C, D)= 0 when D is not a descendant class of C, the left-hand

side is a summation over descendant classes of C. Also, since Sn+ l(k) S. for every
k" <=k<n+ 1, we may replace EDc_s. by Ez,(c), or Y’o%(c), or ...Y’o%/,(c).

Remark 2. Note that .+l,._g,o >0 if and only if sgn(o)=(-1)+1. Otherwise,
both sides are zero and equality holds.

Proof of the theorem. Recall that (C) is the set of all S,,+l-decompositions (into
an (n+ 1)-cycle and an (n-i)-cycle) of all permutations in the class C of o; thus
I (C)l--ICl c (C) is the set union, over all k" l<k<n+= 1, of all (k)-
decompositions of all permutations in all descendant classes of C which belong to

S,+l(k )’, and I(C)l--(n+ 1)YDe%(c)[DI c(’)-,,,n--i, "r" We will use our coupling relation
between (C) and ::J’(C) to prove the theorem.

First, we claim that each decomposition in (C) is coupled with exactly i+

decompositions in 6-J’(C). For ((X1...Xn+l),(yl...Yn_i))(C) is coupled to
((xl xj_ lx+1. x,,+ 1), (Yl .bYe-i)) ,,(C) C_ 6-2(C) if and only if x1 q {Yl, Yn-i},
i.e., if and only if x2 is one of t.... + members of ( 1,2, n + } (Yl,Y2, Y,,-i).
Secondly, if D is a descendant class of C, DC_S,,+I(k), then each (k)-decomposition
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of each permutation/zD is coupled with exactly a(D, C)-decompositions in (C):
for, suppose ((a...an),(b...bn_i)) is a (k)-decomposition of . Then k
(a, an }, (k aj)/z (a... aj_ k a... a, )(b ... b i), and the latter pair are the only
type of S+l-decompositions in (C) which may be coupled to the given (k)-
decomposition. Furthermore, the disjoint cycle structure of (k a)# differs from that
of # precisely by the addition of the symbol k to that cycle of/z which contains a.
Since C is an ascendant class of D, there are exactly a(D,C) choices of a
{ 1,2, k- 1, k + 1 n + } such that (k aj)# C. Hence there are exactly a(D, C)
decompositions in (C) coupled with each (k)-decomposition of each #D. We now
form a bipartite graph, joining by an edge a decomposition qL(C) with a decom-
positionp(C) if and only if these decompositions are coupled, and then count the
total number of edges. This is: pe(c)l{edges incident to p}l=Yqea(c)l(edges
incident to q}[. But we’ve seen above that the right hand sum =(i+ 1)I(C)I=(i+
1).lCl.,"("+l),..+,,._,,o. Also, the left-hand sum =(n+ 1) YDe5c)IDt’c,,)._,,’a( D, C).
From Lemma 1, the latter sum =YDe%c)ICI.d(C,D).c,,,_g,,. The proof of the
theorem is complete.

An immediate corollary of Theorems and 2 is
COrOLLArY 2.1. Let C be any class of odd permutations in S,+. Then

YDd(Co, D)e") =2[(n-1)!] where the summation is over all classes D, in S,
Example. Let C be the class in S14 represented by the partition [5, 3, 3, 2, 1] of

n+ 14. Then Co has three descendant classes, in S13, given by C,, =[4, 3, 3, 2, 1],
C,2=[5, 3, 2, 2, 1] and C,3=[5, 3, 3, 1, 1]. Since d(O, rl)=5.1, d(o, z2)=3.2, and
d(o,-r3)--2.1, we obtain the equation 5’’(13) + t:..(13) -I-2 "(13) =2"(12!).’13,13, ’l

ut" 13, 13, 2 t’13,13, ’3
In the following, (x)j denotes x(x- 1)...(x-j+ 1), for j>= 1.
LEMMA 2. Let C C_S be represented by the partition [...3n3 2n In,], and let

C,, c Sn/j be represented by [... 3n3 22 n’ +J]. Then c(+j) (n +j
(n) O<=i<_n 1.

n+j,n+j--i,’r’

1)jCn, n--i, "r

Proof. It suffices to prove the lemma for j= 1; the other cases follow easily by
repeated applications of the case j-- 1.

Without loss of generality, assume ’S+ (on the symbols { 1,2 n, n + })
and ,S (on the symbols {1,2, n)) satisfy z’(k)=-(k) for each k: <__k<=n, and
’(n+ 1)=n+ There are e() ways to decompose " as a product of an n-cycle-n, n--i,

and an (n-i)-cycle in S. For each of these decompositions we will generate n-i
different decompositions of z’ as a product of an (n + 1)-cycle and an (n + 1-/)-cycle
in Sn+ . Consider an arbitrary decomposition z=(x.., xn)(y... Y,,-i) in Sn. For each
Yk, < k< n- i, we obtain

-’= (Xl... x,,)(n+ yk)(n+ Yk)(Y’" Y,,-i)

[(X1... Xn)(n+ Yk)](Yl"" Y-I n+ ly...Yn_i),

a decomposition of -’ in Sn+ 1, where the bracket contains an (n+ 1)-cycle, since

Yk (Xl Xn} { 1,2,..., n}.
It is easily verified that distinct decompositions of zS, generate, in this way,

distinct decompositions of -’ Sn+,, and we have obtained (n-i)c",)_,, decomposi-
tions of v’. On the other hand, every decomposition of " has been obtained. For, if
"r’=(Xl...Xn+l)(Yl...Yn_i+l) where, say, Xn+l---n+l, then q’=’t---(Xl...Xn)[(X
Xn+l)(Yl...Yn_i+l)]. Since z’ fixes n+l, the bracket must contain an (n-i)-cycle
which fixes xn+ .

We are now in a position to obtain expressions for en) for a variety of zA
--/, n, "r

We continue to write "C =[a partition of n]", in place of "C is represented by...".
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COROLLARY 2.2.
(a) If C =[k k- 1, lt]CAn k > 2, 0 and m O, then c() =2[(n- 1)v]/(n-/

+1).
) If C =[k,2, lt]A (so k is even), then cn,, =2k[(n- 1)]/[(k+ 1)(k+2)].
(c) If C =[3,2m, lt]cA, l O, then c =(n- 1)(2m+3)/[2(m+ 1)(m+3)].
(d) If C=[2m]A (so nO mod 4) then c,, =(n- 1)/(m+l). =(n-

1)!/(n/2+l).
Proofs.
(a) Let C =[km+ 1, lt]. en C S+ and C has oy C as a descendant class.

Since d(C C)=k(m+ 1)=n-l+ Corolla 2.1 yields (n-l+ 1)c =2[(n- 1)]
(b) Let C =[k+ 1,2, lt]S+l en C has only the two descendant classes: C

and C =[k+ 1,1t+l]. Also, d(Co, C)=k+l and d(Co, C)=2. From (a), with m=0,
and l replaced by l+ 1, we have c =2(n- 1)!/(n-l). Applying Corolla 2.1, we
have d(Co, C).c +d(Co, C).c =2[(n-1)l]. Substituting, and using n-l=k+
2, we find the stated expression fo,.

(c) If l2, let Co=[3,2m+,lt-]. Then CoS+ and C has oy the o
descendant classes: C and C =[2m+2, lt-]. Also d(Co, C)=2(m+ 1), and d(Co, C)
=3. From (a)with k=2, and [k, k-l, lt]=[2m, t+] replaced by C =[2re+E, 1/-1]
[2m+2,1,1t-2], we have c =2[(n-1)l]/[n-(l-2)+ 1]. By Corolla 2 1,-n, n, p

d(C C () d(Co, Cp)C(n) 1) c() we find the desired)c,, + =2[(n ]. Solving for _,,,
expression, when we use n- l 2m+ 3. Thus (c) is te for each 1 2. As for l 1, let
C =[3,2m, 1]A and C, =[3,2m, 12]A,+l From Lena 2, with i=0 andj= 1, we

.(n)have +) =nc(n) so, rn+l) =nl(2m+3)/[2(m+l)(m+3)], so ,,,n+ 1, n+ 1, ’ n, n, " n+ 1, n 1, ’(n-1)(2m+3)/[2(m+ 1)(m+3)]. Thus (c) is true for l=1; similarly (c) is true for
l 0 also.

(d) The proof of (d) follows directly from Lemma 2 (withj= and =0), and (a)
above (with k=2 and l=0). ternatively, one can use C =[3,2m-]S,+ and its
descendant classes, and Corolla 2.1 and (c) above.

Note in particular that if C A, (n odd) is represented by [km, k- 1], then

2[(n-- 1)!]
(n+l)

We have thus found a combinatorial interpretation of the latter ratio, for odd n. Also,
our examples show how we can proceed recursively, beginning with either (b) or (c) of
the corollary, to develop expressions for c,(),, when C, [k,2m, lt], k >= 3. We do not
pursue this.

As before, p(r, n) denotes the number of partitions of n into exactly r parts, and
there are p(r, n) classes of permutations in S with exactly r disjoint cycles. These are
even permutations if and only if r n (mod 2). As C C_ Sn+ runs over all the classes
of odd permutations with exactly r disjoint cycles, Corollary 2.1 yields p(r, n+ 1)
linear equations in the p(r,n) unknowns c(n) where D CS is represented by a
partition of n into exactly r parts. For example, with n= 5 and r= 3: Let Co, =[4, 1, 1],
Co=[3,2, l] and Co3=[2,2,2]. Co, has descendant class [3, l, 1]=D,,; Co has descen-
dant classes [2,2, 1]=D,, and D,,; C has descendant class D,:. From Corollary 2.1 we
have the system" 4 .’‘(5) =2.4!, o 5) -o c(5) -2.4t, and t;.,.() -9.av"5, 5, "q D 1:5, 5,



456 EDWARD A. BERTRAM AND VICTOR K. WEI

We now show that it is possible in general to pick out p(r, n) linearly indepen-
dent equations in the p(r,n) unknowns, and solve for all cn) We say that
Co(Sn+l) is the principal ascendant class of C --"[1’ 2"’"kr](’Sn’ if C ---[t --1,, 2 ,,], that is, the length of the longest cycle in o exceeds the length of the
longest cycle in by exactly one. Furthermore, we may order this collection of p(r, n)
partitions of n by putting [X, 2, X3 Xr]>[X], ,, X X’r] if and only if 1
tl’ 2 -’2 i-I =’i- , and i > ’i. If C is represented by [’1, 2 r], etc., we
have clearly induced an ordering on the classes" C,,>C2... C,,(p=p(r, n)). If Co, is
the principal ascendant class of C,,, 1 <__ <_-p, then we also have Col > Co2> Co3> >
Co,. Let the column vector xm(xl, x2 xp t, --i" -"()- , , , <-_i<=p; also let D=(di2)
be the pp matrix with entries dij d(oi, ). Then, if c is the column vector of length
p with each entry the integer 2[(n-1)!], Dx=c follows immediately from Corollary
2.1. Clearly each dii >0. Furthermore d2 >0, i=/=j, if and only if C,. is a descendant
class of Co,, which implies that C,> C, andj < i. Thus D s a lower triangular matrix
with positive diagonal entries, D is nonsingular, and Dx=c can be solved uniquely for
each e(")

--, /,

On the other hand, if a particular c),, is desired, where CiC2...
> C., it is only necessary to solve a system of no more than rn equations, obtaining

c() Themany (but not necessarily all) of the _n,c(), ,, =<i<m-= 1, along with _.,,.
following steps outline the procedure, putting C, C,."

1) Find the principal ascendant class Co(c_S+ ) of C,.
2) List all the descendant classes (c_S) of Co.

3) List all the principal ascendant classes of the classes in Step 2.
4) List all the descendant classes of the classes found in Step 3.
5) Continue in this way until reaching Co,, the principal ascendant class of C,,.
Example. C =[8, 3, 2] S13 and C =[9, 3, 2].

Descendants Principal ascendants
C,, =[11,1,ll --[12, 1, 11 Co,

2
C =[10,2, 1] ----11 *[11,2, 1]=

[9,3,1] .-[10,3,1]

[9,2,2] [10,2,2]

[8, 3,2]------9[9, 3,2]

12x =2(12)!

2x + lx2 =2(12)!

3x2 + 10X3 =2(12)!

4X2 -I- 10X4 2(12)!

2x3 +3X4 +9x5 =2(12)!

The arrows in the diagram point to the relevant descendant and principal
ascendant classes found in the steps above.

=c03) are easily found.Here d(Co,, C,)= 12 d(Co, C) =9, and the x 3,3,,
COROLLARY 2.3. Let C C_S be represented by the partition [...33 2n2 ln,], and let

IM(o)I =n-nl.
(a) If oA, n>= 3, then c.)_2 --[M(o)[(n-3)!.

) n 4then c 3(b) If oS. -h., n > 4, n,n-3, --[( )./ ][In(o)l(In(o)l- 1)--2n2];
(c) If o A., n >= 5, then

cn) (n--5)!
,-4,o-- 4--?y--[IM(o)l(IM(o)l 1)(IM(o)l-2)-6n2(lM(o)l-2)-6n3].
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(a) From Theorem 2 we have, with 1"

d( .Dr)(nn l) 2c(,,)
n--2,, n, n--2, o"

From Theorem we have c"_),,_2,. =2[(n-3)!1 whenever d(C, D.)=/=0 (for then - is
an odd permutation). But

d(Co, D,)= Z k’nk =n--nl =lM(o)l,
k=>2

and the stated formula follows immediately.
(b) When i-2, Theorem 2 yields

d(G D,)c(,," ’) 3c(")
,n--3,, -n,n--3, o"

From (a), -’(’-) =(n-4)lM(’r)l If o has one more 2-cycle than , and d(Co, D,)t’n-- 1, n--3,
=2.n2, then IM()I--IM(o)I-2; if one more k-cycle, and d(C,,, D,)=k.nk, k>= 3,
then M(-)I M()l- 1. Thus

3c(,;),-3,o Z k’n,’(n-4)!(lM(o)l- 1)+2"n2"(n-4)!(lM(o)l-2)
k>=3

=(n--4)![(IM()l--1) k’nk--2n2]
The expression for c(’) follows immediately.

(c) When i= 3, Theorem 2 yields

d(G .D,)(nn.’-’ll) 4,
=ztr’(n)

-Wn,n--4, o"

From (b), c(,"),_.,=[(n-5)!/3l[IM(z)l(IM(z)l 1)-2(# of 2-cycles of -)]. When
d(Co, D,) 2n 2, M(-)I M(o)l 2 and - has n2 2-cycles. When d(Co, D,)
3n3,[M(z)l=]M(o)l- and z has n2 + 2-cycles. When d(Co, D)=k.nk, k>__
4, lM(’r)l-lM(o)l-1 and " has n 2 2-cycles. Thus

4c(n (n- 5)! (
.,.-4,o t [(IM(o)l-2)(IM(o)l-3)-2(n2- 1)]2n2

+ [(I M(o)l- 1)(IM(o)l-2)-2(nz + 1)]3n 3

+ Z [(IM(o)l-1)(lM(o)l-2)-2n=]kn}
(n-5)’----’1{3 >_ (I M()l- 1)(IM()l-2)-2nv-Jknk

M(o)I- 6) 6n3 }2n2(2]

{ ]M(o)(] M(o)]- 1)(M(o)]-2)-6n2(lM(o)]-2)-6n3}

since
k22
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We see in (a), (b), (c) above that, for 2, 3, 4 and n > + 1, e(n) depends onlyvn, n--i,

on n, i, the parity of o, M(o)l, and on the number nj of j-cycles in the disjoint cycle
decomposition of o for j<=i-1 (i-1 =n-(n- i)-1). We can now show that this
dependence of en) extends to all i> 5 (and n> + 1). From Theorem 2,-n, i,

=ic(") for 1 <i<nE d(Co Dv)cnl-i,v n,n-i,a

D CS_

Let > 5, n > + 1, and suppose ("- ) (- )C._l,._i,(=.._,(._)_(i_),) depends only on n- 1,
-1, the parity of z, M(z)[, and the number of j-cycles in the disjoint cycle
decomposition of , forji-2 (=(n- 1)- (n-i)- 1). But d(Co, D.)@O if and oy if

D. is a descendant class of Co. If D. is a descendant class of C., then[M(z)[ equals
either [M(o)l- 1 or [M(o)[- 2. Furthermore, for each descendant class D. of C
[... j"... ], the number of j-cycles in the disjoint cycle decomposition of is one of

{nj + 1, nj- 1, nj}, depending on whether the cycle length where o and differ is,
respectively, a (j+ 1)-cycle, j-cycle, or other k-cycle (of o). us e(") also depends
only on n, i, the parity of o, [M(o)[, and the number of (j+ 1)-cycles of o,j+ (i-
2)+ 1.

3. U of the chae of S,. As mentioned in the introduction, in principle it is
possible to compute the integers %o,

) using the character table of S. For backound,
including methods for computing the ieducible characters of the syetfic groups,
see, e.g., [5] and [6].

Let []=[,X2,...,,],>>=="’-,=>l,+:+’’’+x,=n, denote a
x denotes the character of the conjugacy class C cS, inpartition of the integer n. Xo

the irreducible representation of S corresponding to [X]. X denotes the degree of the
irreducible character Xx.

Our puwose in this section is to illustrate, using some of the classical results on
the ordina irreducible characters of S, how one may compute certain of the
obtained earlier. We wish to contrast the diverse suation problems wch arise
here with the uty and scope of the results of 2. Our starting points are eorems A,
B, and C below. We then eibit the variety of sums involving binomial coefficients
necessa to evaluate" (i) e) where C is any class of odd permutations in S
(compare Theorem of 2)" (ii) e(") where C. is the class of all n-cycles in S., and n
is odd (compare Corolla 2.2a of 2 with l=m=0 and k=n+ 1); (iii) e) when
n= 2, m even, and C is the class of involutions [2 (compare Corolla 2.2d).

THEOREM A (see, e.g., [4, p. 128]).

c<n) =lCollCol x
txl X"

where the sum is over all partitions [] of n.
THEOREM B (see, e.g., [6, pp. 140-141]).
(1) X, yXxo, where Co, c_ S,, and p’ has the same disjoint cycle structure as

pSn_ , plus one extra 1-cycle. If [/]=[/x,/ 2 ,tzk], the summation is over all
partitions of n- 1" [X]=[/.t 1,/2,...,/x,], [/x,/z 2 k] [l,/x2,’",/Xk 1],
omitting those for which the descending order of the parts is destroyed.

x where Co, c Sn r, and p’ has the same cycle structure as p, plus one(2) X,=Y+_.X,, +
extra r-cycle. If [/z]=[t, tt2,..., ttk], the summation is over all partitions [] of n such
that the sequence ) + k 1, X + k 2,..., Xk is obtained from the sequence I + k
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1,/ 2
q- k- 2 Ik by decreasing one term by r and rearranging in descending order. The

minus sign is used if and only if the rearrangement corresponds to a negative permutation.
Theorems A and B together with the results in [6, Chap. 5] and [5, Chap. 7] using

lattice permutations, the Frobenius character formula, and the graph of a partition,
make it possible to compute the necessary characters, which we do in Theorem C. In
particular, let [Xi] be the partition In-i, 1i], O<-_i<=n 1; [2m] is the class of involutions
in S, n 2 >= 4. XX denotes the character of the class of j-cycles (CS)_ in the
irreducible representation corresponding to the partition [X] of n.

THEOREM C.

((--1) i, if[X]=[(1)
O, otherwise,

(2) XX’= .{(n-l)+(--l)’i-’(n-j-1)in-i-I
O<i<n--l’ 1<= J<----n--1

I’l

(3) XI (- 1) [i+ 1)/2J

where x denotes the integer part of x.

Proof. The formula in (1) is a direct application of the graphical methods for
determining characters, and is referred to in [5, p. 205]. As for (2), for each n the
boundary cases 0, -< j < n 1, andj- 1,0 < <= n 1, follow immediately from the

graphical method. For, when i--0 we are asserting that Xo--x 0
-j-(-1)-’ [ _} 1, for 1_< j< n-1. But Xj is a special case of [6, Thin. III, p.
n-1
j---1 we are asserting for l_<i_<n 1, that X,,[n-2}+70]. When

{ n-2 .}"-{n-21+{n-2}--{n-1}’Butthisfllwsimmediatelyfrm[6’Thm"n-i-1 i-1
L p. ].

We may now prove formula (2) for each n, and l__<i<__n-l,2<__ j<n-1, by
induction. Assume that (2) holds with n replaced by n- 1, replaced by i- 1, andj. By

n-l-i’l’-I.-X.-i’l’-’ where Co is the class (_S,_I) ofTheorem B, part (1),

j-cycles. By induction, X -l_i,,_(n--2}+(_ 1)J_l(n-j-2 ando \n-i-2!

xon-i’l
i-! n-J-i_l 2 + (_ 1)j-1 n-J-n_i_12 Thus Xj

(n-j-l) foreachnandO<i<n-l,l< j<n-1.
n-i-1

For a proof of (3), we use Theorem B, part (2), with r=2. A check of the
character tables for $4, and S6 shows (3) to be correct when m=2 and m= 3, and we
proceed by induction, moving from n-2 to n. Let C be the class of involutions
(C_S_2) with cycle structure [2 -],n=2m. Theorem B part 2 yields X

x

n-i-2’l’--x-i’l’-2. But the latter, by induction, gives
[2’]--"

X,

(- 1) L(’+I)/2I -(- 1)/(i-1)/2j i-2 =(- 1)1(i+’)/21
2

We are now ready to evaluate: ")() c,,,_l, , 0A# (ii) e") C, the class of
n-cycles, n odd; and (iii) c,),, C the class of involutions represented by [2"], n--2m
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0 (mod 4). We begin by applying Theorem A in each case:

(i) e(n) (n-- 1)!n(n-2)! x x x
-n,n--1, a= n

XnXn-lXo

x
1.1-1

---(n-2)! +

=2[(n-2)!],

ix]

(- 1)"-’(-11)n-z(- 1) )
since, by Theorem C, part (2), Xx =0, if [Xl#thi]; Xtx’l =(- 1)’, X[nh_]l-----0, if i#0, n- 1;

h, { (-- 1)n-2 i=n--
Xn-1

1, i=0

We have also used the fact that X for eve class Co ([6, Thm. III, p. 70]), and

X since Co is a class of odd permutations in S.
(ii) c() C the class of n-cycles in S, n odd, is given by

c?,, [(n--1)!]Zn! =(X (n--l)] (--1
[hi X n i=o (n-l

using eorem C, parts and 2. ere are several ways to evaluate the latter sum. For
example, it appears with hints for a ce suggested proof, as a special case in [9, p. 28,
Exercise 3]. e result is, as in Corolla 2.2(a), that c 2[(n- 1)!]/(n + 1).

(iii) e C the class [2] of involutions in A with m 2-cycles, n=2m, m even, is

ven by

n 7o"= (- 1)10+0/21 2m--i -l,

again by Theorem C, parts (1) and (3). The latter reduces to

{2[(n_ l),]/n},.l(_ l) ( m-1)( 2m-1) -1

2i
This sum appears in [4, p. 24, entry

(4.25)]. Alternatively, as pointed out by Larry Wallen, one can use the relation

between (2m- ) -2i
and the beta function, and integrate by parts. In any case we

obtain the same result as in Corollary 2.2(d) (along with the value 1 for the sum when
m is odd).
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